JPH01198436A - Manufacture of dispersion strengthened copper - Google Patents

Manufacture of dispersion strengthened copper

Info

Publication number
JPH01198436A
JPH01198436A JP2157788A JP2157788A JPH01198436A JP H01198436 A JPH01198436 A JP H01198436A JP 2157788 A JP2157788 A JP 2157788A JP 2157788 A JP2157788 A JP 2157788A JP H01198436 A JPH01198436 A JP H01198436A
Authority
JP
Japan
Prior art keywords
copper
dispersant
molten
dispersion
strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2157788A
Other languages
Japanese (ja)
Inventor
Etsuji Kimura
木村 悦治
Yutaka Nishiyama
豊 西山
Nozomi Hasegawa
望 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP2157788A priority Critical patent/JPH01198436A/en
Publication of JPH01198436A publication Critical patent/JPH01198436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain dispersion strengthened copper excellent in hardness and electric conductivity by dissolving copper oxide in a molten copper, uniformly dispersing a dispersant in the above molten copper, and then casting the above. CONSTITUTION:A dispersant consisting of one or more elements among Au, Ag, Pt, etc., is further added by 0.01-10wt.% to a molten copper to which copper oxide consisting of CuO and/or Cu2O is previously added preferably by 0.01-10wt.%, and they are dissolved. As the above dispersant, Al2O3 is most desirably used from an economical viewpoint, and it is preferable to regulate the average grain size of this dispersant to 0.05-100mum. Further, as to the method for dispersing the above dispersant into the above molten copper, the dispersant is dispersed by spraying into a molten-metal stream in the course of casting the molten copper in a mold or by injecting into a basin within a mold. After the dispersion treatment of dispersant as mentioned above is carried out, casting is applied to the molten copper as rapidly as possible, by which the desired dispersion strengthened copper can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、硬さと導電性にすぐれた分散強化銅の製造
方法に関するものであり、かがる製造方法により作製さ
れた分散強化銅は、スポット溶接用電極のような押圧接
触電極に用いられる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing dispersion-strengthened copper with excellent hardness and electrical conductivity. Used in pressure contact electrodes such as spot welding electrodes.

〔従来の技術〕[Conventional technology]

従来、溶銅から分散強化銅を製造する方法として、次の
方法が知られている。
Conventionally, the following method is known as a method for producing dispersion-strengthened copper from molten copper.

(1)  溶銅中に、分散制御元素と呼ばれる第三成分
(Nb、Zr、TI)を含有させることにより、溶銅と
セラミックス粒子の濡れ性を改善し、分散したセラミッ
クス粒子が系外に浮上することを防止し、均一微細に分
散した粒子分散強化銅を得る方法。
(1) By incorporating a third component called a dispersion control element (Nb, Zr, TI) into the molten copper, the wettability of the molten copper and ceramic particles is improved, and the dispersed ceramic particles float out of the system. A method of obtaining uniformly and finely dispersed particle-dispersed reinforced copper.

(2)銅または銅合金の融点以上の温度領域で、アルミ
ニウム、チタン、スズなどを添加して溶解し、上記アル
ミニウム、チタン、スズなどを溶解した銅または銅合金
溶湯中に、酸化第一銅あるいは酸化第二銅を添加し、上
記溶銅中に溶解しているアルミニウム、チタン、スズな
どの合金元素を選択的に酸化させて、酸化アルミニウム
、酸化チタン、酸化スズなどとして銅または銅合金のマ
トリックス中に分散せしめ分散強化銅または銅合金を製
造する方法(特開昭57−194228号公報)。
(2) Aluminum, titanium, tin, etc. are added and melted in a temperature range above the melting point of copper or copper alloy, and cuprous oxide is added to the molten copper or copper alloy containing the aluminum, titanium, tin, etc. Alternatively, by adding cupric oxide to selectively oxidize alloy elements such as aluminum, titanium, and tin dissolved in the molten copper, copper or copper alloys can be produced as aluminum oxide, titanium oxide, tin oxide, etc. A method for producing dispersion-strengthened copper or copper alloy by dispersing it in a matrix (Japanese Patent Application Laid-open No. 194228/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の技術(1)および(2)で述
べた方法により製造した銅または銅合金は、いずれも分
散剤微粒子の分散が十分に行なわれておらず、特に上記
従来の技術(2)で述べた方法により製造した分散強化
銅中に分散されている酸化物粒子は凝集分散しており、
十分な均一分散化が。
However, in the copper or copper alloy produced by the methods described in the above conventional techniques (1) and (2), the dispersant fine particles are not sufficiently dispersed. The oxide particles dispersed in the dispersion-strengthened copper produced by the method described above are agglomerated and dispersed.
Sufficient uniform dispersion.

