KR960015514B1 - Method for making cu-zr-mg-ce-la-nd-pr alloy - Google Patents

Method for making cu-zr-mg-ce-la-nd-pr alloy Download PDF

Info

Publication number
KR960015514B1
KR960015514B1 KR1019940010865A KR19940010865A KR960015514B1 KR 960015514 B1 KR960015514 B1 KR 960015514B1 KR 1019940010865 A KR1019940010865 A KR 1019940010865A KR 19940010865 A KR19940010865 A KR 19940010865A KR 960015514 B1 KR960015514 B1 KR 960015514B1
Authority
KR
South Korea
Prior art keywords
copper
alloy
cooling
zirconium
rolling
Prior art date
Application number
KR1019940010865A
Other languages
Korean (ko)
Other versions
KR950032665A (en
Inventor
김창주
Original Assignee
한국기계연구원
서상기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 서상기 filed Critical 한국기계연구원
Priority to KR1019940010865A priority Critical patent/KR960015514B1/en
Publication of KR950032665A publication Critical patent/KR950032665A/en
Application granted granted Critical
Publication of KR960015514B1 publication Critical patent/KR960015514B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

This copper alloy is used for electrical contact material or electrode material for resistance welding and spot welding. The alloy comprises 0.02 to 3.00wt.% Zr, 0.02 to 0.50wt.% Mg, 0.02 to 0.50wt.% total sum of Ce, La, Nd, and Pr and the balance of Copper. This alloy is produced by the processes of (a) manufacturing a billet or slab by melting and casting the same composition as above as starting materials, (b) hot working the billet or slab by forging, rolling and extrusion in the reduction ratio of over 85% at 800 to 950deg.C for removing cast structure, (c) solution treating the hot worked material by quenching such as water cooling or oil cooling after holding of over 30min per the thickness of 1 inch at 800 to 1050deg.C, (d) cold working by rolling, forming, drawing in the reduction ratio of over 70% at room temperature, and (e) aging hardening heat-treating by water cooling, oil cooling, air cooling after holding of over 1 hr at 350 to 550deg.C..

Description

저항용접기 전극용 동-지르코늄-마그네슘-세리움-란탄-니오디미움-프라세오디미움 합금의 제조방법Method for producing copper-zirconium-magnesium-cerium-lanthanum-nidium-prasedium-dium alloy for resistance welder electrodes

본 발명은 저항용접기용 전극재인 동(Cu) -지르코늄(Zr) -마그네슘(Mg) -세리움(Ce) -란탄(La) -니오디미움(Nd)-프라세오디미움(Pr) 합금의 제조방법에 관한 것이다.The present invention is a copper electrode (Cu)-zirconium (Zr)-magnesium (Mg)-cerium (Ce)-lanthanum (La)-nidium (Nd)-prasedium (Pr) alloys It relates to a manufacturing method.

종래의 경우는 크롬(Cr)과 지르코늄(Zr)의 총함량을 1%(중량백분를) 전후 함유한 동(Cu)-크롬(Cr) 2원합금이나 등(Cu)-크롬(Cr)-지르코늄(Zr) 3원합금을 적당한 가공과 열처리로써 도전률을 순동의 80%정도 유지하면서 강도는 순동의 2∼3배 정도까지 향상시킬 수 있게 하여, 공업적으로는 강판의 저항용접 및 스포트용접 전극재로서 사용하고 있다.In the conventional case, a copper (Cu) -chromium (Cr) binary alloy containing 1% (weight percent) of the total content of chromium (Cr) and zirconium (Zr), or a (Cu) -chromium (Cr) -zirconium (Zr) The ternary alloy can be improved in strength by two to three times that of pure copper while maintaining the conductivity of about 80% of pure copper by proper processing and heat treatment. We use as ash.

동(Cu)-크롬(Cr) 2원합금이나 동(Cu)-지르코늄(Zr) 2원합금의 상태도를 보면, 용체화처리하는 부근의 온도인 1,000℃ 정도로 가열하면 전자에서 크롬(Cr)은 동(Cu)중에 약 0.45% 정도가 고용되며, 후자에서 지르코늄(Zr)은 0.15% 정도가 고용되며, 이를 시효처리하면 각각 미세한 크롬(Cr)과 지르코늄(Zr) 입자들이 석출하여 기지를 강화시키나 시효온도가 450℃ 이상에서는 경도가 급격히 낮아지는 현상이 있다.If you look at the state diagram of copper (Cu) -chromium (Cr) binary alloy or copper (Cu) -zirconium (Zr) binary alloy, if you heat it to around 1,000 ℃, the temperature of solution treatment, chromium (Cr) About 0.45% of copper (Cu) is employed. In the latter, zirconium (Zr) is employed at about 0.15%. When this is aged, fine chromium (Cr) and zirconium (Zr) particles are precipitated to strengthen the base. If the aging temperature is more than 450 ℃ there is a phenomenon that the hardness is sharply lowered.

이러한 현상은 재료가 사용중에 450℃ 이상의 열적 영향을 받으면 급격히 열화됨을 의미한다.This phenomenon means that the material deteriorates rapidly when the material is subjected to thermal effects of 450 ° C. or higher during use.

이러한 관점에서, 종래의 동(Cu)-크롬(Cr)-지르코늄(Zr) 3원합금은 저항용접 및 점(스포트)용접용 전극으로 사용되는 경우에, 순간격으로 높은 가압력 하에서 대전류가 통하여 높은 저항열이 발생하는 상황이므로 접촉부의 소모가 크며, 피접물에 들러붙는 소위 스티킹(sticking) 현상이 종종 나타나는 경우가 있다.In view of this, conventional copper (Cu) -chromium (Cr) -zirconium (Zr) tertiary alloys, when used as resistance welding and spot (spot) welding electrodes, have a high current through a large current under a high pressing force at an instantaneous interval. Since the heat of resistance is generated, the contact part consumes a lot, and a so-called sticking phenomenon that sometimes sticks to the object to be adhered sometimes occurs.

이러한 문제점들은 전극의 수명을 저해하여, 용접부를 깨끗하지 못하게 한다.These problems hinder the life of the electrode, making the weld unclean.

한편, 동(Cu)-크롬(Cr)-지르코늄(Zr) 3원합금에 대하여 제반의 특성을 개선하기 위해, 시효경화성이 높은 Al, Si, Be, Co등파 같은 원소들을 첨가하는 경우에, 그 원소의 종류와 첨가량의 증가에 따라 경도는 어느정도 향상시킬 수 있으나 도전률은 크게 저해되는 경우가 일반적이어서 적당하지 못하다.On the other hand, in order to improve the characteristics of the copper (Cu) -chromium (Cr) -zirconium (Zr) ternary alloy, the elements such as Al, Si, Be, Co, etc. having high aging hardenability are added. The hardness can be improved to some extent with the increase in the type and the amount of the added element, but the conductivity is largely impaired, which is not suitable.

이러한 현상은 특히 동(Cu)-크롬(Cr) 2원합금에서 심하다.This phenomenon is particularly acute with copper (Cu) -chromium (Cr) binary alloys.

그리고 이미 알려진 일본 특개소 63-38543호는 냉간가공후에 용체화 열처리하는 방법이고 본 발명은 용체화처리후 냉간가공을 하여 일본 특개소 63-93837호는 전자기기 리드용 동합금의 제조법으로 본 발명 저항용접기 전극용 동합금의 제조방법과는 그 기술개념이 상이하다.In addition, Japanese Patent Laid-Open No. 63-38543 is a method of solution heat treatment after cold working, and the present invention is cold working after solution treatment. Japanese Patent Laid-Open No. 63-93837 is a manufacturing method of copper alloy for electronic device lead. The technical concept differs from the manufacturing method of the copper alloy for welding machine electrodes.

