JPH01197974A - Polymer solid electrolyte and polymer solid electrolyte cell - Google Patents

Polymer solid electrolyte and polymer solid electrolyte cell

Info

Publication number
JPH01197974A
JPH01197974A JP63021606A JP2160688A JPH01197974A JP H01197974 A JPH01197974 A JP H01197974A JP 63021606 A JP63021606 A JP 63021606A JP 2160688 A JP2160688 A JP 2160688A JP H01197974 A JPH01197974 A JP H01197974A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer solid
battery
polymer
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63021606A
Other languages
Japanese (ja)
Other versions
JPH0574194B2 (en
Inventor
Tomohiko Noda
智彦 野田
Hiroyoshi Yoshihisa
吉久 洋悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63021606A priority Critical patent/JPH01197974A/en
Priority to DE3852152T priority patent/DE3852152T2/en
Priority to EP88304649A priority patent/EP0297717B1/en
Priority to EP93201935A priority patent/EP0572099A3/en
Priority to US07/197,968 priority patent/US4844995A/en
Priority to CA000567941A priority patent/CA1304444C/en
Publication of JPH01197974A publication Critical patent/JPH01197974A/en
Publication of JPH0574194B2 publication Critical patent/JPH0574194B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent decay in performance caused by long storage by using a polymer having a structure in which hydrogen atoms in its urethane-liked structure are replaced with atoms of an alkali metal or an alkali earth metal. CONSTITUTION:A polymer in which hydrogen atoms in its urethane-linked structure are replaced with atoms of an alkali metal or an alkaline earth metal is applied at least to an area except a boundary between a positive active substance and an electrolyte. In addition, a polymer solid electrolyte as the electrolyte that contains a structure in which hydrogen atoms in its urethane- liked structure are replaced with atoms of an alkali metal or an alkaline earth metal is used. With this procedure it is possible to prevent decay in performance caused long storage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポリマー固体電解質及びこれを用いた電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a polymer solid electrolyte and a battery using the same.

従来技術とその問題点 近年、ポリエチレンオキシド等に代表されるポリマーを
電解質材料に用いた高分子固体電解質の研究が盛んにお
こなわれている。
Prior Art and Its Problems In recent years, research has been actively conducted on solid polymer electrolytes using polymers such as polyethylene oxide as electrolyte materials.

この固体電解質を用いた電池は、無漏液であり、高エネ
ルギー密度を有し、容易に積層構造とすることができる
等の利点がある。最も広く試験に供されている材料は、
直鎖型ポリエーテルを用いた系であるが、この系は融点
(約60℃)を持ち、且つ融点以下の温度では充分なイ
オン伝導度が得られないという欠点があった。
A battery using this solid electrolyte has advantages such as being leak-free, having a high energy density, and being easily formed into a laminated structure. The most widely tested materials are:
Although this system uses a linear polyether, this system has a melting point (approximately 60° C.) and has the disadvantage that sufficient ionic conductivity cannot be obtained at temperatures below the melting point.

この改良としてポリエーテル架橋体を用いた系が提案さ
れている。この系は融点を持たず、室温付近でも比較的
良好なイオン伝導度が得られるという利点がある。
As an improvement on this, a system using a crosslinked polyether has been proposed. This system has the advantage that it has no melting point and relatively good ionic conductivity can be obtained even near room temperature.

なかでも最も良く知られているものとして、三官能性ポ
リエーテルをトリレン2,4−ジイソシアナート、ヘキ
サメチレンジイソシアナート等のインシアナート化合物
を用いてウレタン基によって架橋されたイソシアナート
架橋体がある。本方法は、種々の架橋方法の中でも最も
簡便で薄膜への成形が容易であり、工業化に適するもの
である。
Among these, the most well-known is isocyanate crosslinked products in which trifunctional polyethers are crosslinked with urethane groups using incyanate compounds such as tolylene 2,4-diisocyanate and hexamethylene diisocyanate. . This method is the simplest among various crosslinking methods and can be easily formed into a thin film, making it suitable for industrialization.

しかしながら、正極にリチウムインターカレーション型
金属化合物を用い、負極に金属リチウム又はリチウム合
金を用いて組み立てた電池を保存した場合、保存中の容
量低下が大きいという問題があった。また、同電池につ
いて充放電を繰返した場合、繰返し充放電に伴う電池容
量へ低下が大きいという問題があった。
However, when a battery assembled using a lithium intercalation type metal compound for the positive electrode and metallic lithium or a lithium alloy for the negative electrode is stored, there is a problem in that the capacity decreases significantly during storage. Furthermore, when the same battery is repeatedly charged and discharged, there is a problem in that the battery capacity decreases significantly due to repeated charging and discharging.

保存中に容量が低下する原因としては、主にウレタン基
中の窒素原子に直接結合している水素原子が負極材料の
リチウムと反応することに始まるポリマー固体電解質の
変質劣化によると考えられる。
The reason for the decrease in capacity during storage is thought to be mainly due to the deterioration of the polymer solid electrolyte, which is caused by the reaction of the hydrogen atoms directly bonded to the nitrogen atoms in the urethane group with the lithium of the negative electrode material.

又、繰返し充放電に伴い容量が低下する原因としては、
ポリマー固体電解質がアニオン、カチオン両種のイオン
が移動する双イオン移動性であるため、電池を放電した
際に移動したアニオンが負極近傍で分極するが、引き続
き電池の充電によって分極したアニオンが逆方向(正極
側)に戻る速度が極めて緩慢であることによると考えら
れる。
In addition, the reasons why the capacity decreases due to repeated charging and discharging are as follows.
Since the polymer solid electrolyte has zwitterionic mobility in which both anion and cation ions move, the anions that move when the battery is discharged become polarized near the negative electrode, but when the battery is subsequently charged, the polarized anions polarize in the opposite direction. This is thought to be due to the fact that the speed of returning to the positive electrode side is extremely slow.

発明の目的 本発明は上記従来の問題点に濫みなされたものであり、
長期保存における性能劣化のないポリマー固体電解質を
提供し、さらに充放電の繰返しによる電池容量の低下を
抑えたポリマー固体電解質電池を提供することを目的と
する。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and
It is an object of the present invention to provide a polymer solid electrolyte that does not deteriorate in performance during long-term storage, and further to provide a polymer solid electrolyte battery that suppresses a decrease in battery capacity due to repeated charging and discharging.

発明の構成 本発明は、ウレタン結合構造の水素原子がアルカリ金属
又はアルカリ土類金属原子で置換された構造を含むポリ
マーを用いたことを特徴とするポリマー固体電解質であ
る。
Structure of the Invention The present invention is a polymer solid electrolyte characterized by using a polymer containing a structure in which hydrogen atoms in a urethane bond structure are replaced with alkali metal or alkaline earth metal atoms.

又、電解質として、ウレタン結合構造の水素原子がアル
カリ金属又はアルカリ土類金属原子で置換された構造を
含むポリマー固体電解質を用いたことを特徴とするポリ
マー固体電解質電池である。
Further, the present invention is a polymer solid electrolyte battery characterized in that a polymer solid electrolyte including a structure in which hydrogen atoms in a urethane bond structure are replaced with alkali metal or alkaline earth metal atoms is used as the electrolyte.

さらに、上記固体電解質電池において、少なくとも正極
活物質と電解質の界面には、ウレタン結合構造の水素原
子がアルカリ金属又はアルカリ土類金属原子で置換され
た構造を有しないことを特徴とするポリマー固体電解質
電池である。
Furthermore, in the solid electrolyte battery, the polymer solid electrolyte does not have a structure in which hydrogen atoms in the urethane bond structure are replaced with alkali metal or alkaline earth metal atoms, at least at the interface between the positive electrode active material and the electrolyte. It's a battery.

ウレタン基中の水素原子をリチウム原子に置換する方法
の一つとして、ローブチルリチウム、フェニルリチウム
等を用いる方法がある。既知の方法で合成されたポリエ
ーテルイソンアナート架橋体を例えばn−ヘキサン溶媒
中でn−ブチルリチウムを用い反応させることによって
、本発明に用いるポリマーを得ることができる。
One method of substituting a lithium atom for a hydrogen atom in a urethane group is to use lobyllithium, phenyllithium, or the like. The polymer used in the present invention can be obtained by reacting a crosslinked polyether isoneanate synthesized by a known method with n-butyllithium in an n-hexane solvent, for example.

一方、n−ブチルリチウムによる処理は目的とする反応
の他にポリマー主鎖の切断を伴うことがある。これを防
ぐために、より反応速度の大キい、フェニルリチウムを
用いることにより目的とする反応を選択的に行うことが
できる。
On the other hand, treatment with n-butyllithium may involve scission of the polymer main chain in addition to the desired reaction. In order to prevent this, the desired reaction can be carried out selectively by using phenyllithium, which has a higher reaction rate.

