JPH01197086A - Method for welding inside magnetic field - Google Patents

Method for welding inside magnetic field

Info

Publication number
JPH01197086A
JPH01197086A JP63022493A JP2249388A JPH01197086A JP H01197086 A JPH01197086 A JP H01197086A JP 63022493 A JP63022493 A JP 63022493A JP 2249388 A JP2249388 A JP 2249388A JP H01197086 A JPH01197086 A JP H01197086A
Authority
JP
Japan
Prior art keywords
magnetic field
welding
laser beam
welded
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63022493A
Other languages
Japanese (ja)
Inventor
Masamitsu Doi
土井 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANWA TOKUSHU SEIKO KK
Original Assignee
SANWA TOKUSHU SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANWA TOKUSHU SEIKO KK filed Critical SANWA TOKUSHU SEIKO KK
Priority to JP63022493A priority Critical patent/JPH01197086A/en
Publication of JPH01197086A publication Critical patent/JPH01197086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To easily perform a normal welding without receiving any magnetic effect even in a strong magnetic field by executing welding by projecting a laser beam on the zone to be welded located inside a magnetic field. CONSTITUTION:An ultra-high temp. can be generated by concentrating an optical energy in an extremely small area by stopping a laser beam by a converging implement and yet even in the strong magnetic field of >=500 gauss it is the light receiving no magnetic action at all. The welding can therefore be easily performed by projecting a laser beam to the zone to be welded located inside magnetic field. The oscillation source of the laser beam is not specially limited but a CO2 laser is optimum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばマグネットカップリング方式のポンプ
のような永久磁石を使用する各種の機器設備の組立製作
において、その構成部材を該磁石の近傍で溶接する場合
等の磁界内での溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the assembly and manufacture of various equipment and equipment using permanent magnets, such as magnetic coupling type pumps, in which the constituent members are placed near the magnets. This invention relates to a welding method in a magnetic field, such as when welding in a magnetic field.

(従来技術とその問題点) 一般的に金属材料の溶接にはアーク溶接等の電気的溶接
方法が汎用されているが、被溶接部が強い磁界内にある
場合は、磁気的作用によって溶着金属(?8接棒材)が
飛散する所謂磁気吹きと称される現象を生じるため、通
常の手段では正常な溶接が不可能である。特に、永久磁
石を使用する機器設備の構成部材を該磁石の近傍で溶接
する場合は、上記磁気吹き現象と共に溶接入熱による磁
石の減磁が起こるという不都合もある。
(Prior art and its problems) Generally, electric welding methods such as arc welding are widely used for welding metal materials, but when the part to be welded is in a strong magnetic field, the weld metal Normal welding is impossible by normal means because a phenomenon called magnetic blowing occurs in which (?8 contact rod material) is scattered. Particularly, when components of equipment that use permanent magnets are welded in the vicinity of the magnets, there is the disadvantage that the magnets are demagnetized due to the welding heat input as well as the above magnetic blowing phenomenon.

従って、従来においては、溶接位置を永久磁石から遠ざ
けて磁界の影響が小さくなるように設定せざるを得す、
それだけ構造的に余分な領域を必要とすることから機器
設備の設計上で大きな制約を受け、特に小型化する上で
支障をきたし、また材料的にも無駄が大きく高コストに
付くといった問題点があった。
Therefore, in the past, it was necessary to set the welding position away from the permanent magnet to reduce the influence of the magnetic field.
This requires an extra area structurally, which imposes major restrictions on the design of equipment, which poses a problem especially when downsizing, and also causes problems such as large waste of materials and high costs. there were.

なお、パルス駆動する電気的溶接機によれば、磁気吹き
現象や減磁をある程度は緩和できるが充分とは言えず、
例えば被溶接部が500ガウス以上といった強磁界内に
ある場合は高度の熟練者でも溶接困難となる。
Although pulse-driven electric welding machines can alleviate the magnetic blowing phenomenon and demagnetization to some extent, it is not sufficient.
For example, if the part to be welded is in a strong magnetic field of 500 Gauss or more, welding becomes difficult even for highly skilled workers.