이러한 문제점을 고려하여 본 발명에서는, 동(Cu)-지르코늄(Zr) 2원합금 중에 고용할 수 있고, 주성분인동(Cu)과 화합물을 형성할 수 있는 원소들인 마그네슘(Mg), 세리움(Ce), 란탄(La), 니오디미움(Nd) 및 프라세오디미움(Pr)을 첨가하여 용해후 주괴를 제조하고, 이를 가공열처리하여 높은 온도에서도 미세하고 안정한 여러가지 석출물들이 기지 전반에 생성하여 재료의 특성을 개선할 수 있게 하였다.In view of the above problems, in the present invention, magnesium (Mg) and cerium (Ce), which may be dissolved in a copper (Cu) -zirconium (Zr) binary alloy and may form compounds with the main component copper (Cu) ), Lanthanum (La), niodidium (Nd) and praseodymium (Pr) are added to prepare ingot after dissolution and processing heat treatment to produce various precipitates that are fine and stable even at high temperature throughout the base. It was possible to improve the characteristics of the.

그리고 특히 마그네슘(Mg), 세리움(Ce) 및 란탄(La)의 첨가는 합금용해 과정에서 탈산제로서의 효과도 매우 크다.In particular, the addition of magnesium (Mg), cerium (Ce) and lanthanum (La) also has a great effect as a deoxidizer in the alloy melting process.

즉, 본 발명은 높은 온도에서도 재료의 특셩을 안정적으로 유지시키고, 용접시 스티킹 현상을 현저히 줄이며, 용접수명을 개선시킬 수 있는 방법으로서, 실시예의 결과를 보면 525℃의 고온시효 후에도 경도와 도전률은 각각 HRB 70∼80, IACS 83∼85%를 유지하며 용접특성이 개선되었으며, 그 제조공정을 설명하면 다음과 같다.That is, the present invention is a method that can stably maintain the characteristics of the material even at high temperature, significantly reduce the sticking phenomenon during welding, and improve the welding life. The welding rate was improved while maintaining the HRB 70-80 and IACS 83-85%, respectively. The manufacturing process is as follows.

동(Cu)을 주성분으로 하고, 여기에 지르코늄(Zr)의 함량은 0.02∼3.00%(중량백분률)의 범위로 첨가하고, 여기에 가공열처리시 마그네슘동계 석출물인 Mg2Cu, MgCu2를 생성시킬 수 있는 성분인 마그네슘(Mg)을 0.02∼0.50%(중량백분률) 범위로 첨가하고, 여기에 가공열처리시 또다른 안졍한 석출물인 CuwWCe, CuxLa, CuyNd 및 Cu2Pr등을 석출시킬 수 있는 세리움(Ce), 란탄(La), 니오디미움(Nd) 및 프라세오디미움(Pr)의 총함량을 0.02∼0.50%(중량백분률) 합금용해한 후 주괴를 제조한다.The main component is copper (Cu), and the content of zirconium (Zr) is added in the range of 0.02 to 3.00% (weight percentage), and Mg 2 Cu and MgCu 2 , which are magnesium copper-based precipitates, are formed during processing heat treatment. Magnesium (Mg), which can be added, is added in a range of 0.02 to 0.50% (weight percentage), and further stable precipitates during processing heat treatment are Cuw W Ce, Cu x La, Cu y Nd, and Cu 2 Pr. Ingot is prepared by dissolving the total content of cerium (Ce), lanthanum (La), nidium (Nd), and praseodymium (Pr), which can precipitate, etc., in a 0.02 to 0.50% (weight percent) alloy. do.

그리고 이러한 성분으르 제조된 주괴는 다음의 3가지 가공열처리 공정을 거쳐 재료나 전극을 제조함으로써, 기지 중에는 미세하고 안졍한 석출물이 균일하게 다량 분포되어 저항용접용 전극으로서의 내구성을 향상시킬 수 있게 하였다The ingot manufactured from these components was then subjected to the following three processing heat treatment processes to produce a material or an electrode. Thus, a large amount of fine and uneven precipitates were uniformly distributed in the matrix, thereby improving durability as an electrode for resistance welding.