しかしながら、ウレタン基中の水素原子をリチウム原子
に置換する方法は上記に限定されるものではない。
However, the method of substituting a lithium atom for a hydrogen atom in a urethane group is not limited to the above method.

二 ÷→→+→→i正極活物質と電解質との界面近傍に関す
る限りにおいては、従来のポリマー(ポリエーテルのイ
ソシアナート架橋体)を用いても、保存中の容量を低下
させることはなく、又充放電サイクル性能も低下するこ
とはない。
2÷→→+→→iAs far as the vicinity of the interface between the positive electrode active material and the electrolyte is concerned, even if conventional polymers (isocyanate crosslinked polyethers) are used, the capacity during storage will not decrease. Furthermore, the charge/discharge cycle performance does not deteriorate.

むしろ、少くとも正極活物質と電解質との界面を除く部
分に本発明のポリマーを適用することにより、本発明の
効果をさらに発揮させることができる。
Rather, the effects of the present invention can be further exhibited by applying the polymer of the present invention to at least a portion excluding the interface between the positive electrode active material and the electrolyte.

このように、本発明の効果を充分に発揮させるためには
、ポリマー固体電解質シートの少なくとも片面の表面近
傍において、ポリマーのウレタン基中の水素原子がリチ
ウム原子に置換されていないことが望ましい。本発明の
ポリマー固体電解質シートを作成する方法として、イン
シアナート架橋体シートの片面に反応液を塗り、片面の
みリチウム置換させる方法、イソシアナ−ト架橋体シー
ト全体を反応液に浸漬し、両面をリチウム置換した後、
片面を水素原子もしくはアルキル基と置換する方法、同
じく両面をリチウム置換した後、片面にさらにインシア
ナート架橋体を形成させる方法等が挙げられる。
As described above, in order to fully exhibit the effects of the present invention, it is desirable that the hydrogen atoms in the urethane groups of the polymer are not substituted with lithium atoms near the surface of at least one side of the polymer solid electrolyte sheet. The polymer solid electrolyte sheet of the present invention can be produced by applying a reaction liquid to one side of the inocyanate crosslinked sheet and replacing only one side with lithium, or by immersing the entire isocyanate crosslinked sheet in the reaction liquid and replacing both sides with lithium. After that,
Examples include a method of substituting one side with a hydrogen atom or an alkyl group, and a method of similarly substituting both sides with lithium and then forming an incyanate crosslinked product on one side.

しかしながら、一方の表面がリチウム置換され、他方の
面がリチウム置換されていない本発明のシートを作成す
る方法は上記に限定されるものではない。
However, the method for producing the sheet of the present invention in which one surface is lithium-substituted and the other surface is not lithium-substituted is not limited to the above.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

トリオール型三官能性ポリエーテル(分子量り、000
)に当量のへキサメチレンジイソシアナート、少量のジ
メチルアセトアミド及び@量のDi−n−ブチル錫ジア
セテートを加え、充分混合した後ポリプロピレン不織布
に塗布し、80%不活性ガス中にてポリエーテルを架橋
させた。
Triol type trifunctional polyether (molecular weight, 000
), add an equivalent amount of hexamethylene diisocyanate, a small amount of dimethylacetamide, and an amount of Din-n-butyltin diacetate, mix thoroughly, and then apply to a polypropylene nonwoven fabric and prepare polyether in an 80% inert gas atmosphere. was crosslinked.

次に該シートを乾燥アセトンにて洗浄し、未反応物を除
去した後、アセトンを揮発させた。
Next, the sheet was washed with dry acetone to remove unreacted substances, and then the acetone was evaporated.

次に不活性ガス中にて0.1 moe/l!  n−ブ
チルリチウム、n−ヘキサン溶液を調整し、該シートを
室温で3時間浸漬した。
Next, 0.1 moe/l in inert gas! A solution of n-butyllithium and n-hexane was prepared, and the sheet was immersed at room temperature for 3 hours.

次に該シートをn−ヘキサンで軽く洗浄した後、密閉容
器中で0.4mol/e過塩素酸リチウム、アセトン溶
液に30分浸漬することにより、過塩素酸リチウムを溶
解させた。
Next, the sheet was lightly washed with n-hexane, and then immersed in a 0.4 mol/e lithium perchlorate and acetone solution for 30 minutes in a closed container to dissolve the lithium perchlorate.