(問題点を解決するための手段) 本発明は、上記従来の問題点を解決するためになされた
もので、どのように強力な磁界内においても磁気的影響
を受けず正常な溶接を容易に行える方法を提供すること
を目的としている。
(Means for Solving the Problems) The present invention was made to solve the above-mentioned conventional problems, and it is possible to easily perform normal welding without being affected by magnetic fields, no matter how strong the magnetic field is. The purpose is to provide a way to do so.

すなわち、本発明の磁界内溶接方法は、上記目的を達成
するために、磁界内にある被溶接部にレーザビームを照
射して溶接することを特徴とするものである。
That is, in order to achieve the above object, the magnetic field welding method of the present invention is characterized by welding by irradiating a laser beam onto a part to be welded which is within a magnetic field.

(作 用) 本発明方法で使用するレーザビームは、周知の通りレー
ザ発振による位相の揃ったコヒーレントな光束であり、
光学レンズや凹面鏡等の収束具で絞ることによって極め
て微小な領域に光エネルギーを集中して超高温を発生で
きるものであり、溶接に利用した場合、被溶接部が例え
ば従来の電気的溶接法では磁気吹き現象が不可避である
500ガウス以上といった強磁界内にあっても、磁気作
用を全く受けない光であることから容易に正常な溶接を
行える。また、高温となる領域が微小であるため、全体
としての溶接入熱量は通常の電気的溶接法の1.15〜
1/10程度と小さくなるから、永久磁石の近傍で溶接
を行っても減磁を生しにくく、かつ溶接部の組織変化も
抑制されて材料緒特性の劣化が少なくなるという利点が
ある。更にレーザビームによる溶接では、溶接部の表面
の酸化が少なく外観良好となり、内部に歪を生じに<<
、かつ高い溶接精度が得られる。
(Function) As is well known, the laser beam used in the method of the present invention is a coherent light beam with a uniform phase due to laser oscillation.
By concentrating light energy in an extremely small area by narrowing it down with a focusing device such as an optical lens or concave mirror, it is possible to generate extremely high temperatures.When used for welding, it is possible to Even in a strong magnetic field of 500 gauss or more, where magnetic blowing phenomenon is unavoidable, normal welding can be easily performed because the light is completely unaffected by magnetic effects. In addition, since the area that becomes high temperature is minute, the overall welding heat input is 1.15~
Since it is about 1/10 the size, it has the advantage that demagnetization is less likely to occur even if welding is performed near a permanent magnet, and changes in the structure of the welded part are suppressed, resulting in less deterioration of material properties. Furthermore, when welding with a laser beam, there is less oxidation on the surface of the welded part, resulting in a better appearance and less internal distortion.
, and high welding accuracy can be obtained.

なお、レーザビームは、その性質を利用して金属やセラ
ミック等の高融点材料の切断、穴あけ、微細加工等に既
に利用されており、また多くは実験段階ではあるが溶接
に用いることも報告されている。しかるに、本発明のよ
うな磁界内溶接への適用は知られていない。一方、他の
エネルギービームとして代表的な電子ビームは、レーザ
ビームと同様に扱えるが、磁気作用を受けるため、磁界
内での溶接には利用できない。
Laser beams have already been used for cutting, drilling, microfabrication, etc. of high-melting point materials such as metals and ceramics by taking advantage of their properties, and their use for welding has also been reported, although most are still in the experimental stage. ing. However, application to magnetic field welding like the present invention is not known. On the other hand, electron beams, which are typical of other energy beams, can be treated in the same way as laser beams, but cannot be used for welding in a magnetic field because they are subject to magnetic action.

(発明の細部構成) 本発明で使用するレーザビームの発振源は、特に限定さ
れず、気体レーザ、固体レーザ、半導体レーザ等の種々
のものを使用できるが、中でも炭酸ガスレーザが好適で
ある。
(Detailed Structure of the Invention) The oscillation source of the laser beam used in the present invention is not particularly limited, and various sources such as gas lasers, solid-state lasers, and semiconductor lasers can be used, but carbon dioxide lasers are particularly preferred.

レーザ出力としては、発振源および被溶接物の種類によ
って異なるが、炭酸ガスレーザによる通常の金属材料の
溶接では0.5〜2KW程度が一般的である。
Although the laser output varies depending on the oscillation source and the type of object to be welded, it is generally about 0.5 to 2 KW when welding ordinary metal materials using a carbon dioxide laser.

レーザビームの焦点位置は、溶接深さ、ビードの安定性
、ビード幅等に応じて定められるが、−数的には被溶接
物の表面よりも若干内部に設定する方が好結果が得られ
る。ただし、焦点位置が深すぎると、反射が大となって
レンズ等の器物の損傷を惹起したり、溶接幼率の低下を
招くことから、被溶接物の表面から5鶴以内の深さ、特
に1鶴前後が望ましい。
The focal position of the laser beam is determined according to the welding depth, bead stability, bead width, etc., but numerically it is better to set it slightly inside the workpiece rather than on the surface to obtain better results. . However, if the focal point is too deep, the reflection will be large, causing damage to lenses and other equipment, or reducing the welding rate. Preferably around 1 crane.

また、レーザビームの収束に使用される光学レンズとし
ては、焦点距離が通常250龍以下であってその内でも
比較的長いものが好適である。すなわち、焦点距離が長
くなれば、ビームの絞り角が小さくなって反射の影響が
緩和されると共に、焦点から上下にある程度離れた位置
でもビームの収束度が太き(なることから焦点を中心と
する溶接に利用できる範囲が広くなり、それだけ被溶接
物の上下方向の位置決めが容易になり、加えて狭いビー
ド幅で深く溶接できるので特にステンレス鋼やハステロ
イ合金等の耐食鋼の溶接に適する。
Further, as the optical lens used for converging the laser beam, one having a focal length of usually 250 mm or less and a relatively long one is preferable. In other words, as the focal length becomes longer, the aperture angle of the beam becomes smaller and the influence of reflection is alleviated. The usable area for welding is widened, and the vertical positioning of the welded object is made easier. In addition, deep welding can be performed with a narrow bead width, making it particularly suitable for welding corrosion-resistant steels such as stainless steel and Hastelloy alloy.

被fa接部の磁界強度には全く制約がなく、既述のよう
に従来の電気的溶接法では磁気吹き現象が不可避である
500ガウス以上といった強磁界内でも何ら支障なく溶
接を行える。また、被溶接部の相互に溶接される部材は
、鉄およびその合金の如き磁性金属を始めとする種々の
金属材料が一般的であるが、これら金属材料と磁石自体
との溶接や磁石同士の溶接も可能である。
There is no restriction on the magnetic field strength of the part to be welded, and as mentioned above, welding can be performed without any problem even in a strong magnetic field of 500 Gauss or more, where magnetic blowing phenomenon is unavoidable in conventional electric welding methods. In addition, the members to be welded together are generally made of various metal materials, including magnetic metals such as iron and its alloys. Welding is also possible.

なお、溶接時の酸化変色を確実に防止するには、レーザ
ビームの照射位置を不活性ガス雰囲気中におくことが推
奨される。その具体的手段としては、例えば第1図A、
Bで示すようにレーザガン1にスカート状のガスキャッ
プ2a、 2bを一体的に装着し、その内部にガスノズ
ル3より希ガスや窒素等の不活性ガスを噴出される方法
がある。
Note that in order to reliably prevent oxidative discoloration during welding, it is recommended that the laser beam irradiation position be placed in an inert gas atmosphere. As a concrete means, for example, Fig. 1A,
As shown in B, there is a method in which skirt-shaped gas caps 2a and 2b are integrally attached to the laser gun 1, and an inert gas such as a rare gas or nitrogen is spouted into the inside from a gas nozzle 3.

しかして第1図へのガスキャンプ2aは、レーザガン1
の進行方向後方側が広くなる底面視略楕円形であり、通
常は透明なプラスチック等で製作されており、被溶接物
4の表面に対して若干の間隙を構成するように設定され
ている。すなわち、レーザ出力が高くなるとビームの照
射部から発生する金属蒸気がプラズマ状態となってレー
ザビームを吸収するが、第1図Aの構成ではガスキャッ
プza内に噴出する不活性ガスにより金属蒸気が巻き込
まれて間隙より外部へ排出されるので、上記の吸収によ
る溶接効率の低下が回避される。なお、同一形状のもの
を多量に溶接する場合等で、金属蒸気の発生を無視でき
る程度に溶接速度を大きくできるときは、第1図Bのよ
うに被溶接物4に溶着して完全なガスシールドを行える
ゴム製等のガスキャップ2bを使用すればよい。
However, the gas camp 2a in Figure 1 is the laser gun 1.
It has a generally elliptical shape when viewed from the bottom, widening on the rear side in the direction of travel, and is usually made of transparent plastic or the like, and is set so as to form a slight gap with the surface of the workpiece 4 to be welded. In other words, when the laser output increases, the metal vapor generated from the beam irradiation part turns into a plasma state and absorbs the laser beam, but in the configuration shown in FIG. Since it is caught up and discharged to the outside through the gap, the reduction in welding efficiency due to the above-mentioned absorption is avoided. In addition, when welding a large number of objects of the same shape, and when the welding speed can be increased to such an extent that the generation of metal vapor can be ignored, welding to the workpiece 4 as shown in Figure 1B will completely eliminate the gas. A gas cap 2b made of rubber or the like that can provide shielding may be used.

一方、例えば第2図のように外周要所に永久磁石5を埋
設したリング状の母材6に薄肉の筒状カバー7を外嵌し
てキャンニング(封入)溶接を行う場合は、第3図への
如くレンズ1bにて収束したレーザビーム1aを径方向
から照射して溶接すれば、母材6とカバー7との間に多
少の間隙があっても充分な溶接が可能である。これに対
し、第3図Bの如くビーム1aを軸方向と平行に照射し
た場合は、母材6とカバー7間に間隙が生じないように
加工精度を上げる必要があると共に、溶接中にカバー7
が熱変形して外側へ開こうとするために溶接が困難とな
る。
On the other hand, when canning (enclosure) welding is performed by fitting a thin cylindrical cover 7 onto a ring-shaped base material 6 in which permanent magnets 5 are embedded at key points on the outer periphery as shown in FIG. If welding is performed by irradiating the laser beam 1a converged by the lens 1b from the radial direction as shown in the figure, sufficient welding is possible even if there is some gap between the base material 6 and the cover 7. On the other hand, when the beam 1a is irradiated parallel to the axial direction as shown in FIG. 7
Welding becomes difficult because the material is thermally deformed and tends to open outward.

なお、本発明方法は、例示した形態に限らず、磁界内で
の金属材料の種々の溶接形態に同様に適用できることは
言うまでもない。
It goes without saying that the method of the present invention is not limited to the exemplified embodiments, but can be similarly applied to various forms of welding metal materials within a magnetic field.

(実施例) 第3図Aで示す溶接形態により、母材6とカバー7との
キャンニング溶接を下表で示すようにレーザ出力、溶接
速度、収束レンズの焦点距離、焦点位置く溶接表面から
の深さ)等の条件を種々変化させて行い、ビードの外観
状況と溶は込み状況を試験した。なお、他の諸条件は次
の通りである。
(Example) Using the welding configuration shown in FIG. 3A, canning welding between the base metal 6 and the cover 7 is performed using the laser output, welding speed, focal length of the converging lens, and focal position from the welding surface as shown in the table below. The external appearance and penetration conditions of the bead were tested by changing various conditions such as depth of the bead. In addition, other conditions are as follows.

レーザ発振源・・・炭酸ガスレーザ 母材・・・ 5LIS316 M、外径110 mカバ
ー・・・5tlS316製、肉厚約21永久磁石・・・
サナトリウムコバルト製、磁界強度11000ガウス 被溶接部の最大磁界強度・・・11000ガウス被溶接
部の磁石との距離・・・最短1鶴表中の評価は、ビード
の外観状況についてはビードの平滑さとビード幅より、
溶は込み状況についてはビード幅と熔は込み深さより、
それぞれ下記の3段階で示した。
Laser oscillation source... Carbon dioxide laser base material... 5LIS316 M, outer diameter 110 m Cover... Made of 5TLS316, wall thickness approx. 21 mm Permanent magnet...
Sanatorium made of cobalt, magnetic field strength: 11,000 gauss Maximum magnetic field strength of the welded part...11,000 gauss Distance from the welded part to the magnet...minimum 1 The evaluation in the Tsuru table is based on the smoothness of the bead regarding the external appearance of the bead. From the bead width,
Regarding the weld penetration condition, the bead width and weld penetration depth are determined by
Each is shown in the following three stages.

O・・・良好、Δ・・・可、×・・・不可(発明特有の
効果) 本発明方法によれば、従来の電気的溶接法では磁気吹き
現象が不可避であった磁界内での溶接をレーザビームの
照射によって行うため、上記現象を全く生起することな
く、しかも永久磁石の入熱による減磁を生しることもな
く、容易に正常に高精度の溶接することができ、また溶
接部の組成変化、表面酸化、内部歪み等も極めて少なく
なるという効果が奏される。
O...Good, Δ...Good, ×...Not good (effects unique to the invention) According to the method of the present invention, welding in a magnetic field where magnetic blowing phenomenon was unavoidable in conventional electric welding methods. Since this is done by laser beam irradiation, the above phenomenon does not occur at all, and there is no demagnetization due to heat input to the permanent magnet, making it possible to easily and normally perform high-precision welding. The effect is that compositional changes, surface oxidation, internal distortions, etc. are also extremely reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、Bは本発明方法による溶接形態の一例を示す
概略側面図、第2図は溶接物の一例を示す軸断面図、第
3図Aは第2図の溶接物の好適な溶接手段を示ず径断面
図である。 1・・・レーザガン、Ia・・・レーザビーム、2a、
 2b・・・ガスキャップ、4・・・被f6接物、5・
・・永久磁石、6・・・母材(被溶接物)、7・・・金
属カバー(被溶接物)。
1A and 1B are schematic side views showing an example of a welding form according to the method of the present invention, FIG. 2 is an axial sectional view showing an example of a welded product, and FIG. 3A is a preferred welding of the welded product of FIG. 2. It is a radial cross-sectional view without showing means. 1... Laser gun, Ia... Laser beam, 2a,
2b...Gas cap, 4...F6 contact object, 5.
... Permanent magnet, 6... Base metal (workpiece), 7... Metal cover (workpiece).

Claims (1)

【特許請求の範囲】 1、磁界内にある被溶接部にレーザビームを照射して溶
接することを特徴とする磁界内溶接方法。 2、被溶接部の相互に溶接される部材の一部が磁性金属
からなる特許請求の範囲第1項記載の磁界内溶接方法。 3、磁界が被溶接部の近傍に予め配置された永久磁石よ
り生じるものである特許請求の範囲第1項または第2項
記載の磁界内溶接方法。 4、被溶接部の少なくとも一部が500ガウス以上の磁
界内にある特許請求の範囲第1項〜第3項のいずれかに
記載の磁界内溶接方法。 5、レーザビームの照射位置が不活性ガス雰囲気中にあ
る特許請求の範囲第1項〜第4項のいずれかに記載の磁
界内溶接方法。 6、不活性ガスがレーザガンに付設されて被溶接部上を
覆うガスキャップ内に導出される特許請求の範囲第5項
記載の磁界内溶接方法。
[Claims] 1. A welding method in a magnetic field, characterized in that a part to be welded in a magnetic field is irradiated with a laser beam to weld. 2. The magnetic field welding method according to claim 1, wherein a part of the members to be welded together are made of magnetic metal. 3. The magnetic field welding method according to claim 1 or 2, wherein the magnetic field is generated from a permanent magnet placed in advance in the vicinity of the part to be welded. 4. The method of welding in a magnetic field according to any one of claims 1 to 3, wherein at least a part of the welded part is within a magnetic field of 500 Gauss or more. 5. The magnetic field welding method according to any one of claims 1 to 4, wherein the laser beam irradiation position is in an inert gas atmosphere. 6. The magnetic field welding method according to claim 5, wherein the inert gas is introduced into a gas cap attached to the laser gun and covering the part to be welded.
JP63022493A 1988-02-02 1988-02-02 Method for welding inside magnetic field Pending JPH01197086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022493A JPH01197086A (en) 1988-02-02 1988-02-02 Method for welding inside magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022493A JPH01197086A (en) 1988-02-02 1988-02-02 Method for welding inside magnetic field

Publications (1)

Publication Number Publication Date
JPH01197086A true JPH01197086A (en) 1989-08-08

Family

ID=12084258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022493A Pending JPH01197086A (en) 1988-02-02 1988-02-02 Method for welding inside magnetic field

Country Status (1)

Country Link
JP (1) JPH01197086A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160534A (en) * 1978-06-09 1979-12-19 Toshiba Corp Welding of magnetic part by laser beam
JPS60240394A (en) * 1984-05-15 1985-11-29 Mitsubishi Heavy Ind Ltd Laser welding method
JPS61255785A (en) * 1985-05-09 1986-11-13 Mitsubishi Electric Corp Laser welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160534A (en) * 1978-06-09 1979-12-19 Toshiba Corp Welding of magnetic part by laser beam
JPS60240394A (en) * 1984-05-15 1985-11-29 Mitsubishi Heavy Ind Ltd Laser welding method
JPS61255785A (en) * 1985-05-09 1986-11-13 Mitsubishi Electric Corp Laser welding method

Similar Documents

Publication Publication Date Title
US6667456B2 (en) Laser welding method and a laser welding apparatus
Olsen et al. Pulsed laser materials processing, ND-YAG versus CO2 lasers
Tse et al. Effect of magnetic field on plasma control during CO2 laser welding
US4689466A (en) Laser-beam operated machining apparatus
JP5642493B2 (en) Laser cutting apparatus and laser cutting method
Reisgen et al. Laser beam welding in vacuum of thick plate structural steel
US20140305910A1 (en) System and Method Utilizing Fiber Lasers for Titanium Welding Using an Argon Cover Gas
JP2003340582A (en) Apparatus and method for laser welding
JPH01197086A (en) Method for welding inside magnetic field
JPH042353B2 (en)
JP3590501B2 (en) High-precision welding method for groove
US20060081568A1 (en) Use of helium/nitrogen gas mixtures in up to 12kW laser welding
US20080169273A1 (en) Laser cavity particularly for laser welding apparatus
JPS60177983A (en) Spot welding method
JPH06182570A (en) Laser beam welding method
JPH01278983A (en) Laser welding method
KR20130133646A (en) System and method utilizing fiber lasers for titanium welding using an argon cover gas
JP2001150155A (en) Method for electron beam welding of aluminum or aluminum alloy material
JPH0631451A (en) Welding method in inert gaseous atmosphere
JPH07214360A (en) Laser beam machining
GB2055317A (en) Electron beam welding
JPH06238478A (en) Laser beam welding method for thick metal plates
Matsunawa Science of laser welding-mechanisms of keyhole and pool dynamics
SU1579682A1 (en) Method of welding by means of concentrated source of heating
JP2012245523A (en) Laser welding method