なされないという問題点があった。The problem was that it was not done.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、分散剤を銅マトリツクス中に一
層均一微細に分散させるべく研究を行なった結果、 CuOおよび/またはCu 20は、溶銅の表面張力を
低下させ、分散剤に対する濡れ性を著しく改善し、上記
CuOおよび/またはCu 20を添加した溶銅にさら
にAu、Ag、Ptの1種または2種以上添加すると、
溶銅中の酸素の活量を一層増大させる。したがって、上
記酸化銅を添加した溶銅または酸化銅を添加した溶銅に
さらにAu。
Therefore, the present inventors conducted research to disperse the dispersant more uniformly and finely in the copper matrix, and found that CuO and/or Cu 20 lowers the surface tension of molten copper and improves its wettability to the dispersant. When one or more of Au, Ag, and Pt are added to the molten copper to which CuO and/or Cu 20 is added,
Further increases the activity of oxygen in molten copper. Therefore, Au is further added to the molten copper to which copper oxide is added or to the molten copper to which copper oxide is added.

Ag、Ptの1種または2種以上添加した溶銅に、分散
剤を均一分散させると、従来の分散強化銅よりも分散剤
が一層均一に分散した分散強化銅を得ることができる。
When a dispersant is uniformly dispersed in molten copper to which one or more of Ag and Pt is added, it is possible to obtain dispersion-strengthened copper in which the dispersant is more uniformly dispersed than in conventional dispersion-strengthened copper.

という知見を得たのである。We obtained this knowledge.

この発明は、かかる知見にもとづいてなされたものであ
って、 温度: 1100〜1400℃の溶銅に、分散制御剤と
して、酸化銅、または酸化銅とAu、Ag、Ptのうち
の1種または2種以上添加して撹拌溶解し、ついで、分
散剤を均一分散させたのち鋳造する分散強化銅の製造方
法に特徴を有するものである。
This invention was made based on this knowledge, and includes adding copper oxide, or copper oxide and one or more of Au, Ag, and Pt as a dispersion control agent to molten copper at a temperature of 1100 to 1400°C. This method is characterized by a method for producing dispersion-strengthened copper in which two or more kinds are added, stirred and dissolved, and then a dispersant is uniformly dispersed and then cast.

上記酸化銅とはCuOまたはCu 20であり、その添
加量は0.01〜10重量%が好ましい。上記酸化銅の
添加量が0.01重量%未満では分散性に関する効果が
なく、一方酸化銅の添加量が10重量%を越えると機械
的強度および電気型導度に悪影響を及ぼす。
The above-mentioned copper oxide is CuO or Cu20, and the amount added is preferably 0.01 to 10% by weight. If the amount of copper oxide added is less than 0.01% by weight, there will be no effect on dispersibility, while if the amount of copper oxide added exceeds 10% by weight, it will have an adverse effect on mechanical strength and electrical conductivity.

上記酸化銅を添加し撹拌溶解した溶銅に、さらにAu、
Ag、Ptの1種または2種以上を0.01〜10重量
を添加溶解すると、溶銅中の酸素の活量を増大させるが
、その添加量がo、oi重量%未満では上記溶銅中の酸
素の活量を増大させる効果がなく、一方、10重量%を
越えて添加しても酸素の活量の一層の増加はなく、むし
ろ機械的強度は悪化するばかりでなく、原料コストが高
くつくので好ましくない。
In addition, Au,
When one or more of Ag and Pt is added and dissolved in an amount of 0.01 to 10% by weight, the activity of oxygen in the molten copper is increased, but if the amount added is less than o or oi% by weight, the content of the molten copper increases. On the other hand, even if added in excess of 10% by weight, there is no further increase in the oxygen activity; rather, not only does the mechanical strength deteriorate, but the raw material cost is high. I don't like it because it sticks.

したがって、Au、Ag、Ptの1種または2種以上の
添加量を0.01〜10重量%と定めた。
Therefore, the amount of one or more of Au, Ag, and Pt added was determined to be 0.01 to 10% by weight.

また、上記分散剤としては、経済的にみてAg2O3が
最も好ましいが、上記All2o3に限定されることな
く、TiO2,ZrO2゜MgOなどの耐熱性酸化物、
s t c、wc。
Furthermore, the dispersant is most preferably Ag2O3 from an economic point of view, but is not limited to the above All2o3, and may also include heat-resistant oxides such as TiO2, ZrO2゜MgO, etc.
s t c, wc.

T I C1M O2Cなどの炭化物、AjlN、Si
Nなどの窒化物、CrB2.TIBなどのホウ化物であ
ってもよい。かかる分散剤の平均粒径は、0.05〜1
00−が好ましく、上記平均粒径が0.05血未満では
ハンドリングが困難であるばかりでなく、また原料代も
非常に高くつき、一方、その平均粒径が100−を越え
ると鋼中分散時の粒径が大きくなり、機械的強度に悪影
菅を及ぼすので好ましくない。
Carbide such as T I C1M O2C, AjlN, Si
Nitride such as N, CrB2. It may also be a boride such as TIB. The average particle size of such a dispersant is 0.05 to 1
00- is preferable; if the average particle size is less than 0.05, it is not only difficult to handle, but also the cost of raw materials is very high; on the other hand, if the average particle size exceeds 100, it is difficult to handle when dispersing in steel. This is not preferable because the particle size becomes large, which adversely affects mechanical strength.

さらに、上記分散剤の溶銅中への分散方法は、溶銅を鋳
型に鋳込む途中の溶湯流中に噴霧分散せしめるか、ある
いは鋳型内湯溜り中にインジェクションして分散せしめ
ればよい。
Further, the dispersant may be dispersed into the molten copper by spraying it into the molten metal flow while the molten copper is being poured into the mold, or by injecting it into the molten metal pool in the mold.

このような分散剤の分散処理を行なったのち、可及的に
速かに鋳造する。
After performing such dispersion treatment of the dispersant, casting is performed as quickly as possible.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

実施例 1 無酸素鋼を高周波溶解炉により溶解し、この溶銅に対し
てCu 20を3重量%添加し撹拌溶解した。
Example 1 Oxygen-free steel was melted in a high frequency melting furnace, and 3% by weight of Cu 20 was added to the molten copper and stirred and melted.

このCu 20添加の溶銅の温度を1200℃に調節し
た後、これをインゴット鋳造するに際し、その鋳込み中
の溶湯流に、圧カニ4.Okg/c−のArガスを用い
て平均粒径:0,5μsのAfI203粉末を噴射した
。このようにして得られたインゴットを温度二850℃
×3時間の均質化焼鈍を行なった後、温度:900℃で
熱間鍛造し、さらに温度=900℃×1時間の溶体化処
理を施し、分散強化銅を作製した。
After adjusting the temperature of this Cu 20-added molten copper to 1200°C, when casting it into an ingot, pressure crabs 4. AfI203 powder with an average particle size of 0.5 μs was injected using Ar gas of 0 kg/c−. The ingot thus obtained was heated to 2,850°C.
After performing homogenization annealing for 3 hours, hot forging was performed at a temperature of 900°C, and solution treatment was further performed at a temperature of 900°C for 1 hour to produce dispersion-strengthened copper.

この分散強化銅の組織を電子顕微鏡写真に撮り、その電
子顕微鏡写真から、アンダーウッド法により、平均粒径
:i5(入)1体積率:f(%)、および粒子間距離:
λ(虜)を算出し、その結果を第1表に示した。
The structure of this dispersion-strengthened copper was photographed using an electron microscope, and from the electron microscope photograph, the average grain size: i5 (containing) 1 volume fraction: f (%), and the interparticle distance:
λ (captive) was calculated and the results are shown in Table 1.

上記溶体化処理した分散強化銅を、さらに加工率:50
%の冷間加工を施し、ついで温度:450℃×3時間の
時効処理を施したもの、および上記時効処理したものを
さらに温度=800℃×1時間の焼鈍したものについて
、それぞれビッカース硬さおよび導電率を測定し、それ
らの結果も第1表に示した。
The above solution-treated dispersion-strengthened copper is further processed at a processing rate of 50
% cold working and then aging treatment at a temperature of 450°C for 3 hours, and those subjected to the above aging treatment were further annealed at a temperature of 800°C for 1 hour, and the Vickers hardness and The conductivity was measured and the results are also shown in Table 1.

実施例 2〜6 無酸素銅を高周波溶解炉により溶解して温度:1200
℃に保持した溶銅に、Cu 20 : 2重量%および
Ag:0.5重量%を添加して撹拌溶解し、上記分散剤
として平均粒径:5坤のAg2O3粉末を鋳込み中の溶
銅流に噴射して得た分散強化銅(実施例2)、上記溶銅
にCu 20 : 2重量%を添加撹拌し、ついでAu
:0.5重量%を添加して得られた溶銅に平均粒径:1
0μsのA I 20 s粉末を鋳込み中の溶銅流に噴
射して得た分散強化銅(実施例3)、上記溶銅にCu 
20 : 2 ”11量%を添加撹拌し、ついでPt:
0.5重量%を添加して得られた溶銅に、平均粒径:2
0μsのMgO粉末をインジェクションせしめて得た分
散強化銅(実施例4)、上記溶銅にCu 20 : 3
重量%およびCuO:2ffi量%からなる酸化銅を添
加溶解したのち、平均粒径:1庫のSiC粉末を、鋳込
み中の溶銅流に噴射して得た分散強化銅(実施例5)、
および上記溶銅にCu 20 : 3重量%、Cub:
2重量%、Au:0.2重量%、Ag 二0.5重量%
およびPt:0.2重量%を添加溶解し、得られた溶銅
の溶銅流に平均粒径:1ρのA[N粉末を噴射せしめて
得た分散強化銅(実施例6)をそれぞれ作製した。
Examples 2 to 6 Oxygen-free copper is melted in a high frequency melting furnace at a temperature of 1200
Cu 20: 2% by weight and Ag: 0.5% by weight were added to molten copper held at ℃, stirred and dissolved, and Ag2O3 powder with an average particle size of 5 kon was added as the dispersant to the molten copper flow during casting. Dispersion-strengthened copper obtained by spraying Au (Example 2), 2% by weight of Cu 20 was added and stirred to the above molten copper, and then Au
: Average particle size: 1 to the molten copper obtained by adding 0.5% by weight
Dispersion-strengthened copper obtained by injecting 0 μs AI 20 s powder into the molten copper flow during casting (Example 3), Cu
20:2'' 11% by weight was added and stirred, and then Pt:
To the molten copper obtained by adding 0.5% by weight, average particle size: 2
Dispersion strengthened copper obtained by injecting 0 μs MgO powder (Example 4), Cu 20:3 to the above molten copper
Dispersion-strengthened copper (Example 5) obtained by adding and dissolving copper oxide consisting of % by weight and CuO: 2ffi, and then injecting SiC powder with an average particle size of 1 into the molten copper flow during casting,
And Cu 20: 3% by weight in the above molten copper, Cub:
2% by weight, Au: 0.2% by weight, Ag 20.5% by weight
Dispersion-strengthened copper (Example 6) was prepared by adding and dissolving 0.2% by weight of Pt and injecting A[N powder with an average particle size of 1ρ into the resulting molten copper flow. did.

これら分散強化銅を実施例1と全く同様にして平均粒径
、体積率および粒子間距離を算出するとともに、溶体化
処理後の熱処理を行なってビッカース硬さおよび導電率
を測定し、それらの結果を第1表に示した。
The average particle diameter, volume fraction, and interparticle distance of these dispersion-strengthened coppers were calculated in exactly the same manner as in Example 1, and the Vickers hardness and electrical conductivity were measured by heat treatment after solution treatment. are shown in Table 1.

比較例 1〜3 比較のために、分散制御元素として従来公知のNb元索
を添加したのち実施例1と同様に平均粒径:5unのA
lI2O3粉末を分散して得た分散強化銅(比較例1)
、分散制御元素として従来公知のZr元索を添加したの
ち実施例1と同様に平均粒径:5tIMのAlI2O3
粉末を分散して得た分散強化銅(比較例2) 、l!:
 0.5重量%溶解した溶銅にCu 20 : 7重量
%を添加撹拌することにより得た分散強化銅(比較例3
)をそれぞれ作製し、これら分散強化銅についても上記
実施例1と同様に平均粒径、体積率および粒子間距離を
算出するとともに、溶体化処理後の熱処理を行なってビ
ッカース硬さおよび導電率を測定し、それらの結果を第
1表に示した。
Comparative Examples 1 to 3 For comparison, after adding a conventionally known Nb base as a dispersion control element, A with an average particle size of 5 um was added in the same manner as in Example 1.
Dispersion-strengthened copper obtained by dispersing lI2O3 powder (Comparative Example 1)
, after adding a conventionally known Zr element as a dispersion control element, AlI2O3 with an average particle size of 5tIM was added in the same manner as in Example 1.
Dispersion-strengthened copper obtained by dispersing powder (Comparative Example 2), l! :
Dispersion-strengthened copper obtained by adding and stirring 7% by weight of Cu 20 to 0.5% by weight of molten copper (Comparative Example 3)
), and for these dispersion-strengthened coppers, the average grain size, volume fraction, and interparticle distance were calculated in the same manner as in Example 1, and the Vickers hardness and electrical conductivity were determined by heat treatment after solution treatment. The results are shown in Table 1.

[発明の効果] 第1表の結果から、酸化銅、tたは酸化銅とALI、A
g、PLのうちの1種または2種以上を分散制御剤とし
て溶銅中に添加すると、従来公知の比較例に比べて分散
剤の平均粒径、粒子間距離が小さく、体積率の大きい分
散強化銅を得ることができ、この分散強化銅を加工率:
50%の冷間加工を施し、ついで温度=450℃×3時
間の時効処理を施したものは導電率およびビッカース硬
さがすぐれ、上記時効処理したものをさらに温度二SO
O℃×1時間焼鈍してもビッカース硬さの著しい低下は
みられない。
[Effect of the invention] From the results in Table 1, copper oxide, t or copper oxide and ALI, A
When one or more of g, PL is added to molten copper as a dispersion control agent, the average particle diameter and interparticle distance of the dispersant are smaller and the volume fraction of the dispersion is larger than that of conventionally known comparative examples. Processing rate of this dispersion strengthened copper can obtain strengthened copper:
Those subjected to 50% cold working and then aged at a temperature of 450°C for 3 hours have excellent conductivity and Vickers hardness.
Even after annealing at 0°C for 1 hour, no significant decrease in Vickers hardness was observed.

したがって、この発明の方法により製造した分散強化銅
に加工率:50%の冷間加工を施し、ついで温度:45
0℃×3時間の時効処理を施してスポット溶接用電極を
作製し、このスポット溶接用電極を用いてスポット溶接
する間に上記スポット溶接用電極が温度:800℃×1
時間焼鈍程度の加熱をうけても、電極の著しい軟化はみ
られないため、上記分散強化銅を用いて作製したスポッ
ト溶接用電極の寿命を長く保つことができることがわか
る。
Therefore, the dispersion-strengthened copper produced by the method of the present invention was subjected to cold working at a processing rate of 50%, and then at a temperature of 45%.
A spot welding electrode is produced by subjecting it to an aging treatment of 0°C x 3 hours, and during spot welding using this spot welding electrode, the spot welding electrode is heated to a temperature of 800°C x 1.
Even when heated to the extent of time annealing, the electrode does not show significant softening, indicating that the spot welding electrode made using the dispersion-strengthened copper can have a long service life.

この発明の方法によると、分散強化銅を安価に量産でき
るので、高性能で長寿命のスポット溶接用電極等の押圧
接触電極を安価に大量に提供できる。
According to the method of the present invention, dispersion-strengthened copper can be mass-produced at low cost, so that high-performance, long-life press contact electrodes such as spot welding electrodes can be provided in large quantities at low cost.

Claims (1)

【特許請求の範囲】 1、溶銅に分散剤を均一に分散させたのち鋳造する分散
強化銅の製造方法において、 溶銅に酸化銅を溶解せしめ、ついで分散剤を均一に分散
させたのち鋳造することを特徴とする分散強化銅の製造
方法。 2、溶銅に分散剤を均一に分散させたのち鋳造する分散
強化銅の製造方法において、 溶銅に酸化銅およびAu、Ag、Ptのうち1種または
2種以上を溶解せしめ、ついで分散剤を均一に分散させ
たのち鋳造することを特徴とする分散強化銅の製造方法
。 3、溶銅に酸化銅を溶解させたのち、Au、Ag、Pr
のうち1種または2種以上を溶解させ、ついで分散剤を
均一に分散させ、鋳造することを特徴とする請求項2記
載の分散強化銅の製造方法。 4、溶銅に酸化銅を0.01〜10重量%溶解せしめる
ことを特徴とする請求項1、2および3記載の分散強化
銅の製造方法。 5、溶銅に酸化銅:0.01〜10重量%、Au、Ag
、Ptのうち1種または2種以上:0.01〜10重量
%溶解せしめることを特徴とする請求項1、2および3
記載の分散強化銅の製造方法。 6、上記分散剤は、酸化物、炭化物、窒化物またはホウ
化物の平均粒径:0.05〜100μmであることを特
徴とする請求項1、2および3記載の分散強化銅の製造
方法。 7、上記分散剤は、溶銅流中に噴射分散するかまたは湯
溜り中にインジェクションすることにより均一分散させ
ることを特徴とする請求項1〜6記載の分散強化銅の製
造方法。 8、請求項1で製造された分散強化銅からなるスポット
溶接用電極。
[Claims] 1. A method for producing dispersion-strengthened copper in which a dispersant is uniformly dispersed in molten copper and then cast, wherein copper oxide is dissolved in molten copper, the dispersant is uniformly dispersed, and then cast. A method for producing dispersion-strengthened copper. 2. In a method for producing dispersion-strengthened copper in which a dispersant is uniformly dispersed in molten copper and then cast, copper oxide and one or more of Au, Ag, and Pt are dissolved in molten copper, and then a dispersant is added. A method for producing dispersion-strengthened copper, which comprises uniformly dispersing and then casting. 3. After dissolving copper oxide in molten copper, Au, Ag, Pr
3. The method for producing dispersion-strengthened copper according to claim 2, characterized in that one or more of them are melted, then a dispersant is uniformly dispersed, and casting is performed. 4. The method for producing dispersion-strengthened copper according to claims 1, 2, and 3, characterized in that 0.01 to 10% by weight of copper oxide is dissolved in the molten copper. 5. Copper oxide in molten copper: 0.01-10% by weight, Au, Ag
Claims 1, 2 and 3, characterized in that one or more of Pt is dissolved in an amount of 0.01 to 10% by weight.
The method for manufacturing the dispersion-strengthened copper described above. 6. The method for producing dispersion-strengthened copper according to claims 1, 2, and 3, wherein the dispersant is an oxide, carbide, nitride, or boride with an average particle size of 0.05 to 100 μm. 7. The method for producing dispersion-strengthened copper according to claims 1 to 6, wherein the dispersant is uniformly dispersed by being sprayed into a molten copper flow or injected into a molten metal pool. 8. A spot welding electrode made of dispersion-strengthened copper produced according to claim 1.
JP2157788A 1988-02-01 1988-02-01 Manufacture of dispersion strengthened copper Pending JPH01198436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157788A JPH01198436A (en) 1988-02-01 1988-02-01 Manufacture of dispersion strengthened copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157788A JPH01198436A (en) 1988-02-01 1988-02-01 Manufacture of dispersion strengthened copper

Publications (1)

Publication Number Publication Date
JPH01198436A true JPH01198436A (en) 1989-08-10

Family

ID=12058888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157788A Pending JPH01198436A (en) 1988-02-01 1988-02-01 Manufacture of dispersion strengthened copper

Country Status (1)

Country Link
JP (1) JPH01198436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559524A (en) * 1990-08-31 1993-03-09 Nkk Corp Stainless steel member for ultrahigh vacuum equipment and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559524A (en) * 1990-08-31 1993-03-09 Nkk Corp Stainless steel member for ultrahigh vacuum equipment and its production

Similar Documents

Publication Publication Date Title
JP5793136B2 (en) Gray gold alloy without nickel and copper
WO2018045695A1 (en) Softening resistant copper alloy, preparation method, and application thereof
CN108270135A (en) A kind of silver alloy cladding copper alloy composite filament brush material and preparation method thereof
CN107586977A (en) A kind of preparation method of copper alloy with high strength and high conductivity bar
CN102044347B (en) Preparation method and products of silver-copper-nickel-ceramic alloy contact material with high welding resistance
US4999050A (en) Dispersion strengthened materials
JP2743720B2 (en) Method for producing TiB2 dispersed TiAl-based composite material
CN114807713A (en) Partial eutectic high-entropy alloy containing B2 primary phase and preparation method thereof
CN105618723A (en) Inert atmosphere-based skull melting and casting process adopting consumable titanium alloy electrode
JPS5920445A (en) Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JPH01198436A (en) Manufacture of dispersion strengthened copper
JPH01198437A (en) Manufacture of dispersion strengthened copper
JP5376389B2 (en) Nitride dispersion strengthened Cu alloy, method for producing the same and conductor wire
JP3566735B2 (en) Alloy for spot welding electrode of Al alloy plate
JPH06210463A (en) Electrode for resistance welding and its production
JPS6376774A (en) Heat resistant high electrical conductivity copper alloy clad material
JPS6144930B2 (en)
JP3370467B2 (en) Ceramic deposited copper alloy and method for producing the same
CN116555614A (en) Method for preparing silver tin oxide electric contact material by adopting chemical coprecipitation method
JPH1053825A (en) Copper alloy for lead frame
KR960015514B1 (en) Method for making cu-zr-mg-ce-la-nd-pr alloy
JPH03234352A (en) Manufacture of ceramic dispersing reinforced copper
JPS60141802A (en) Alloy powder for forming dispersion-strengthening alloy
JPH03281070A (en) Copper-based welding electrode material and electric contact material and manufacture thereof
JPH0716789A (en) Production of active silver brazing filler metal