次にあらかじめ9wt%の過塩素酸リチウムを溶解させ
たトリオール型三官能性ポリエーテル(分ut 6,0
00)に当量のヘキサメチレンジイソシアナート、少量
のジメチルアセトアミド及び微量のDi−n−ブチル錫
ジアセテートを加え、充分混合したものを該シートの片
方の面に薄く塗布し、80C不活性ガヌ巾にてポリエー
テ/しを架橋させた。
Next, a triol-type trifunctional polyether in which 9 wt% of lithium perchlorate was dissolved in advance (min.
Add an equivalent amount of hexamethylene diisocyanate, a small amount of dimethylacetamide, and a trace amount of Din-butyltin diacetate to 00), mix well, and apply a thin layer of the mixture to one side of the sheet. The polyether/silicone was crosslinked along the width.

次にアモルファス五酸化バナジウム4部、アセチレンブ
ラック1部、あらかじめ9wt%の過塩素酸リチウムを
溶解させたトリオール型三官能性ポリエーテ/L75部
、ジメチルアセトアミ11部、当fitのへキサメチレ
ンジイソシアナート及び微量のDi−n−ブチル錫ジア
セテートをよく練り合わせたものを前述のシートの上面
に塗布し、80℃の不活性ガス中にて固化させた。
Next, 4 parts of amorphous vanadium pentoxide, 1 part of acetylene black, 75 parts of triol type trifunctional polyether/L in which 9 wt% lithium perchlorate was dissolved in advance, 11 parts of dimethylacetamide, and the hexamethylene diisocyanate of this fit. A well-kneaded mixture of Di-n-butyltin diacetate and a small amount of Di-n-butyltin diacetate was applied to the upper surface of the sheet and solidified in an inert gas at 80°C.

該ノートを乾燥後、金属リチウムを取付け、コイン型N
、槽に収納し、電池を作成した。第1図に本発明の電池
と従来電池との80℃加速試験における保存性能の比較
を示した。
After drying the notebook, attach metal lithium and turn it into a coin type N.
, and stored it in a tank to create a battery. FIG. 1 shows a comparison of storage performance in an 80°C accelerated test between the battery of the present invention and a conventional battery.

第2図に本発明の電池と従来電池との温度80℃におい
て0.1 ”A/。dの電流で4vから2vの間で繰返
し充放電を行ない、放電容量の比較を示した。
FIG. 2 shows a comparison of discharge capacity between the battery of the present invention and a conventional battery, which were repeatedly charged and discharged at a current of 0.1''A/.d between 4V and 2V at a temperature of 80°C.

即ち、ポリエーテルのイソシアナート架橋体がリチウム
と接触を続けると、特に80℃以上の温度においては架
橋体中のウレタン結合の水素原子が活性であるために、
リチウム置換を起こす。これが発端となって引き続き起
こる反応については必ずしも明らかではないが、結果と
しては電池の内部抵抗が80℃、60日間保存した場合
の一例では初期[100Ωから、保存後2500Ωにま
で上昇した。こ\で、本発明のポリマーを少なくともリ
チウムとの接触面に応用することにより、初期値は10
0Ωに保たれ、同様の保存試験後でも150Ωまでの上
昇に滞った。
That is, when the isocyanate crosslinked polyether continues to come into contact with lithium, especially at temperatures of 80°C or higher, the hydrogen atoms of the urethane bonds in the crosslinked body are active.
Causes lithium displacement. Although it is not necessarily clear what reactions occur following this, the results show that in one example of a battery stored at 80°C for 60 days, the internal resistance of the battery increased from 100Ω initially to 2500Ω after storage. By applying the polymer of the present invention to at least the contact surface with lithium, the initial value can be increased to 10.
It was maintained at 0Ω, and even after a similar storage test, the resistance did not increase to 150Ω.

このようにウレタン結合中の水素原子が予めリチウム化
された本発明のポリマーを少なくともリチウムとの接触
面に応用することにより、ポリマーと負極リチウムとの
反応を抑え、電池の内部抵抗を保ち、電池容量を良好に
保つことができる。
By applying the polymer of the present invention, in which the hydrogen atoms in the urethane bonds have been lithiated in advance, to at least the contact surface with lithium, the reaction between the polymer and the negative electrode lithium can be suppressed, the internal resistance of the battery can be maintained, and the battery Capacity can be maintained well.

尚、従来電池とはウレタン結合構造の水素原子がMで置
換された構造を含まないポリマー固体電解質を用いた電
池である。
Note that the conventional battery is a battery using a polymer solid electrolyte that does not include a structure in which hydrogen atoms in a urethane bond structure are replaced with M.

又、正極活物質との界面を除く部分に本発明のポリマー
を応用した電池が、良好な繰返し充放電性能を示す理由
について次に述べる。
Further, the reason why a battery in which the polymer of the present invention is applied to a portion other than the interface with the positive electrode active material exhibits good repeated charge/discharge performance will be described below.

即ち、本発明ではポリエーテルの架橋部分はラム原子は
イオン性が強い。このことは、架偽部分構造の共鳴が起
こりやすく、7子は酸素原子方向に強く引かれ、窒素原
子上の電子は欠乏この時、リチウム原子はキャリアーイ
オンとして機能することができるため、ポリマー中のキ
ャリアーは増加する。そして、ポリマー中に溶解してい
る塩のうちアニオン(例えば塩として過塩素酸リチウム
を用いた場合はRO4−イオン)は窒素原子と弱く結合
し、アニオンの移動を抑制する。
That is, in the present invention, the Lamb atoms in the crosslinked portion of polyether have strong ionicity. This means that resonance of the fictitious substructure is likely to occur, the septad is strongly attracted towards the oxygen atom, and the electrons on the nitrogen atom are depleted. At this time, the lithium atom can function as a carrier ion, so the lithium atom can act as a carrier ion. carriers will increase. Of the salts dissolved in the polymer, anions (for example, RO4- ions when lithium perchlorate is used as the salt) bond weakly with nitrogen atoms, suppressing the movement of anions.

以上のことは、電池の繰返し充放電時におけるアニオン
の分極を抑え、カチオン輸率が上昇することとなるため
、良好な繰返し充放電性能が得られる。
As described above, anion polarization is suppressed during repeated charging and discharging of the battery, and the cation transference number increases, so that good repeated charging and discharging performance can be obtained.

発明の効果 上述した如く、本発明は長期保存における性能劣化のな
いポリマー固体電解質を提供できる。
Effects of the Invention As described above, the present invention can provide a polymer solid electrolyte that does not deteriorate in performance during long-term storage.

さらに充放電の繰返しによる電池容量の低下を抑えたポ
リマー固体電解質電池を提供できるのでその工業的価値
は極めて大である。
Furthermore, since it is possible to provide a polymer solid electrolyte battery that suppresses a decrease in battery capacity due to repeated charging and discharging, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池と従来電池との加速試験による保
存性能の比較を示した図、第2図は本発明の電池と従来
電池との繰返し充放電における放電容量の比較を示した
図である。
Figure 1 is a diagram showing a comparison of the storage performance of the battery of the present invention and a conventional battery through an accelerated test, and Figure 2 is a diagram showing a comparison of the discharge capacity during repeated charging and discharging between the battery of the present invention and a conventional battery. It is.

Claims (3)

【特許請求の範囲】[Claims] (1)ウレタン結合構造の水素原子がM(以下Mはアル
カリ金属又はアルカリ土類金属原子)で置換された構造
を含むポリマーを用いたことを特徴とするポリマー固体
電解質。
(1) A polymer solid electrolyte characterized by using a polymer containing a structure in which a hydrogen atom in a urethane bond structure is replaced with M (hereinafter M is an alkali metal or alkaline earth metal atom).
(2)電解質として、ウレタン結合構造の水素原子がM
で置換された構造を含むポリマー固体電解質を用いたこ
とを特徴とするポリマー固体電解質電池。
(2) As an electrolyte, the hydrogen atoms in the urethane bond structure are M
A polymer solid electrolyte battery characterized by using a polymer solid electrolyte containing a structure substituted with.
(3)電解質としてウレタン結合構造の水素原子がMで
置換された構造を含むポリマー固体電解質を用いた電池
において、少なくとも正極活物質と電解質の界面には、
該構造を有しないポリマー固体電解質を備えたことを特
徴とするポリマー固体電解質電池。
(3) In a battery using a polymer solid electrolyte containing a structure in which hydrogen atoms in a urethane bond structure are replaced with M as an electrolyte, at least at the interface between the positive electrode active material and the electrolyte,
A polymer solid electrolyte battery comprising a polymer solid electrolyte that does not have this structure.
JP63021606A 1987-06-30 1988-02-01 Polymer solid electrolyte and polymer solid electrolyte cell Granted JPH01197974A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63021606A JPH01197974A (en) 1988-02-01 1988-02-01 Polymer solid electrolyte and polymer solid electrolyte cell
DE3852152T DE3852152T2 (en) 1987-06-30 1988-05-23 Solid polymer electrolyte and battery with solid polymer electrolytes.
EP88304649A EP0297717B1 (en) 1987-06-30 1988-05-23 Polymer solid electrolyte and a polymer solid electrolyte battery
EP93201935A EP0572099A3 (en) 1987-06-30 1988-05-23 Polymer solid electrolyte and polymer solid electrolyte battery
US07/197,968 US4844995A (en) 1987-06-30 1988-05-24 Polymer solid electrolyte and a polymer solid electrolyte battery
CA000567941A CA1304444C (en) 1987-06-30 1988-05-27 Polymer solid electrolyte and a polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021606A JPH01197974A (en) 1988-02-01 1988-02-01 Polymer solid electrolyte and polymer solid electrolyte cell

Publications (2)

Publication Number Publication Date
JPH01197974A true JPH01197974A (en) 1989-08-09
JPH0574194B2 JPH0574194B2 (en) 1993-10-15

Family

ID=12059694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021606A Granted JPH01197974A (en) 1987-06-30 1988-02-01 Polymer solid electrolyte and polymer solid electrolyte cell

Country Status (1)

Country Link
JP (1) JPH01197974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394551B1 (en) * 2001-10-04 2003-08-14 주식회사 엠엔비그린어스 Polymer electrolyte composition and Lithium polymer secondary battery manufactured by the said composition
WO2008032679A1 (en) 2006-09-11 2008-03-20 Asahi Kasei Kabushiki Kaisha Polymeric electrolyte, method for production thereof, and electrochemical element
WO2008032658A1 (en) 2006-09-11 2008-03-20 Asahi Kasei Kabushiki Kaisha Novel polymer electrolyte and electrochemical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394551B1 (en) * 2001-10-04 2003-08-14 주식회사 엠엔비그린어스 Polymer electrolyte composition and Lithium polymer secondary battery manufactured by the said composition
WO2008032679A1 (en) 2006-09-11 2008-03-20 Asahi Kasei Kabushiki Kaisha Polymeric electrolyte, method for production thereof, and electrochemical element
WO2008032658A1 (en) 2006-09-11 2008-03-20 Asahi Kasei Kabushiki Kaisha Novel polymer electrolyte and electrochemical device
US8052888B2 (en) 2006-09-11 2011-11-08 Asahi Kasei Kabushiki Kaisha Polymeric electrolyte, method for production thereof, and electrochemical element
US8216723B2 (en) 2006-09-11 2012-07-10 Asahi Kasei Kabushiki Kaisha Polymer electrolyte and electrochemical device

Also Published As

Publication number Publication date
JPH0574194B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
Koura et al. Polyaniline secondary cells with ambient temperature molten salt electrolytes
CN108137324A (en) The self-assembled compound material of carbonitride and graphene oxide, its manufacturing method, using its anode and include its lithium-sulfur cell
Doeff et al. Thin film rechargeable room temperature batteries using solid redox polymerization electrodes
US20080113272A1 (en) Films for electrochemical structural elements and method for producing such films
JP3594895B2 (en) Proton conductive polymer secondary battery
US20210028459A1 (en) Positive pole material, positive pole, battery and battery pack
Behl et al. Electrochemical overcharge protection of rechargeable lithium batteries: II. Effect of lithium iodide‐iodine additives on the behavior of lithium electrode in solutions
Le Mehaute et al. Polymer electrolytes: the route towards solid polymer electrolytes with stable electrochemical performances upon long term storage
EP0297717B1 (en) Polymer solid electrolyte and a polymer solid electrolyte battery
JPH0286074A (en) Nonaqueous electrolyte secondary battery
JPH01197974A (en) Polymer solid electrolyte and polymer solid electrolyte cell
JPH0734367B2 (en) Non-aqueous electrolyte secondary battery
JPH01189872A (en) Polymer solid electrolyte secondary cell
JPH0567477A (en) Battery
JP2955177B2 (en) Composite electrode, method for producing the same, and lithium secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH04169075A (en) Nonaqueous electrolyte battery
JPS62157678A (en) Secondary battery
JPH05283103A (en) Gelatinous electrolyte for lithium battery
JP4379966B2 (en) Lithium battery
JPH02148653A (en) Lithium secondary battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH01319268A (en) Secondary battery
JPH01225064A (en) Lithium cell
JPH0526305B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees