JPH01197366A - Discharge working method for silicon nitride-base molded ceramic body - Google Patents

Discharge working method for silicon nitride-base molded ceramic body

Info

Publication number
JPH01197366A
JPH01197366A JP63021386A JP2138688A JPH01197366A JP H01197366 A JPH01197366 A JP H01197366A JP 63021386 A JP63021386 A JP 63021386A JP 2138688 A JP2138688 A JP 2138688A JP H01197366 A JPH01197366 A JP H01197366A
Authority
JP
Japan
Prior art keywords
silicon nitride
molded body
weight
powder
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63021386A
Other languages
Japanese (ja)
Inventor
Goro Saiki
斎木 五郎
Shigeharu Matsubayashi
重治 松林
Taketo Nakano
中野 武人
Hideo Ide
井出 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63021386A priority Critical patent/JPH01197366A/en
Publication of JPH01197366A publication Critical patent/JPH01197366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To make the title molded body to an electric conductor and to enable discharge working by adding a conductive high polymer to the raw material of Si3N4 ceramic, granulating and molding the mixture. CONSTITUTION:3-30wt.% conductive high polymer, e.g., one kind selected from polyacetylene, polyphenylene, polypyrrole and polythiophene is mixed with the raw material of silicon nitride-base ceramic in which both Si3N4 powder and MgO, Al2O3 utilized as a sintering auxiliary are added and furthermore 0.1-20% organic high polymer such as PE and PP is mixed therewith according to circumstances. The molded body obtained from this mixed powder is regulated to <=10<-3>OMEGA.cm specific resistance value and subjected to discharge working. Thereby, working of more complex and more rapid than grinding working is enabled and it has insulating properties after calcination and holds oxidation resistance and high-temp. strength.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、窒化珪素系セラミックスの加工技術にか〜わ
り、より詳しくは窒化珪素に導電性高分子を添加するこ
とにより導電体化し、放電加工する方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a processing technology for silicon nitride ceramics, and more specifically, silicon nitride is made into a conductor by adding a conductive polymer to the silicon nitride, and the silicon nitride is made into a conductor by adding a conductive polymer. It is related to the method of processing.

[従来の技術] 窒化珪素系セラミックスは、導電体ではないため電気的
な加工が難しく、研削による加工についても目詰りを起
こし易いことが問題点とされている。
[Prior Art] Silicon nitride ceramics are difficult to electrically process because they are not electrically conductive, and the problem is that they are easily clogged when processed by grinding.

そこで、窒化珪素系セラミックスに導電性の添加物Ti
N等を加え、電気的な加工を行なう試みがなされている
(特公昭et −111969号公報、特公昭81−2
81059号公報)。
Therefore, we added a conductive additive, Ti, to silicon nitride ceramics.
Attempts have been made to perform electrical processing by adding N, etc.
81059).

[発明が解決しようとする課題] しかし、添加物として加えるTiN量が30体積%を超
え、窒化珪素セラミックスのもつ性質を劣化させる。
[Problems to be Solved by the Invention] However, the amount of TiN added as an additive exceeds 30% by volume, which deteriorates the properties of silicon nitride ceramics.

本発明は素地成形体の導電化を行なう放電加工を提供す
るものである。
The present invention provides electrical discharge machining for making a green compact compact electrically conductive.

[課題を解決するための手段] 本発明は、窒化珪素系粉末に導電性の高分子を用い、造
粒かつ成形を行なうことによって、素地成形体を導電体
化し、放電加工を行なうことを特徴とする。
[Means for Solving the Problems] The present invention is characterized in that a conductive polymer is used in a silicon nitride-based powder, and by granulating and molding the base molded body, it is made into a conductor, and electrical discharge machining is performed. shall be.

即ち、窒化珪素系粉末試料に、該粉末に対して3〜30
重量%の導電性高分子ポリアセチレン、ポリフェニレン
、ポリピロール、並びにポリチオフェンから選ばれる少
なくとも1種の化合物と、必要によりこれに0.1〜2
0重二%重量機高分子または有機金属高分子を添加する
That is, in a silicon nitride powder sample, 3 to 30
% by weight of at least one compound selected from the conductive polymer polyacetylene, polyphenylene, polypyrrole, and polythiophene, and if necessary, 0.1 to 2% of the conductive polymer.
Add 0.2% mechanical polymer or organometallic polymer.

有機高分子としてはポリエチレン、ポリプロピレン、ア
タクチックポリプロピレン、EvA樹脂、ポリスチレン
、エチレン−アクリエート共重合体、アクリル樹脂、ワ
ックス、ポリアミドに種類分けされる化合物、有機金属
高分子としてはポリサイラゼン、ポリ男ルボシランがあ
る。
Organic polymers include polyethylene, polypropylene, atactic polypropylene, EvA resin, polystyrene, ethylene-acrylate copolymer, acrylic resin, wax, and polyamide; organic metal polymers include polycyrazene and polyalubosilane. There is.

これらから選ばれる少なく゛とも1種を混合した粉末を
従来公知の成形法、例えば有機溶媒を用いてスラリーと
なし、このスラリーを粉末とした後、これを成形した成
形体を、または、スラリーを直接鋳込み成形を行なうこ
とによって得られた成形体について、比抵抗値l0−3
Ω・口以下として、放電加工するものである。
A powder mixture of at least one selected from these is made into a slurry using a conventionally known molding method, for example, using an organic solvent, and after this slurry is made into a powder, a molded article made by molding this or the slurry is made into a slurry. Regarding the molded body obtained by direct casting, the specific resistance value l0-3
Electrical discharge machining is performed as the resistance is less than Ω.

ここで、導電性高分子が3重量%未満の場合には、比抵
抗値がlロー3Ω・(1)以下にならず、効果的に放電
加工ができない。また、30重量%を超えれば、脱脂の
際に保形性が悪くなり、焼成の際に収縮率が高くなる問
題を生ずる。
Here, if the content of the conductive polymer is less than 3% by weight, the specific resistance value will not be less than 1<0><3 Ω·(1), and electric discharge machining cannot be performed effectively. Moreover, if it exceeds 30% by weight, the problem of poor shape retention during degreasing and high shrinkage during firing will occur.

有機高分子を加える理由として、熱可塑性を利用した射
出成形技術や型との離型性、さらに粉体同志の流動性を
上げるための滑剤としてのはたらきをすることがあげら
れる。
Reasons for adding organic polymers include injection molding technology that utilizes thermoplasticity, mold releasability, and acting as a lubricant to increase fluidity between powders.

有機金属高分子の添加は、それ自体がセラミックス化す
ることによる実質的な成形密度の向上あるいは焼成過程
での成形体の強度保持を主旨とする。
The main purpose of the addition of organometallic polymers is to substantially improve the compacted density or to maintain the strength of the compact during the firing process by converting the organometallic polymer into a ceramic.

この加工体を焼成した後は、導電性高分子が熱分解し導
電性を失うので、研削加工をすることになるが、焼結前
に焼成後の形状に近ずける素地加工を本発明による方法
で施しであるため、この際の加工代の軽減につながる。
After firing this processed body, the conductive polymer thermally decomposes and loses its conductivity, so it must be ground. However, the present invention allows the base material to be processed to approximate the shape after firing before sintering. Since it is applied by a method, the processing cost at this time can be reduced.

しかも、導電性高分子であるポリアセチレン、ポリフェ
ニレン、ポリピロール、並びにポリチオフェン、有機高
分子であるポリエチレン、ポリプロピレン、アタクチッ
クポリプロピレン、EvA樹脂、ポリスチレン、エチレ
ン−アクリエート共重合体、アクリル樹脂、ワックス、
ポリアミドに種類分けされる化合物は、いずれも熱分解
によって、除去可能であるため、窒化珪素自体の性質を
損なわない。
Moreover, conductive polymers such as polyacetylene, polyphenylene, polypyrrole, and polythiophene, organic polymers such as polyethylene, polypropylene, atactic polypropylene, EvA resin, polystyrene, ethylene-acrylate copolymer, acrylic resin, wax,
All of the compounds classified as polyamides can be removed by thermal decomposition, so they do not impair the properties of silicon nitride itself.

また、上記化合物を成形体から分解除去した後に、気孔
が残り、焼成体強度の劣化を引き起こしたり、分解除去
の成形体密度の低下による焼成収縮率の上昇による歪み
が残る場合がある。
Furthermore, after the above-mentioned compound is decomposed and removed from the molded body, pores may remain, causing a deterioration in the strength of the fired body, or distortion may remain due to an increase in the firing shrinkage rate due to a decrease in the density of the molded body after decomposition and removal.

この点が問題になる場合には、それ自体がセラミックス
化するポリサイラゼン、ポリカルボシランを混合するこ
とで解決または軽減できる。
If this problem becomes a problem, it can be solved or alleviated by mixing polycylazene or polycarbosilane, which themselves become ceramics.

有機高分子としてポリエチレン、ポリプロピレン等は、
分解温度の広域化と熱的な成形法への応用を考慮して添
加する。
Polyethylene, polypropylene, etc. are organic polymers.
It is added in consideration of widening the decomposition temperature range and application to thermal molding methods.

さらに、導電性高分子として、ジメチルポリアセチレン
構造をもつ鎖状高分子の骨格となる炭素を珪素で置き換
えた化合物を用いる°場合は、この高分子自体が炭化珪
素のセラミックス化することで、焼成後は複合セラミッ
クスとなる。
Furthermore, when using a compound in which the carbon that forms the backbone of a chain polymer with a dimethylpolyacetylene structure is replaced with silicon as a conductive polymer, the polymer itself becomes a ceramic of silicon carbide, so that after firing, becomes composite ceramics.

[実施例1] 窒化珪素系セラミックスとして、窒化珪素粉末を92重
量%、焼結助剤として酸化マグネシウム5重量%、酸化
アルミニウム3重量%を用い、導電性の高分子として、
表1に示すポリアセチレンなどを前記3種混合粉末の合
計量に対して15重量比用い、窒化珪素製のポット、ボ
ールによるボールミルを使って、有機溶媒中で混練し、
噴霧熱乾燥法による造粒を行なった。
[Example 1] As a silicon nitride ceramic, 92% by weight of silicon nitride powder, 5% by weight of magnesium oxide and 3% by weight of aluminum oxide were used as sintering aids, and as a conductive polymer,
Using polyacetylene etc. shown in Table 1 at a weight ratio of 15 to the total amount of the three types of mixed powder, kneading in an organic solvent using a ball mill with a silicon nitride pot and balls,
Granulation was performed using a spray heat drying method.

得られた粉体を、1軸成形圧1000kg f / c
d、静水圧成形圧2000kgf/c−によって、50
 X 50 X 1Ωm+sに成形した。
The obtained powder was subjected to a uniaxial molding pressure of 1000 kg f/c
d, 50 by isostatic pressing pressure 2000 kgf/c-
It was molded to X 50 X 1Ωm+s.

この成形体は、比抵抗値5 X 10’Ω・印であった
This molded body had a specific resistance value of 5×10′Ω·mark.

これを、放電加工した条件を以下に示す。The conditions under which this was subjected to electrical discharge machining are shown below.

加工電圧・・・80V 加工電流・・・2.OA 加工方法・・・ワイヤーカット放電加工(電極;φ0.
2真ちゅう製ワイヤー)加工速度−L、Omta/si
n。
Processing voltage...80V Processing current...2. OA processing method...Wire cut electric discharge machining (electrode; φ0.
2 Brass wire) Processing speed-L, Omta/si
n.

この結果、導電性高分子を用いた放電加工が可能になり
、さらに焼成すれば、比抵抗にして、、14Ω・印の高
い非導電性を示した。
As a result, electrical discharge machining using a conductive polymer became possible, and when it was further fired, it exhibited high non-conductivity with a specific resistance of 14Ω.

[実施例2] 窒化珪素系セラミックスとして、窒化珪素粉末を92重
量%、焼結助剤として酸化マグネシウム5重量%、酸化
アルミニウム3重量%を用い、導電性の高分子としてポ
リアセチレンを前記3種混合粉末の合計量に対して15
11I量比用い、ポリエチレン等の各種有機高分子とし
て15重量比程度添加し、窒化珪素製のポット、ボール
によるボールミルを使って、有機溶媒中で混練し、噴霧
熱乾燥法による造粒を行なった。
[Example 2] As a silicon nitride ceramic, 92% by weight of silicon nitride powder, 5% by weight of magnesium oxide and 3% by weight of aluminum oxide were used as sintering aids, and a mixture of the above three types of polyacetylene was used as a conductive polymer. 15 for the total amount of powder
Using a weight ratio of 11I, various organic polymers such as polyethylene were added at a weight ratio of about 15, kneaded in an organic solvent using a ball mill with a silicon nitride pot and balls, and granulated by a spray heat drying method. .

得られた粉体を、1軸成形圧1000kg f /d、
静水圧成形圧2000kgf/c−によって、50X 
50X 10m+*に成形した。
The obtained powder was subjected to a uniaxial molding pressure of 1000 kg f /d,
50X by hydrostatic molding pressure 2000kgf/c-
It was molded to 50×10m+*.

この成形体について比抵抗値8.5X 10−4Ω・(
1)を得て、実施例1に準する放電加工を行なった。
The specific resistance value of this molded body is 8.5X 10-4Ω・(
1) was obtained, and electrical discharge machining according to Example 1 was performed.

この結果、導電性高分子を用いた放電加工が可能になり
、さらに焼成すれば、比抵抗にして1013Ω・備の高
い非導電性を示した。
As a result, electrical discharge machining using a conductive polymer became possible, and when it was further fired, it exhibited high non-conductivity with a specific resistance of 1013Ω.

[実施例3] 窒化珪素系セラミックスとして、窒化珪素粉末を92重
量%、焼結助剤として酸化マグネシウム5重量%、酸化
アルミニウム3重量%を用い、導電性の高分子としてポ
リアセチレンを前記3種混合粉末の合計量に対して15
重量比用い、有機金属高分子としてポリサイラゼン15
重量比添加し、窒化珪素製のポット、ボールによるボー
ルミルを使って、有機溶媒中で混練し、噴霧熱乾燥法に
よる造粒を行なった。
[Example 3] As a silicon nitride ceramic, 92% by weight of silicon nitride powder, 5% by weight of magnesium oxide and 3% by weight of aluminum oxide were used as sintering aids, and a mixture of the above three types of polyacetylene was used as a conductive polymer. 15 for the total amount of powder
Using weight ratio, polycyrazene 15 as organometallic polymer
They were added in a weight ratio, kneaded in an organic solvent using a ball mill with silicon nitride pots and balls, and granulated by a spray heat drying method.

得られた粉体を、1軸成形圧1000kg f / c
j、静水圧成形圧2000kgf/c−によって、50
X 50X 10+1111に成形した。
The obtained powder was subjected to a uniaxial molding pressure of 1000 kg f/c
j, 50 by isostatic pressing pressure 2000 kgf/c-
It was molded to 50X 10+1111.

この成形体について比抵抗値8.5X10’Ω・■を得
て、実施例1に準する放電加工を行なった。
A specific resistance value of 8.5×10'Ω·■ was obtained for this molded body, and electrical discharge machining was performed in accordance with Example 1.

この結果、導電性高分子を用いた放電加工が可能になり
、さらに焼成すれば、比抵抗にして1012Ω・cmの
高い非導電性を示した。
As a result, electrical discharge machining using a conductive polymer became possible, and when it was further fired, it exhibited high non-conductivity with a specific resistance of 1012 Ω·cm.

[実施例4] 窒化珪素系セラミックスとして、窒化珪素粉末を92重
量%、焼結助剤として酸化マグネシウム5重量%、酸化
アルミニウム3重量%を用い、導電性の高分子として、
ポリアセチレン構造をもち主骨格となる炭素を珪素で置
き換えた構造をもつ化合物を15重量比用い、窒化珪素
製のポット、ボールによるボールミルを使って、有機溶
媒中で混練し、噴霧熱乾燥法による造粒を行なった。
[Example 4] As a silicon nitride ceramic, 92% by weight of silicon nitride powder, 5% by weight of magnesium oxide and 3% by weight of aluminum oxide were used as sintering aids, and as a conductive polymer,
A compound having a polyacetylene structure in which the main skeleton carbon is replaced with silicon is used at a weight ratio of 15, and is kneaded in an organic solvent using a ball mill with a silicon nitride pot and balls, and then manufactured by a spray heat drying method. I did grain.

、得られた粉体を、1軸成形圧100100O/d、静
水圧成形圧2000kgf/c−によって、50X 5
0X 10mmに成形した。
, the obtained powder was 50×5 by uniaxial molding pressure of 100100 O/d and hydrostatic molding pressure of 2000 kgf/c-.
It was molded to 0x10mm.

この成形体について比抵抗値7.5X10−’Ω・Cm
を得て、実施例1に準する放電加工を行なった。
Specific resistance value of this molded body is 7.5X10-'Ω・Cm
was obtained, and electrical discharge machining was performed in accordance with Example 1.

この結果、導電性高分子を用いた放電加工が可能になり
、さらに焼成すれば、比抵抗にして1013Ω・CII
+の高い非導電性を示した。
As a result, electrical discharge machining using a conductive polymer becomes possible, and if it is further fired, the specific resistance will be 1013Ω・CII
It showed high non-conductivity of +.

[発明の効果] 本発明によって、窒化珪素系粉末に導電性の高分子を添
加することで、素地成形体での導電化を行ない、これに
よって素地成形体での放電加工を可能にするとともに、
焼成後に絶縁性を付与できる。
[Effects of the Invention] According to the present invention, by adding a conductive polymer to silicon nitride-based powder, the base molded body is made conductive, thereby making it possible to perform electrical discharge machining on the base molded body, and
Insulating properties can be imparted after firing.

また、これまでの導電性窒化珪素セラミックスの問題点
であった焼成後の耐酸化性、高温強さを保持するとき、
もともとの研削のみの加工よりも複雑かつ迅速な加工が
できる。
In addition, when maintaining the oxidation resistance and high-temperature strength after firing, which were problems with conventional conductive silicon nitride ceramics,
It allows for more complex and faster machining than the original grinding-only machining.

代 理 人  弁理士  茶野木 立 夫手続補正書(
自発) 昭和63年3月7日
Agent Patent Attorney Tatsuo Chanoki Procedural Amendment (
(Voluntary) March 7, 1986

Claims (2)

【特許請求の範囲】[Claims] 1.窒化珪素系セラミックス原料に対して、3〜30重
量%の導電性高分子を加え、成形して、放電加工するこ
とを特徴とする窒化珪素系セラミックス成形体の放電加
工方法。
1. A method for electrical discharge machining of a silicon nitride ceramic molded body, which comprises adding 3 to 30% by weight of a conductive polymer to a silicon nitride ceramic raw material, forming the mixture, and performing electrical discharge machining.
2.窒化珪素系セラミックス原料に対して、3〜30重
量%の導電性高分子と、0.1〜20重量%の有機高分
子または有機金属高分子を加え、成形して、放電加工す
ることを特徴とする窒化珪素系セラミックス成形体の放
電加工方法。
2. It is characterized by adding 3 to 30% by weight of a conductive polymer and 0.1 to 20% by weight of an organic polymer or an organometallic polymer to a silicon nitride-based ceramic raw material, forming it, and subjecting it to electrical discharge machining. A method for electric discharge machining of a silicon nitride ceramic molded body.
JP63021386A 1988-02-02 1988-02-02 Discharge working method for silicon nitride-base molded ceramic body Pending JPH01197366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021386A JPH01197366A (en) 1988-02-02 1988-02-02 Discharge working method for silicon nitride-base molded ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021386A JPH01197366A (en) 1988-02-02 1988-02-02 Discharge working method for silicon nitride-base molded ceramic body

Publications (1)

Publication Number Publication Date
JPH01197366A true JPH01197366A (en) 1989-08-09

Family

ID=12053641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021386A Pending JPH01197366A (en) 1988-02-02 1988-02-02 Discharge working method for silicon nitride-base molded ceramic body

Country Status (1)

Country Link
JP (1) JPH01197366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014098A (en) * 2000-08-16 2002-02-25 박종섭 Apparatus for hard baking of a photo resist film pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014098A (en) * 2000-08-16 2002-02-25 박종섭 Apparatus for hard baking of a photo resist film pattern

Similar Documents

Publication Publication Date Title
US4230497A (en) Dense sintered shaped articles of polycrystalline α-silicon carbide and process for their manufacture
US4320204A (en) Sintered high density boron carbide
CA1107767A (en) High density thermal shock resistant sintered silicon carbide
JPH09175865A (en) Production of alpha-type silicon carbide powder composition and its sintered compact
IE43834B1 (en) Sintered silicon carbide ceramic body
JPS61227966A (en) Silicon carbide base sintered body and manufacture
JP2002531373A (en) Sintered pin heater
CN1973163B (en) Glow plug and methods for the production thereof
JPH06151084A (en) Charge eliminating ceramics and composition for manufacture thereof
JPH0379306B2 (en)
JPH01197366A (en) Discharge working method for silicon nitride-base molded ceramic body
JP3313380B2 (en) Ceramics for removing static from electronic components and method for handling electronic components using the same
JP2000154062A (en) Boron carbide sintered compact and its production
JPH05194037A (en) Water extrusion of silicon nitride
JP2741046B2 (en) Ceramic composition based on silicon nitride and / or silicon carbide, method for producing the same, and molding aid
CA1335016C (en) Highly densified bodies from polysilanes filled with silicon carbide powders
JPS632913B2 (en)
JP3297547B2 (en) Method for producing silicon carbide sintered body
JP2577378B2 (en) Manufacturing method of aluminum nitride sintered body
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
KR20000023762A (en) Method for producing moulded bodies from a composite ceramic material structure
JP3303729B2 (en) Aluminum nitride based sintered body and method for producing the same
JPS6328871B2 (en)
JPH0483752A (en) Mixture of sinterable substance
JPH0483759A (en) Production of sintered composite boron nitride