(실시예 1)(Example 1)

지르코늄(Zr) 의 함량은 0.02∼3.00%(중량백분률) 의 범위로 첨가하고, 상기에 마그네슘(Mg) 을 0.02%∼0.50(중량백분률) 함유하고, 상기에 세리움(Ce), 란탄(La), 니오디미움(Nd) 및 프라세오디미움(Pr)의 총함량을 0.02∼0.50%(중량백분률) 함유하고, 동(Cu)을 나머지로 하는 동(Cu)합금을 용해후 주괴를 제조하고, 상기 주괴의 주조조직을 제거할 수 있는 7S(약 85%) 이상의 가공비로써 800∼950℃에서 단조, 압연, 압출 등을 행하고 상기를 800∼1,050℃에서 두께 1인치 당 30분 이상 유지한 후 수냉, 유냉등으로 급냉하여 용체화 처리를 행하고 상기를 상온에서 70% 이상의 가공비로써 압연, 단조, 인발 등의 냉간가공을 행하고 상기를 350∼550℃에서 1시간 이상 유지후 수냉, 유냉, 공냉 등으로 시효경화 열처리를 행하고 상기의 과정을 마친 소재는 그 상태대로 사용하거나 전극 등의 부품을 제조한다.The content of zirconium (Zr) is added in the range of 0.02 to 3.00% (weight percentage), and magnesium (Mg) is contained 0.02% to 0.50 (weight percentage), and cerium (Ce) and lanthanum are added. (La), Nidium (Nd) and Praseodymium (Pr) containing 0.02 to 0.50% (by weight percentage) of total content, and after dissolving the copper (Cu) alloy with the remainder of copper (Cu) Ingot is produced, and forging, rolling, extrusion, etc. are carried out at 800 to 950 ° C. at a processing cost of 7 S (about 85%) or more to remove the cast structure of the ingot, and it is 30 minutes per inch of thickness at 800 to 1,050 ° C. After maintaining the above, it is quenched by water cooling, oil cooling, etc., and solution solution is processed. Aging hardening heat treatment by oil cooling, air cooling, etc., and the finished material is used as it is or electrode Manufacture parts.

(실시예 2)(Example 2)

지르코늄(Zr)의 함량은 0.02~3.00%(중량백분률)의 범위로 첨가하고, 상기에 마그네슘(Mg)을 0.02~0.50%(중량백분를) 함유하고, 상기에 세리움(Ce), 란탄(La), 니오디미움(Nd) 및 프라세오디미움(Pr)의 총함량을 0.02∼0.50%(중량백분률) 함유하고, 동(Cu)을 나머지로 하는 동(Cu)합금을 용해후 주괴를 제조하고, 상기를 주조조직을 제거할 수 있는 7S(약 85%) 이상의 가공비로써 800∼950℃에서 단조, 압연, 압출 등을 행하고 상기를 800∼1,050℃에서 두께 1인치 당 30분 이상 유지한 후에 수냉, 유냉 등으로 급냉하여 용체화 처리를 행하고 상기를 350∼550℃에서 1시간 이상 유지후 수냉, 유냉, 공냉 등으로 시효경화 열처리를 행하고 상기를 상온에서 70% 이상의 가공비로써 압연, 단조, 인발 등의 냉간가공을 행하고 상기의 과정을 마친 소재는 그 상태대로 사용하거나 전극등의 부품을 제조한다.The content of zirconium (Zr) is added in the range of 0.02 to 3.00% (weight percentage), containing magnesium (Mg) 0.02 to 0.50% (weight percentage), and the above-mentioned cerium (Ce) and lanthanum ( La), Nidium (Nd) and Praseodymium (Pr) contain 0.02 to 0.50% (by weight percentage) of total content, and the copper (Cu) alloy containing copper (Cu) as the remainder after melting Forging, rolling, extrusion, etc. at 800 ~ 950 ℃ with a processing ratio of 7S (about 85%) or more to remove the cast structure, and maintained the above 30 minutes per inch thick at 800 ~ 1,050 ℃ The solution is then quenched with water cooling, oil cooling, etc. to conduct a solution treatment, and then maintained at 350 to 550 ° C. for at least 1 hour, followed by age hardening heat treatment with water cooling, oil cooling, air cooling, etc. Cold work of drawing, drawing, etc., and use the finished material as it is or parts such as electrodes It is prepared.

(실시예 3)(Example 3)

지르코늄(Zr)의 함량은 0.02~3.00%(중량백분률)의 범위로 첨가하고, 상기에 마그네슘(Mg)을 0.02~0.50%(중량백분률) 함유하고, 상기에 세리움(Ce), 란탄(La), 니오디미움(Nd) 및 프라세오디미움(Pr)의 총함량을 0.02∼0.50%(중량백분률) 함유하고, 동(Cu)을 나머지로 하는 동(Cu)합금을 용해후 주과를 제조하고, 상기를 주조조직을 제거할 수 있는 7S(약 85%) 이상의 가공비로써 800∼950℃에서 단조, 압연, 압출 등을 행하고 상기를 800∼1,050℃에서 두께 1인치 당 30분 이상 유지한 후에 수냉, 유냉 등으로 급냉하여 용체화 처리를 행하고 상기를 350∼550℃에서 1시간 이상 유지후 수냉, 유냉, 공냉 등으로 시효경화 열처리를 행하고 상기의 과정을 마친 소재는 그 상태대로 사용하거나 전극 등의 부품을 제조한다.The content of zirconium (Zr) is added in the range of 0.02 to 3.00% (weight percentage), containing magnesium (Mg) 0.02 to 0.50% (weight percentage), and the above-mentioned cerium (Ce) and lanthanum (La), Nidium (Nd) and Praseodymium (Pr) containing 0.02 to 0.50% (by weight percentage) of total content, and after dissolving the copper (Cu) alloy with the remainder of copper (Cu) Forging, rolling, extrusion, etc. at 800 ~ 950 ℃ at a processing cost of 7S (about 85%) or more to remove the cast structure, and the above at least 30 minutes per inch thick at 800 ~ 1,050 ℃ After holding, the solution is quenched by water cooling, oil cooling, etc., and solution solution is applied. After holding at 350 to 550 ° C. for at least 1 hour, aging curing heat treatment with water cooling, oil cooling, air cooling, etc. is used as it is. Or manufacture components such as electrodes.

위의 제1실시예에 따라 제조한 실시한 예의 결과를 제시하면 다음과 같다.Referring to the results of the embodiment prepared according to the first embodiment as follows.

실시예에서 합금의 종류와 각각의 성분은 다음의 표 1에서와 같으며, 두께 70mm의 추괴로 용해주조하였다.In Example, the type of alloy and each component are as shown in Table 1 below, and were cast by melt casting with a thickness of 70 mm.

상기를 880℃에서 두께 10mm까지 7S(약 85%)의 가공도로써 열간압연하고, 960℃에서 1시간 유지후 수냉함으로써 용체화처리한 것을 상온에서 두께 1.5mm까지 85% 냉간압연한 후, 425℃,450℃,475℃,500℃,525℃ 및 550℃에서 각각 3시간 유지후 수냉시켜 시효경화 열처리하였다.After hot rolling at 7880 (approximately 85%) in 880 ° C to a thickness of 10 mm, and maintaining the solution at 960 ° C for 1 hour, the solution solution was cold-rolled at room temperature to 1.5mm in thickness by 85%, and then 425 After aging for 3 hours at 450 ° C., 475 ° C., 500 ° C., 525 ° C. and 550 ° C., the solution was cooled by water and subjected to age hardening.

그 결과는 다음의 표 2에서와 같으며, 표 2중에는 같은 공정을 거진 기존의 동(Cu)-크롬(Cr) 2원합금 2원합금의 경우도 제시하였다.The results are shown in Table 2 below. Table 2 also shows the case of the existing copper (Cu) -chromium (Cr) binary alloy binary alloy.

그리고 스포트용접 전극의 경우는 용접작업시에 피접물과 서로 들러불는 스티킹(sticking) 효과를 현저하게 개선하였으며, 용접 조건에 있어서, 전류 l0KA, 통전시간 10Cycle 및 가압력 300Kg일때에 용접수명은 기존의 동(Cu)-2.0% 지르코늄(Zr) 2원합금의 경우가 300타점 정도인 것에 비해, 본 발명의 예인 Cu-0.5Zr-0.05Mg-0.05MS인 경우에 700타점 이상에서도 용접점의 칙경의 한계점인 4.0mm를 상회하는 정도로 현지히 개선되었으며, 이는 기지중에 균일하게 분포된 미세하고 안정한 각종의 석출물의 존재에 기인한 것으로 본다.In the case of spot welding electrodes, the sticking effect between the welded object and the welded material was remarkably improved. In welding conditions, the welding life was reduced when the current l0KA, the energization time 10 cycle and the pressing force 300 Kg. In the case of Cu-0.5Zr-0.05Mg-0.05MS, which is an example of the present invention, even when the copper (Cu) -2.0% zirconium (Zr) binary alloy is about 300 RBI, It has been improved locally to exceed the limit of 4.0mm, which is due to the presence of various fine and stable precipitates uniformly distributed in the matrix.

[표 1]TABLE 1

동(Cu) - 지르코늄(Zr) - 마그네슘(Mg) -세리움(Ce) - 란탄(La) - 니오디미움(Nd)-프라세오디미움(Pr) 합금의 예에 있어서In the example of copper (Cu)-zirconium (Zr)-magnesium (Mg)-cerium (Ce)-lanthanum (La)-nidium (Nd)-prasedium (Pr) alloys

화학성분조성(중량백분률)Chemical Composition (Weight Percent)

[표 2]TABLE 2

동(Cu) - 지르코늄(Zr) - 마그네슘(Mg) -세리움(Ce) - 란탄(La) - 니오디미움(Nd)-프라세오디미움(Pr) 합금의 예와Examples of copper (Cu)-zirconium (Zr)-magnesium (Mg)-cerium (Ce)-lanthanum (La)-nidium (Nd)-praseodymium (Pr) alloys

다른 합금에 있어서 시효온도에 따른 경도와 도전률의 비교Comparison of Hardness and Conductivity with Aging Temperature in Different Alloys

* 참고문헌 ; 1) Binary alloy phase diagralns, ASM, vol.1(1986) P820* references ; 1) Binary alloy phase diagralns, ASM, vol. 1 (1986) P820

2) Binary alloy phase diagrams, ASM, vo1.1(1986) P9332) Binary alloy phase diagrams, ASM, vo1.1 (1986) P933

Claims (1)

저항용접기 전극재용 합금을 제조함에 있어서, 지르코늄(Zr)의 함량은 0.02∼3.00%(중량백분률)의 범위로 첨가하고, 상기에 마그네슘(Mg)을 0.02~0.50%(중량백분률)함유하고, 상기에 세라움(Ce), 란탄(La),니오디미움(Nd) 및 프라세오디미움(Pr)의 총함량을 0.02∼0.50%(증량배분률) 함유하고, 동(Cu)을 나머지로 하는 동(Cu)합금을 용해후 주괴를 제조하는 공정.In preparing an alloy for resistance welder electrode materials, the content of zirconium (Zr) is added in the range of 0.02 to 3.00% (weight percentage), and magnesium (Mg) is contained 0.02 to 0.50% (weight percentage). In the above, the total content of cerium (Ce), lanthanum (La), nidium (Nd) and praseodymium (Pr) contains 0.02 to 0.50% (increase), and the rest of copper (Cu) Process of manufacturing ingot after melting copper (Cu) alloy. 상기를 주조조직을 제거할 수 있는 7S(약 85%) 이상의 가공비로써 800∼950℃에서 단조, 압연, 압출 등을 행하는 공정.The process of forging, rolling, extrusion, etc. at 800-950 degreeC with a processing cost of 7S (about 85%) or more which can remove a cast structure. 상기를 800∼l,050℃에서 무께 1인지 당 30분 이상 유지한 후에 수냉, 유냉등으로 급냉하여 용체화처리를 행하는 공정.A step of maintaining the solution at 800 to l, 050 ° C for 30 minutes or more per weight, followed by quenching with water cooling, oil cooling, etc. to perform a solution treatment. 상기를 상온에서 70% 이상의 가공비로써 압연, 단조, 인발 등의 냉각가공을 행하는 공정.The above process is carried out by cold processing such as rolling, forging, drawing at a processing ratio of 70% or more at room temperature. 상기를 350∼550℃에서 1시간 이상 유지후 수냉, 유냉, 공냉 등으로 시효경화 열처리를 행하는 공정.A step of carrying out the age hardening heat treatment by water cooling, oil cooling, air cooling, etc. after maintaining the above at 350-550 degreeC for 1 hour or more. 상기의 과정을 마친 소재는 그 상태대로 사용하지나 전극 등의 부품을 제조하는 공정으로 이루어지는 것을 특징으로 하는 저항용접기 전극용 동-지르코늄-마그네슘-세리움-란탄-니오디미움-프라세오디미움 합금의 제조방법.The finished material is used as it is, but copper-zirconium-magnesium-cerium-lanthanum-nidium-praseodymium for resistance welder electrodes, characterized in that it comprises a process for producing parts such as electrodes. Method of producing an alloy.
KR1019940010865A 1994-05-17 1994-05-17 Method for making cu-zr-mg-ce-la-nd-pr alloy KR960015514B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940010865A KR960015514B1 (en) 1994-05-17 1994-05-17 Method for making cu-zr-mg-ce-la-nd-pr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940010865A KR960015514B1 (en) 1994-05-17 1994-05-17 Method for making cu-zr-mg-ce-la-nd-pr alloy

Publications (2)

Publication Number Publication Date
KR950032665A KR950032665A (en) 1995-12-22
KR960015514B1 true KR960015514B1 (en) 1996-11-15

Family

ID=19383332

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940010865A KR960015514B1 (en) 1994-05-17 1994-05-17 Method for making cu-zr-mg-ce-la-nd-pr alloy

Country Status (1)

Country Link
KR (1) KR960015514B1 (en)

Also Published As

Publication number Publication date
KR950032665A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
EP2045342B1 (en) Noble metal alloy for spark plug and method for producing and processing the same
JPS6132386B2 (en)
KR960015216B1 (en) Making method of cu-zr-ce-la-nb-pd alloy
KR960015516B1 (en) Method for making cu-zr-mg alloy
KR960015217B1 (en) Making method of cu-cr-zr-mg-ce-la-nd-pd alloy
KR960015514B1 (en) Method for making cu-zr-mg-ce-la-nd-pr alloy
US3019102A (en) Copper-zirconium-hafnium alloys
MXPA03001213A (en) Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same.
KR960015515B1 (en) Method for making cu-cr-mg-ce-nd-pr alloy
KR960014952B1 (en) Making method of cu-cr-zr-ce-la-nd-pr alloy & heat-treatment
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
KR960014950B1 (en) Making method of cu-cr-zr-mg alloy & heat-treatment
JPH0976074A (en) Material for resistance welding electrode, composite electrode for resistance welding and its manufacture
KR0182225B1 (en) Cu-zr-mg-mischemetal alloy and the heat treatment thereof
KR960014951B1 (en) Making method cu-cr-ce-la-nd-pr alloy and heat-treatment
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method
KR0182227B1 (en) Cu-cr-zr-mischmetal alloy and the treatment thereof
KR0182226B1 (en) Cu-cr-mg-mischmetal alloy and the heat treatment thereof
KR0182224B1 (en) Cu-zr-mischmetal alloy and the heat treatment thereof
KR0182228B1 (en) Cu-cr-mischmetal alloy and the heat treatment thereof
JPH05339688A (en) Production of molding material for casting metal
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
WO2001015837A1 (en) Improved dies for die casting aluminum and other metals
KR960015538B1 (en) Method for making cu-cr-mg alloy
JPH0681057A (en) Cu-fe alloy for welding electrode and soldering iron tip excellent in molten metal corrosion resistance and strength at high temperature and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031117

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee