JPH0528749B2 - - Google Patents

Info

Publication number
JPH0528749B2
JPH0528749B2 JP62158871A JP15887187A JPH0528749B2 JP H0528749 B2 JPH0528749 B2 JP H0528749B2 JP 62158871 A JP62158871 A JP 62158871A JP 15887187 A JP15887187 A JP 15887187A JP H0528749 B2 JPH0528749 B2 JP H0528749B2
Authority
JP
Japan
Prior art keywords
absorption liquid
temperature
concentration
lithium
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62158871A
Other languages
Japanese (ja)
Other versions
JPS6485278A (en
Inventor
Akinori Nagamatsuya
Hiroshi Iizuka
Kenji Takahashi
Jun Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP62158871A priority Critical patent/JPS6485278A/en
Priority to AU18362/88A priority patent/AU623079B2/en
Publication of JPS6485278A publication Critical patent/JPS6485278A/en
Priority to US07/607,761 priority patent/US5108638A/en
Publication of JPH0528749B2 publication Critical patent/JPH0528749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は吸収冷凍機用吸収液に関し、特に冷媒
として水を使用する場合、低温度においても晶析
を生じないハロゲン化リチウムの混合物からなる
吸収冷凍機用吸収液に係わる。 〔従来の技術〕 吸収冷凍機は高温の熱エネルギーを直接消費し
て冷凍作用を行なうもので、熱エネルギーの効率
的、合理的利用の面から広く使用されている。ま
た吸収冷凍機には種々のタイプがあるが、中でも
二重効用吸収冷凍機が冷凍効率に優れており、そ
れについて以下に簡単に説明する。 二重効用吸収冷凍機の一例として概略図を第5
図に示す。蒸気冷媒を吸収した低濃度吸収液は高
温発生器2で加熱源1で加熱され、分離器4に送
られ、冷媒は蒸発し吸収液は濃縮されて中濃度吸
収液になる。次に中濃度吸収液は高温熱交換器6
に送られ、低温度の吸収器13から来る低濃度吸
収液と熱交換し、低温発生器9に送られる。この
低温発生器9において中濃度吸収液は分離器4か
らの蒸気冷媒が流通する蒸気冷媒導入管8に接触
して加熱され、吸収液中の冷媒が更に蒸発し高濃
度吸収液になる。次に高濃度吸収液は低温熱交換
器11に送られ、低温度の低濃度吸収液と熱交換
して冷却され、吸収器13に導入される。吸収器
13において低温度の高濃度吸収液は散布され、
かつ冷却管17により冷却され、蒸発器16から
の蒸気冷媒を吸収して低濃度吸収液になる。その
後循環ポンプ19により熱交換器11,6を経て
高温発生器2に送られ、このようにしてリサイク
ルされる。一方、分離器4から蒸発した高温の蒸
気冷媒は蒸気冷媒導入管8に流通して凝縮器18
に導入され、冷却管17により冷却され凝縮して
液体にされる。次に液体冷媒は蒸発器16に供給
されて蒸発し、その蒸発潜熱により冷水管15を
通る水を冷却して冷水にする。この蒸気冷媒は吸
収器13で高濃度吸収液に吸収される。また冷水
は室内の冷房等に使用される。 従来、冷媒として水、吸収剤として臭化リチウ
ムが用いられていた。その運転サイクルの一例を
第2図に示す臭化リチウム水溶液のデユーリング
線図によつて説明する。第2図は臭化リチウム濃
度及び水をパラメータとして、温度と蒸気圧力の
関係を示し、サイクルABCDEFは吸収液のサイ
クル運転の状態を示す。高温発生器2において循
環ポンプ19により送られて来た臭化リチウム低
濃度吸収液が加熱され、蒸気冷媒が追い出されて
濃度の高い吸収液(中濃度吸収液)になる。仮に
次の条件で運転すると、吸収液は第2図の点A
(濃度62.5重量%)から点B(濃度64.5重量%)に
濃縮される。蒸発した蒸気冷媒は低温発生器9に
送られ、点Gの状態で凝縮し凝縮熱を発生する。
また中濃度吸収液は低温発生器9においてその凝
縮熱により加熱され、点C(濃度64.5重量%)か
ら点D(濃度66.5重量%)に濃縮されて高濃度吸
収液になる。また蒸気冷媒は凝縮器18において
冷却管17により冷却され、点Hの状態で液体に
なる。そのとき発生した凝縮熱は水媒体を介して
冷媒塔に棄てられるか、又は空気によつて直接外
気に棄てられる。一方、高濃度吸収液は冷却され
て吸収器13に送られ、入口部で点E(濃度66.5
重量%、温度58℃)の状態で入り、点Iの蒸気冷
媒(5℃、6.5mmHg)を吸収して希釈されて、出
口部で点F(濃度62.5重量%、温度50℃)の低濃
度吸収液になる。この際、蒸発器16においては
冷水管15中の水は冷却されて冷水になり、室内
の冷房に使用される。更に吸収器13では高濃度
吸収液が蒸気冷媒を吸収して熱を発生し、その熱
は冷却管17に水媒体又は空気を通して冷却塔或
るいは外部に棄てられる。また希釈された低濃度
吸収液は熱交換器11,6で高濃度吸収液及び中
濃度吸収液と熱交換されて、高温発生器2に戻さ
れ、リサイクルされる。 しかしながら、このような従来の公知技術であ
つては、蒸発器16で冷媒蒸発温度を5℃(点
I)に下げて、吸収器13で吸収液を温度50℃に
冷却する条件(空冷条件)を満足させるには、低
濃度吸収液を点Fの濃度62.5重量%にしなければ
ならない。このとき、仮に低濃度吸収液と高濃度
吸収液との濃度差を4重量%とすると、高濃度吸
収液の濃度を66.5重量%にしなければならない。
しかし臭化リチウム水溶液はこの温度で晶析す
る。第3図に臭化リチウムの水に対する溶解曲線
を示す。第3図より低濃度吸収液(62.5重量%)
と高濃度吸収液(66.5重量%)の晶析温度は夫々
33℃(点S)、71℃(点T)である。高濃度吸収
液(66.5重量%)の50℃においては、臭化リチウ
ムは水に完全に溶解しない。従つて第2図に示す
ように点Eは晶析線X−X′−X″よりはみ出し晶
析が起り、上記の条件では冷凍サイクルの運転は
不可能である。 また、臭化リチウム水溶液の高濃度吸収液がそ
の溶解度を超えない濃度例えば64.5重量%にする
と、低濃度吸収液(62.5重量%)と高濃度吸収液
(64.5重量%)との濃度差は2重量%となる。こ
の濃度差では吸収液の循環量を多くしなければな
らず、成績係数(蒸発器での吸熱量QE/発生器
での加熱量QG)の低下をもたらし、冷凍効率が
低下する。またこの濃度では冷凍機の運転を停止
した場合、その吸収液が外気温度までに低下する
ので、晶析発生のおそれが生じる。そのためにこ
の条件で冷凍サイクルを作動させることは極めて
危険である。 また、第3図の点Sを考慮して仮に高濃度吸収
液の晶析温度が30℃以下にならないような条件で
運転サイクルを考えると高濃度吸収液の濃度を62
重量%、濃度差を4重量%とすると、低濃度吸収
液は濃度58重量%になる。この条件では、冷媒の
蒸発温度5℃において吸収するには吸収器内の吸
収液温度は第2図のデユーリング線図から40℃に
なる。従つて吸収液を外気(温度35℃)で冷却す
る場合は温度差が5℃しか取れず、そのために相
当大きな熱交換器を必要とし実用的でない。 〔発明が解決しようとする問題点〕 上述した如く、臭化リチウム単独水溶液を吸収
冷凍機用吸収液に使用すると、冷媒蒸発温度5℃
において吸収液温度50℃では臭化リチウム吸収液
は高濃度(66.5重量%)になると吸収器で晶析す
るので使用できず、また晶析が発生しないように
低濃度にすると低濃度にし、低温度吸収液を空冷
しようとすると、低温度吸収液と外気(35℃)と
の温度差が小さく冷却効率が低下するか、若しく
は空冷が不可能になる。水冷方式を用いる場合に
は、冷却水供給設備が必要となり、設備費用、設
置場所に制約を受ける欠点がある。更に冷却水の
費用がかかり、水の節約という点から家庭空調と
して不向きである。 また、臭化リチウム−水系の欠点を改良し、蒸
発器と吸収器との温度差を大きくするために、他
の吸収液の検討をした。この系に臭化亜鉛、塩化
亜鉛を加えた系では溶液は酸性を呈し、極めて強
い腐食性を示すと共に、極希薄溶液(10重量%以
下)では水酸化亜鉛の生成により沈澱物を生じ
る。また臭化カルシウムの添加系では腐食性が強
く、また腐食抑制剤として水酸化リチウムの添加
により沈澱物を生じる欠点がある。その他、チオ
シアン酸リチウム、エチレングリコール等が研究
されているが、耐熱性に劣るため実用に適さな
い。 この様に水−臭化リチウム系吸収液は吸収冷凍
機に満足されていなかつた。 雑誌「冷凍」の、477号(1967)には水−臭化
リチウム系吸収液及び水−塩化リチウム系吸収液
が、502号(1969)には水−臭化リチウム−塩化
リチウム系吸収液が、504号(1969)には水−沃
化リチウム系吸収液が、それぞれ開示されてい
る。しかし、これらのいずれにも、吸収液の晶析
温度を低下させる方策については記載されていな
かつた。 本発明の目的は、高濃度でかつ晶析温度の低い
吸収冷凍機用吸収液を提供するにある。 〔問題点を解決するための手段〕 本発明の吸収冷凍機用吸収液は、上記の目的を
達成するために、発生器、凝縮器、蒸発器及び吸
収器よりなる吸収冷凍機に使用される吸収液にお
いて、該吸収液は、臭化リチウム、沃化リチウム
及び塩化リチウムが、重量比で、臭化リチウム
1:沃化リチウム0.1〜1.0:塩化リチウム0.05〜
0.50で混合された混合物を含んでなる吸収剤が、
冷媒である水に溶解されてなる水溶液であること
を特徴とする。更に好ましくは臭化リチウム1に
対し沃化リチウム0.2〜0.5塩化リチウム0.15〜
0.23の水溶液からなる吸収液である。 〔作用〕 本発明吸収液は臭化リチウム、沃化リチウム及
び塩化リチウムの混合物の水溶液であり、晶析温
度が臭化リチウム単独水溶液よりも低い。水溶液
が溶液温度50℃のときの水溶液の蒸気圧と晶析温
度との関係を第4図に示す。曲線1は本発明の臭
化リチウム、沃化リチウム及び塩化リチウムの混
合系水溶液、及び曲線2は従来の臭化リチウム単
独の水溶液を示す。冷媒の水の蒸発温度5℃にお
ける蒸気圧6.5mmHgでの水溶液の晶析温度は、本
発明水溶液は直線1の点A、臭化リチウム単独水
溶液は曲線2の点Bに相当し、それぞれ晶析温度
は7℃及び33℃である。則ち本発明の水溶液を用
いることにより、臭化リチウム単独の水溶液と比
較して晶析温度を26℃下げることが可能である。 上述の如く臭化リチウム単独水溶液では晶析温
度が高く、溶解度に限界がある。従つてこの臭化
リチウム単独水溶液を用いる場合、低濃度の臭化
リチウム水溶液を用いて吸収温度を低くする必要
があり、そのために吸収温度と外気温度との差が
小さくなり、吸収液を空冷することが困難であ
る。 また、本発明の臭化リチウム、沃化リチウム及
び塩化リチウムの混合水溶液の溶液特性を第1表
に示す。また比較例として臭化リチウム単独水溶
液の溶液特性を併記する。第1表から本発明水溶
液は比較例水溶液よりも晶析温度が明らかに低
い。また本発明の混合系水溶液については、No.2
の方がNo.1よりも幾分好しい。
[Industrial Field of Application] The present invention relates to an absorption liquid for an absorption refrigerator, and in particular, when water is used as a refrigerant, the present invention relates to an absorption liquid for an absorption refrigerator consisting of a mixture of lithium halides that does not cause crystallization even at low temperatures. Involved. [Prior Art] Absorption refrigerators perform refrigeration by directly consuming high-temperature thermal energy, and are widely used from the standpoint of efficient and rational use of thermal energy. There are various types of absorption refrigerators, and among them, the dual-effect absorption refrigerator has excellent refrigerating efficiency, which will be briefly explained below. A schematic diagram is shown in Fig. 5 as an example of a double-effect absorption refrigerator.
As shown in the figure. The low concentration absorption liquid that has absorbed the vapor refrigerant is heated by the heating source 1 in the high temperature generator 2 and sent to the separator 4, where the refrigerant is evaporated and the absorption liquid is concentrated to become a medium concentration absorption liquid. Next, the medium concentration absorption liquid is transferred to the high temperature heat exchanger 6.
It exchanges heat with the low concentration absorption liquid coming from the low temperature absorber 13 and is sent to the low temperature generator 9. In this low-temperature generator 9, the medium-concentration absorption liquid is heated by contacting the vapor refrigerant introduction pipe 8 through which the vapor refrigerant from the separator 4 flows, and the refrigerant in the absorption liquid is further evaporated to become a high-concentration absorption liquid. Next, the high-concentration absorption liquid is sent to the low-temperature heat exchanger 11, where it is cooled by exchanging heat with the low-temperature low-concentration absorption liquid, and introduced into the absorber 13. In the absorber 13, the low temperature high concentration absorption liquid is sprayed,
It is cooled by the cooling pipe 17, absorbs the vapor refrigerant from the evaporator 16, and becomes a low concentration absorption liquid. Thereafter, it is sent to the high temperature generator 2 via the heat exchangers 11 and 6 by the circulation pump 19, and is thus recycled. On the other hand, the high-temperature vapor refrigerant evaporated from the separator 4 flows through the vapor refrigerant introduction pipe 8 to the condenser 18.
The liquid is introduced into the cooling pipe 17, where it is cooled and condensed into a liquid. Next, the liquid refrigerant is supplied to the evaporator 16 and evaporated, and its latent heat of vaporization cools the water passing through the cold water pipe 15 into cold water. This vapor refrigerant is absorbed into a high concentration absorption liquid in the absorber 13. The cold water is also used for indoor cooling. Conventionally, water has been used as a refrigerant and lithium bromide as an absorbent. An example of the operation cycle will be explained with reference to the Duehring diagram of an aqueous lithium bromide solution shown in FIG. FIG. 2 shows the relationship between temperature and steam pressure using lithium bromide concentration and water as parameters, and cycle ABCDEF shows the state of cycle operation of the absorption liquid. In the high temperature generator 2, the low concentration lithium bromide absorption liquid sent by the circulation pump 19 is heated, the vapor refrigerant is expelled, and the liquid becomes a high concentration absorption liquid (medium concentration absorption liquid). If the operation is performed under the following conditions, the absorption liquid will reach point A in Figure 2.
(concentration 62.5% by weight) to point B (concentration 64.5% by weight). The evaporated vapor refrigerant is sent to the low temperature generator 9, where it condenses at point G and generates heat of condensation.
Further, the medium concentration absorption liquid is heated by the heat of condensation in the low temperature generator 9 and concentrated from point C (concentration 64.5% by weight) to point D (concentration 66.5% by weight) to become high concentration absorption liquid. Further, the vapor refrigerant is cooled by the cooling pipe 17 in the condenser 18, and becomes liquid at point H. The heat of condensation generated at this time is dissipated into a refrigerant tower via an aqueous medium or directly to the outside atmosphere via air. On the other hand, the high concentration absorption liquid is cooled and sent to the absorber 13, where it reaches point E (concentration 66.5
% by weight, temperature 58℃), absorbs the vapor refrigerant at point I (5℃, 6.5mmHg) and is diluted, and exits at a low concentration of point F (concentration 62.5% by weight, temperature 50℃). It becomes an absorbing liquid. At this time, in the evaporator 16, the water in the cold water pipe 15 is cooled to cold water, which is used for cooling the room. Further, in the absorber 13, the highly concentrated absorption liquid absorbs the vapor refrigerant to generate heat, and the heat is passed through the cooling pipe 17 as an aqueous medium or air and is disposed of in the cooling tower or outside. Further, the diluted low concentration absorption liquid undergoes heat exchange with the high concentration absorption liquid and the medium concentration absorption liquid in the heat exchangers 11 and 6, and is returned to the high temperature generator 2 and recycled. However, in such conventional known technology, the condition is that the refrigerant evaporation temperature is lowered to 5°C (point I) in the evaporator 16, and the absorption liquid is cooled to a temperature of 50°C in the absorber 13 (air cooling condition). In order to satisfy the following, the low concentration absorbing liquid must have a concentration of 62.5% by weight at point F. At this time, if the concentration difference between the low concentration absorption liquid and the high concentration absorption liquid is 4% by weight, the concentration of the high concentration absorption liquid must be 66.5% by weight.
However, lithium bromide aqueous solution crystallizes at this temperature. FIG. 3 shows the solubility curve of lithium bromide in water. From Figure 3, low concentration absorption liquid (62.5% by weight)
and the crystallization temperature of high concentration absorption liquid (66.5% by weight) are respectively
33°C (point S) and 71°C (point T). Lithium bromide does not completely dissolve in water at 50°C in a highly concentrated absorption liquid (66.5% by weight). Therefore, as shown in Figure 2, point E protrudes from the crystallization line X-X'-X'' and crystallization occurs, making it impossible to operate the refrigeration cycle under the above conditions. If the high concentration absorption liquid has a concentration that does not exceed its solubility, for example 64.5% by weight, the difference in concentration between the low concentration absorption liquid (62.5% by weight) and the high concentration absorption liquid (64.5% by weight) will be 2% by weight.This concentration If the difference occurs, the circulation amount of the absorption liquid must be increased, resulting in a decrease in the coefficient of performance (the amount of heat absorbed in the evaporator Q E / the amount of heating in the generator Q G ), and the refrigeration efficiency decreases. If the refrigeration machine is stopped, the absorption liquid will drop to the outside temperature and there is a risk of crystallization.Therefore, it is extremely dangerous to operate the refrigeration cycle under these conditions. Considering point S in Figure 3, if we consider the operating cycle under conditions such that the crystallization temperature of the high concentration absorption liquid does not fall below 30℃, the concentration of the high concentration absorption liquid will be 62
If the difference in concentration is 4% by weight, the concentration of the low concentration absorption liquid will be 58% by weight. Under these conditions, the temperature of the absorption liquid in the absorber will be 40°C according to the Dueling diagram in FIG. 2 in order to absorb the refrigerant at an evaporation temperature of 5°C. Therefore, when the absorption liquid is cooled with outside air (temperature: 35°C), a temperature difference of only 5°C can be achieved, which requires a considerably large heat exchanger, which is impractical. [Problems to be solved by the invention] As mentioned above, when an aqueous solution of lithium bromide alone is used as an absorption liquid for an absorption refrigerator, the refrigerant evaporation temperature is 5°C.
If the absorption liquid temperature is 50℃, the lithium bromide absorption liquid will crystallize in the absorber when it reaches a high concentration (66.5% by weight), so it cannot be used. When attempting to air-cool the temperature absorption liquid, the temperature difference between the low-temperature absorption liquid and the outside air (35°C) is small and the cooling efficiency decreases, or air cooling becomes impossible. When using a water cooling system, cooling water supply equipment is required, which has the disadvantage of being subject to restrictions on equipment cost and installation location. Furthermore, cooling water is expensive, making it unsuitable for home air conditioning from the point of view of saving water. In addition, in order to improve the drawbacks of the lithium bromide-water system and increase the temperature difference between the evaporator and absorber, other absorbing liquids were investigated. When zinc bromide and zinc chloride are added to this system, the solution becomes acidic and exhibits extremely strong corrosive properties, and in extremely dilute solutions (10% by weight or less), precipitates are formed due to the formation of zinc hydroxide. Furthermore, systems in which calcium bromide is added have the disadvantage of being highly corrosive and producing precipitates when lithium hydroxide is added as a corrosion inhibitor. Other materials being studied include lithium thiocyanate and ethylene glycol, but they are not suitable for practical use because of their poor heat resistance. In this way, water-lithium bromide based absorption liquids have not been satisfactory for absorption refrigerators. In issue 477 (1967) of the magazine "Frozen", there was a water-lithium bromide absorption liquid and a water-lithium chloride absorption liquid, and in issue 502 (1969), there was a water-lithium bromide-lithium chloride absorption liquid. , No. 504 (1969) discloses water-lithium iodide based absorption liquids. However, none of these documents describes any measures for lowering the crystallization temperature of the absorption liquid. An object of the present invention is to provide an absorption liquid for an absorption refrigerator that has a high concentration and a low crystallization temperature. [Means for Solving the Problems] In order to achieve the above object, the absorption liquid for an absorption refrigerator of the present invention is used in an absorption refrigerator consisting of a generator, a condenser, an evaporator, and an absorber. In the absorption liquid, lithium bromide, lithium iodide and lithium chloride are contained in a weight ratio of lithium bromide: 1: lithium iodide: 0.1-1.0: lithium chloride: 0.05-1.
An absorbent comprising a mixture mixed with 0.50
It is characterized by being an aqueous solution dissolved in water, which is a refrigerant. More preferably, lithium iodide is 0.2 to 0.5 and lithium chloride is 0.15 to 1 per lithium bromide.
It is an absorption liquid consisting of an aqueous solution of 0.23. [Function] The absorption liquid of the present invention is an aqueous solution of a mixture of lithium bromide, lithium iodide and lithium chloride, and has a crystallization temperature lower than that of an aqueous solution of lithium bromide alone. Figure 4 shows the relationship between the vapor pressure and crystallization temperature of an aqueous solution when the solution temperature is 50°C. Curve 1 shows a mixed aqueous solution of lithium bromide, lithium iodide and lithium chloride according to the present invention, and curve 2 shows a conventional aqueous solution of lithium bromide alone. The crystallization temperature of an aqueous solution at a vapor pressure of 6.5 mmHg at a refrigerant water evaporation temperature of 5°C corresponds to point A on straight line 1 for the aqueous solution of the present invention and point B on curve 2 for an aqueous solution of lithium bromide alone. Temperatures are 7°C and 33°C. That is, by using the aqueous solution of the present invention, it is possible to lower the crystallization temperature by 26°C compared to an aqueous solution of lithium bromide alone. As mentioned above, an aqueous solution of lithium bromide alone has a high crystallization temperature and has a limited solubility. Therefore, when using this aqueous solution of lithium bromide alone, it is necessary to lower the absorption temperature by using a low concentration lithium bromide aqueous solution, which reduces the difference between the absorption temperature and the outside temperature, and cools the absorption liquid in air. It is difficult to do so. Further, Table 1 shows the solution properties of the mixed aqueous solution of lithium bromide, lithium iodide, and lithium chloride of the present invention. In addition, as a comparative example, the solution characteristics of an aqueous solution of lithium bromide alone are also shown. From Table 1, the crystallization temperature of the aqueous solution of the present invention is clearly lower than that of the aqueous solution of the comparative example. Regarding the mixed aqueous solution of the present invention, No. 2
is somewhat preferable to No.1.

〔実施例〕〔Example〕

吸収液として臭化リチウム:沃化リチウム:塩
化リチウムの混合重量比1:0.4:0.15の水溶液
を用い、前述の第5図に示す二重効用吸収冷凍機
に使用して冷凍運転する。この臭化リチウム−沃
化リチウム−塩化リチウムの混合系水溶液を吸収
液に用いた運転サイクル状態を第1図の混合水溶
液のデユーリング線図で示す。第1図は前述の第
2図のデユーリング線図を用いて説明した運転サ
イクル状態と同様に温度と蒸気圧との関係を示
す。吸収液が蒸気冷媒(水蒸気)を吸収する条件
は、蒸気冷媒温度5℃、吸収液温度50℃、蒸気冷
媒吸収の前後における吸収液の濃度差を4重量%
にし、前述の臭化リチウム単独の場合と同様に操
作する。 高温発生器2において低濃度吸収液(61.5重量
%)は点Jから点Kに加熱され、水が蒸発して中
濃度吸収液(63.5重量%)になる。更にこの中濃
度吸収液は低温発生器9において水蒸気の凝縮熱
により加熱されて点Lから点Mに濃縮され、高濃
度吸収液(65.5重量%)になる。次に吸収器13
において高濃度吸収液は冷却され、点N(58℃)
で蒸発された水(5℃、蒸気圧6.5mmHg)を吸収
し、点Oに示される50℃の低濃度吸収液(61.5重
量%)に希薄される。更に低温度吸収液は点Oか
ら点Jに加熱され、リサイクルされる。尚、この
とき蒸発器16において低温度の蒸気冷媒によ
り、冷水管15内の水を冷水に冷却し、冷房等に
利用する。 本発明の3成分混合系吸収液の吸収器内での温
度は点N,Oに示されるように晶析線Y−Y′−
Y″に重さならず、吸収温度が晶析温度よりも高
く、水溶液中のハロゲン化リチウムが析出するこ
とがなく吸収液は完全に水溶液状態である。これ
に反して前述の第2図の臭化リチウム単独水溶液
のリサイクル操作では、吸収液は吸収器内で点E
をとり、晶析線X−X′−X″と重さなり運転不可
能である。しかるに本発明吸収液を用いることに
より、空冷条件で吸収冷凍機を全く支障なく運転
可能にできる。 〔発明の効果〕 本発明の吸収冷凍機用吸収液は、臭化リチウ
ム、沃化リチウム及び塩化リチウムが重量比1:
0.1〜1.0:0.05〜0.5で混合された混合物の水溶液
であるので、晶析温度が低く、冷凍機の運転サイ
クル中に水溶液中のハロゲン化リチウムが晶析す
ることなく、従来実用化が困難であつた空冷の吸
収冷凍機を非常に安全に支障なく運転でき、効率
的に冷水を得て冷房、冷凍等に利用できる。ま
た、本発明吸収液は装置本体を腐食することな
く、長期間の使用でも沈澱物を生成せず、耐熱
性、耐久性に優れる。
An aqueous solution of lithium bromide: lithium iodide: lithium chloride in a mixed weight ratio of 1:0.4:0.15 was used as the absorption liquid, and was used in the double-effect absorption refrigerator shown in FIG. 5 for refrigeration operation. The operation cycle state using this mixed aqueous solution of lithium bromide, lithium iodide and lithium chloride as an absorption liquid is shown in the Duering diagram of the mixed aqueous solution in FIG. FIG. 1 shows the relationship between temperature and vapor pressure in the same way as the operating cycle state explained using the Düring diagram of FIG. 2 described above. The conditions for the absorption liquid to absorb vapor refrigerant (steam) are: vapor refrigerant temperature: 5°C, absorption liquid temperature: 50°C, concentration difference of absorption liquid before and after vapor refrigerant absorption is 4% by weight.
and operate in the same manner as in the case of lithium bromide alone as described above. In the high temperature generator 2, the low concentration absorbing liquid (61.5% by weight) is heated from point J to point K, water is evaporated, and the medium concentration absorbing liquid (63.5% by weight) is heated. Further, this medium concentration absorption liquid is heated by the heat of condensation of water vapor in the low temperature generator 9 and concentrated from point L to point M, becoming a high concentration absorption liquid (65.5% by weight). Next, absorber 13
The high concentration absorbing liquid is cooled at point N (58℃)
It absorbs the water evaporated at (5°C, vapor pressure 6.5mmHg) and is diluted to a low concentration absorbing liquid (61.5% by weight) at 50°C shown at point O. Furthermore, the low temperature absorption liquid is heated from point O to point J and recycled. At this time, the water in the cold water pipe 15 is cooled to cold water using a low-temperature vapor refrigerant in the evaporator 16, and is used for cooling or the like. The temperature in the absorber of the 3-component mixed absorption liquid of the present invention is as shown by the crystallization line Y-Y'-
Y'', the absorption temperature is higher than the crystallization temperature, lithium halide in the aqueous solution does not precipitate, and the absorption liquid is completely in an aqueous state.On the contrary, as shown in Fig. In the recycling operation of a single aqueous solution of lithium bromide, the absorbent is transferred to point E in the absorber.
and overlaps with the crystallization line X-X'-X'', making it impossible to operate.However, by using the absorption liquid of the present invention, the absorption refrigerator can be operated under air-cooled conditions without any problems. [Invention Effect] The absorption liquid for an absorption refrigerator of the present invention contains lithium bromide, lithium iodide, and lithium chloride in a weight ratio of 1:
Since it is an aqueous solution of a mixture with a ratio of 0.1 to 1.0: 0.05 to 0.5, the crystallization temperature is low and the lithium halide in the aqueous solution does not crystallize during the operating cycle of the refrigerator, making it difficult to put into practical use in the past. A hot air-cooled absorption refrigerator can be operated very safely and without any trouble, and cold water can be efficiently obtained and used for cooling, freezing, etc. Further, the absorbent liquid of the present invention does not corrode the main body of the device, does not generate precipitates even after long-term use, and has excellent heat resistance and durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の臭化リチウム−沃化リチウム
−塩化リチウム水溶液の3成分混合系吸収液のデ
ユーリング線図、第2図は従来の臭化リチウム単
独水吸収液のデユーリング線図、第3図は臭化リ
チウムの水に対する溶解曲線、第4図は吸収液の
50℃における水溶液の蒸気圧と晶析温度との相関
曲線、及び第5図は二重効用冷凍機の概略図を示
す。 2……高温発生器、4……分離器、6……高温
熱交換器、9……低温発生器、11……低温熱交
換器、13……吸収器、15……冷水管、16…
…蒸発器、17……冷却管、18……凝縮器。
Figure 1 is a Duering diagram of the 3-component mixed absorption liquid of lithium bromide - lithium iodide - lithium chloride aqueous solution of the present invention, Figure 2 is a Duering diagram of a conventional water absorption liquid of lithium bromide alone, and Figure 3 is The figure shows the dissolution curve of lithium bromide in water, and Figure 4 shows the dissolution curve of lithium bromide in water.
FIG. 5 shows a correlation curve between vapor pressure of an aqueous solution and crystallization temperature at 50° C. and a schematic diagram of a dual-effect refrigerator. 2... High temperature generator, 4... Separator, 6... High temperature heat exchanger, 9... Low temperature generator, 11... Low temperature heat exchanger, 13... Absorber, 15... Cold water pipe, 16...
...Evaporator, 17...Cooling pipe, 18...Condenser.

Claims (1)

【特許請求の範囲】[Claims] 1 発生器、凝縮器、蒸発器及び吸収器よりなる
吸収冷凍機に使用される吸収液において、該吸収
液は、臭化リチウム、沃化リチウム及び塩化リチ
ウムが、重量比で、臭化リチウム1:沃化リチウ
ム0.1〜1.0:塩化リチウム0.05〜0.50で混合され
た混合物を含んでなる吸収剤が、冷媒である水に
溶解されてなる水溶液であることを特徴とする吸
収冷凍機用吸収液。
1. In an absorption liquid used in an absorption refrigerator consisting of a generator, a condenser, an evaporator, and an absorber, the absorption liquid contains lithium bromide, lithium iodide, and lithium chloride in a weight ratio of 1 part to 1 part by weight of lithium bromide. An absorption liquid for an absorption refrigerator, characterized in that an absorbent containing a mixture of 0.1 to 1.0 of lithium iodide and 0.05 to 0.50 of lithium chloride is dissolved in water, which is a refrigerant, to form an aqueous solution.
JP62158871A 1987-06-26 1987-06-26 Absorbent for absorption refrigerating machine Granted JPS6485278A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62158871A JPS6485278A (en) 1987-06-26 1987-06-26 Absorbent for absorption refrigerating machine
AU18362/88A AU623079B2 (en) 1987-06-26 1988-06-24 Absorbent solution for use with absorption refrigeration apparatus
US07/607,761 US5108638A (en) 1987-06-26 1990-10-30 Absorbent solution for use with absorption refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62158871A JPS6485278A (en) 1987-06-26 1987-06-26 Absorbent for absorption refrigerating machine

Publications (2)

Publication Number Publication Date
JPS6485278A JPS6485278A (en) 1989-03-30
JPH0528749B2 true JPH0528749B2 (en) 1993-04-27

Family

ID=15681224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62158871A Granted JPS6485278A (en) 1987-06-26 1987-06-26 Absorbent for absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPS6485278A (en)

Also Published As

Publication number Publication date
JPS6485278A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
JPS59189265A (en) Triple effect absorption type refrigerator
JP4101373B2 (en) Heat absorption system
US3491545A (en) Absorption refrigeration system
GB2166534A (en) Absorption refrigeration system
JP2002295917A (en) Control method for absorption freezer
JPH0528749B2 (en)
JP2950522B2 (en) Mixed absorption liquid and absorption heat conversion device using the same
JPH0528751B2 (en)
US4509336A (en) Air conditioning apparatus
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JPH0528750B2 (en)
JPH0528752B2 (en)
ES2915327B2 (en) LITHIUM BROMIDE-WATER ABSORPTION HEAT PUMP FOR SIMULTANEOUS COLD AND HEAT PRODUCTION
JPS6114282A (en) Medium for absorption type refrigerator
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JP3801784B2 (en) Absorption-type heat pump aqueous solution composition
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
JP2748789B2 (en) Absorption solution for absorption refrigerator
JPS6356918B2 (en)
JPS5944498B2 (en) Exhaust heat utilization equipment
JPS6138787B2 (en)
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
KR100381373B1 (en) Absorbent solution composition for use with absorption refrigeration and heating apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees