JPS60240394A - Laser welding method - Google Patents

Laser welding method

Info

Publication number
JPS60240394A
JPS60240394A JP59097280A JP9728084A JPS60240394A JP S60240394 A JPS60240394 A JP S60240394A JP 59097280 A JP59097280 A JP 59097280A JP 9728084 A JP9728084 A JP 9728084A JP S60240394 A JPS60240394 A JP S60240394A
Authority
JP
Japan
Prior art keywords
base metal
laser beam
laser
magnetic field
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097280A
Other languages
Japanese (ja)
Inventor
Ichiro Yamashita
一郎 山下
Tsunetaka Hiromi
広実 常登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59097280A priority Critical patent/JPS60240394A/en
Publication of JPS60240394A publication Critical patent/JPS60240394A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To improve the quality of a weld zone by condensing and irradiating a laser beam to a base metal via a static magnetic field formed in approximately parallel with the surface of the base metal. CONSTITUTION:A notch 71 for insertion of a laser beam is provided to a magnetic core 7 and DC current is conducted to a coil wound on the core 7 to form the static magnetic field H in parallel with a weld line 9. The evaporated metallic atoms or molecule of the base metal are made into positive ions at the irradiating point O of the laser and are released in an X-axis direction but the orbit thereof is bent in the direction of the curve I. The orbit of the charge particles is similarly bent approximately orthogonal with the line 9. All the charge particles toward the incident direction of the laser beam are therefore bent in the orbit toward the outside of the beam condensing part, by which the particles forming the plasma are surely removed. The quality of the weld zone is improved by the above-mentioned method.

Description

【発明の詳細な説明】 この発明は例えば熱交換器等の深情は込を必要とする溶
接に好適するレーザ溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser welding method suitable for welding, for example, heat exchangers, etc., which requires deep insertion.

一般に、この種のレーザ溶接法は第1図に示すように図
示しないレーザ源から供給されるレーザビーム1を不活
性ガス2で保護された集光レンズ3を用いて母材金属4
に集光照射することによって行なわれている。
Generally, in this type of laser welding method, as shown in FIG. 1, a laser beam 1 supplied from a laser source (not shown) is applied to a base metal 4 using a condensing lens 3 protected with an inert gas 2.
This is done by irradiating the area with focused light.

ところで、上記レーザ溶接法におけるレーザビーム1は
母材金属4に集光照射すると、該母材金属4の照射され
た部分が溶融、蒸発して金金蒸気を発生させる。この金
属蒸気は熱エネルギによって電離すると共に、レーザビ
ーム1のエネルギを吸収することによって電離し、母材
金属4の表面近傍にプラズマ5を形成するという問題を
有している。すなわち、このプラズマ5は第2図に示す
ようにレーザビーム1のエネルギを吸収して母材金属4
の表面に到達するエネルギを減少させるため、溶接の溶
は込み深さ6が減少したシ、変動して、溶接部の品質を
低下せしめる要因となっているものである。
By the way, when the laser beam 1 in the above laser welding method is focused and irradiated onto the base metal 4, the irradiated portion of the base metal 4 is melted and evaporated to generate gold-gold vapor. This metal vapor has the problem that it is ionized by thermal energy and also ionized by absorbing the energy of the laser beam 1, forming plasma 5 near the surface of the base metal 4. That is, as shown in FIG. 2, this plasma 5 absorbs the energy of the laser beam 1 and forms the base metal 4.
In order to reduce the energy reaching the surface of the weld, the penetration depth 6 of the weld is reduced and fluctuates, which is a factor that deteriorates the quality of the weld.

このため、従来よシ、上記プラズマ5の発生を防止する
目的として、母材金属4の溶接部に不活性ガス2を直接
的に吹き付けて、上記金属蒸気を吹き飛すように除去す
る方法が採られている。
For this reason, conventionally, in order to prevent the generation of the plasma 5, there is a method in which the inert gas 2 is directly blown onto the welded part of the base metal 4 to blow away the metal vapor. It is taken.

しかしながら、上記のように不活性ガス2を用いてプラ
ズマ5の発生を防止する方法では各種不具合点を有して
いる。
However, the method of preventing the generation of plasma 5 using the inert gas 2 as described above has various disadvantages.

まず第1点としてはプラズマ5を確実に防止できないと
いう問題である。
The first problem is that plasma 5 cannot be reliably prevented.

そして、第2点としては高温の金属表面から放出される
熱電子及び金属蒸気のイオン化によって生じる電子が大
気よシ高圧で吹きつけられる不活性ガス分子と衝突して
、これを電離させ、新たなプラズマ5を形成するという
問題である。
The second point is that thermionic electrons released from the high-temperature metal surface and electrons generated by the ionization of metal vapor collide with inert gas molecules blown from the atmosphere at high pressure, ionizing them and creating new The problem is to form plasma 5.

(すなわち、不活性ガス2は大気よシ高圧力なために、
分子“密度が高く衝突断面積が大きくなっておシ、電子
と分子の衝突する確率が大きいからである。) そして、第3点としては、不活性ガス20種類によって
、溶は込み深さ6等の溶接結果に違いが生じるという問
題である。
(In other words, since the inert gas 2 has a higher pressure than the atmosphere,
This is because the molecular density is high and the collision cross section is large, so there is a high probability that electrons and molecules will collide. The problem is that there are differences in welding results.

そして、第4点としては断続的にプラズマ5が発生する
ため、溶は込み深さ6が変動する虞れを有しているとい
う問題である。
The fourth problem is that since plasma 5 is generated intermittently, there is a possibility that the penetration depth 6 may vary.

この発明は上記の事情に鑑みてなされたもので、レーザ
ビームを母材金属に集光照射して溶接を行なうレーデ溶
接法において、前記母材金属表面に略平行な静磁界をレ
ーデビーム集光照射部に対応して形成し、前記レーザビ
ームを前記静磁界を介して前記母材金属に集光照射し溶
\ 接を行なうことによって、レーザビームのエネルギ減少
を確実に防止し得るようにル−ザピーム集光照射部のプ
ラズマを効率的に、しかも確実に除去し、溶接部の品質
向上に寄与し得るようにしたレーザ溶接法を提供するこ
とを目的とする。
This invention was made in view of the above circumstances, and in the Rade welding method in which welding is performed by concentrating a laser beam on a base metal, a static magnetic field approximately parallel to the surface of the base metal is applied to the base metal by concentrating the Rade beam. The laser beam is formed in a corresponding manner to the base metal, and the base metal is irradiated with the laser beam through the static magnetic field to perform welding, thereby reliably preventing a decrease in the energy of the laser beam. It is an object of the present invention to provide a laser welding method that can efficiently and reliably remove plasma from a Zapem condensed light irradiation part and contribute to improving the quality of a welded part.

以下、この発明の実施例について、図面を参照して詳細
に説明する。但し、ここでは上述した第1図及び第2図
と同一部分については同一符号を付して、その説明を省
略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, here, the same parts as in FIGS. 1 and 2 described above are given the same reference numerals, and the explanation thereof will be omitted.

第3図において、7は母材金属4表面のレーザビーム集
光照射部に設けた磁心である。この磁心7にはその一部
にレーザビーム挿通用の切欠部(ギャップ)71が設け
られ、その外周部には電源Eに接続されたコイル8が巻
掛けられる。そして、との磁心7はそのコイル8に直流
電流Iが供給されると、例えば上記母材金属4及び溶接
線9に対し略平行な静磁界を形成するように機能する。
In FIG. 3, reference numeral 7 denotes a magnetic core provided at the laser beam condensing irradiation section on the surface of the base metal 4. A cutout (gap) 71 for laser beam insertion is provided in a part of the magnetic core 7, and a coil 8 connected to a power source E is wound around the outer circumference of the cutout (gap) 71. When the DC current I is supplied to the coil 8 of the magnetic core 7, the magnetic core 7 functions to form, for example, a static magnetic field substantially parallel to the base metal 4 and the welding line 9.

すなわち、第4図に示すように上記磁心2はそのコイル
8に直流電流Iが供給されると、まず、レーザ照射点0
付近に溶接線9に略平行な一様磁界Hが形成される。こ
こで、上記レーザ照射点0において、レーザビーム集光
照射によって気化した母材金属4の金属原、子あるいは
分子は熱電離等のため正にイオン化し、初速度VQでX
軸方向(レーデビーム入射方向)に放出される。この際
、イオンはフレミングの左手の法制によって、溶接線及
びX軸方向に対して略直交するy軸方向の力Fを受け、
曲線■のように、その軌道が曲げられて、母材金属4の
金属分子あるいは原子のイオン化によって生じる電子及
び高温の母材金属4の表面からレーザビーム入射方向に
放出される熱電子の軌道を図示しない正イオンと逆方向
の−y軸方向に曲げる。
That is, as shown in FIG. 4, when DC current I is supplied to the coil 8 of the magnetic core 2, the laser irradiation point 0 is first
A uniform magnetic field H approximately parallel to the weld line 9 is formed in the vicinity. Here, at the laser irradiation point 0, the metal atoms, children, or molecules of the base metal 4 vaporized by the focused laser beam irradiation are positively ionized due to thermal ionization, etc., and are
It is emitted in the axial direction (the direction of Radhe beam incidence). At this time, the ions are subjected to a force F in the y-axis direction, which is approximately perpendicular to the welding line and the X-axis direction, due to Fleming's left-hand modus.
As shown by the curve (■), the trajectory of the electron is bent, and the trajectory of the electron generated by the ionization of the metal molecules or atoms of the base metal 4, and the trajectory of the hot electron emitted from the surface of the high temperature base metal 4 in the laser beam incident direction. It is bent in the −y-axis direction, which is the opposite direction to positive ions (not shown).

一方、プラズマ5中の荷電粒子はその急激な熱膨張のた
めレーザビーム入射方向へも非常な高速度で拡散し、母
材金属4の表面から放出される荷電粒子と略同様に溶接
線9に対して略直交する方向にその軌道が曲げられる。
On the other hand, the charged particles in the plasma 5 diffuse at a very high speed in the laser beam incident direction due to their rapid thermal expansion, and arrive at the welding line 9 in almost the same way as the charged particles emitted from the surface of the base metal 4. The trajectory is bent in a direction substantially perpendicular to the other direction.

この結果、レーザビーム入射方向へ向う全ての荷電粒子
はその軌道がレーデビーム集光照射部の外側に曲げられ
て、プラズマ5を形成する粒子がレーザビーム集光照射
部から効率的に、Lかも確実に除去され、とこに、均一
な溶は込み深さを有した品質の良好な溶接が行なわれる
As a result, the trajectory of all the charged particles heading in the direction of laser beam incidence is bent to the outside of the Lede beam condensing irradiation section, and it is ensured that the particles forming the plasma 5 are efficiently transferred from the laser beam condensing irradiation section to the L. This results in a good quality weld with uniform penetration depth.

ここで、上記金属原子あるいは分子は1価の正イオンが
初速度v6でX軸方向に放射された場合、ある一定時間
速度をほとんど減衰しないと仮定すると、イオンのy軸
方向へのずれはで表わされる。但し、eは1価の電荷量
、Bは磁束密度、mはイオンの質量、tは時間である。
Here, when a monovalent positive ion is radiated in the X-axis direction with an initial velocity v6, the metal atom or molecule will not shift in the y-axis direction, assuming that the velocity is hardly attenuated for a certain period of time. expressed. However, e is the amount of monovalent charge, B is the magnetic flux density, m is the mass of the ion, and t is the time.

一方、イオンの初速度16は母材金属40表面温度Tに
よって決まるもので、デルラマン定数をKとすると、 の式fよって与えられる。そこで、例えばFe原子の場
合、上記(1) 、 (2)式によって、Fe イオン
がX軸方向に移動する間に、y軸方向に0.2WrM(
C02レーザビームの焦点位置におけるスポット径に相
当)移動させるのに必要な磁束密度B及びその磁束密度
Bを生じるのに要する電流値工を計算してめる。
On the other hand, the initial velocity 16 of the ions is determined by the surface temperature T of the base metal 40, and is given by the following equation f, where K is the Delraman constant. Therefore, for example, in the case of Fe atoms, according to the above equations (1) and (2), while the Fe ion moves in the X-axis direction, 0.2WrM (
Calculate the magnetic flux density B required to move the C02 laser beam (corresponding to the spot diameter at the focal position of the laser beam) and the current value required to generate the magnetic flux density B.

例えば、3 kW CO2レーザビームIKよる溶接で
はレーザ集光照射部の・やワー密度は約10’W/cm
2となっている。したがって母材金属4の表面温度Tは
沸点に達していると考えられることで、Feにあっては
2750℃となる。そこで、上記(2)式によって初速
度V6は71)さI X 103m1sで、X軸方向に
移動するのに必要な時間がt==1xio sとなる。
For example, in welding using a 3 kW CO2 laser beam IK, the power density of the laser focused irradiation part is approximately 10'W/cm.
2. Therefore, the surface temperature T of the base metal 4 is considered to have reached the boiling point, which is 2750° C. for Fe. Therefore, according to the above equation (2), the initial velocity V6 is 71)x103mls, and the time required to move in the X-axis direction is t==1xios.

この間にy軸方向に0.2■移動させるのに必要な磁束
密度Bは上記(1)式とめられる。この磁束密度Bを形
成するのに必要とする電流値工は磁心7の長さをt=1
50 m 。
During this time, the magnetic flux density B necessary for moving 0.2 square meters in the y-axis direction is determined by the above equation (1). The current value required to form this magnetic flux density B is the length of the magnetic core 7 = 1
50m.

ギャップ長t6 = 5 rm *コイル8の巻数N 
=100とした場合、 でめられる。但し、μ0は真空中の透磁率、μSは磁心
7の比透磁率で、Feの比透磁率μ6はμ ユ1000
である。
Gap length t6 = 5 rm *Number of turns of coil 8 N
When = 100, it can be determined as follows. However, μ0 is the magnetic permeability in vacuum, μS is the relative magnetic permeability of the magnetic core 7, and the relative magnetic permeability μ6 of Fe is μ 1000
It is.

また、この発明は上記実施例に限ることなく、靜磁界方
向を溶接線9と略平行としなくとも略同様の効果を期待
できると共に、永久磁石を用いて所望の磁束密度Bを発
生するようにしても略同様の効果を期待することができ
る。
Further, the present invention is not limited to the above-mentioned embodiments, and substantially the same effect can be expected even if the direction of the silent magnetic field is not made substantially parallel to the welding line 9, and the desired magnetic flux density B can be generated using a permanent magnet. Almost the same effect can be expected.

以上詳述したように1この発明によればレーザビームを
母材金属に集光照射して溶接を行なうレーデ溶接法にお
いて、前記母材金属表面に略平行な靜磁界をレーザビー
ム集光照射部に対応して形成し、前記レーザビームを前
記静磁界を介して前記母材金属に集光照射し溶接を行な
うことによって、レーザビームのエネルギ減少を確実に
防止し得るように、レーデビーム集光照射部のプラズマ
を効率的に1しかも確実に除去し、溶接部の品質向上に
寄与し得るようビしたレーザ溶接法を提供することがで
きる。
As described in detail above, 1. According to the present invention, in the Rade welding method in which welding is performed by condensing a laser beam onto a base metal, a quiet magnetic field approximately parallel to the base metal surface is applied to the laser beam condensing irradiation section. By forming the laser beam corresponding to the static magnetic field and performing welding by concentrating the laser beam on the base metal through the static magnetic field, the focused laser beam is irradiated so as to reliably prevent a decrease in the energy of the laser beam. It is possible to provide a laser welding method that efficiently and reliably removes plasma in the weld zone and contributes to improving the quality of the weld zone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のレーザ溶接法を説明するため
に示した構成説明図及び要部詳細図、第3図はこの発明
の一実施例を説明するために示した構成説明図、第4図
は第3図の要部を説明するために示した状態図である。 1・・・レーザビーム、2・・・不活性ガス、3・・・
集光レンズ、4・・・母材金属、5・・・プラズマ、6
・・・溶は込み深さ、7・・・磁心、8・・・コイル、
9・・・溶接線。 出願人復代理人 弁理士 鈴 江 武 彦第1図 1( 第3図 第4図 (<−一一づ \
1 and 2 are configuration explanatory diagrams and detailed views of essential parts shown to explain a conventional laser welding method, and FIG. 3 is a configuration explanatory diagram shown to explain an embodiment of the present invention. FIG. 4 is a state diagram shown to explain the main part of FIG. 3. 1... Laser beam, 2... Inert gas, 3...
Condensing lens, 4... Base metal, 5... Plasma, 6
... Melting depth, 7... Magnetic core, 8... Coil,
9...Welding line. Applicant Sub-Agent Patent Attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] レーザビームを母材金属に集光照射して溶接を行なうレ
ーザ溶接法において、前記母材金属表面に略平行な靜磁
界をレニデビーム集光照射部に対応して形成し、前記レ
ーザビームを前記静磁界を介して前記母材金属に集光照
射し溶接を行なうことを特徴とするレーザ溶接法。
In a laser welding method in which welding is performed by condensing a laser beam onto a base metal, a static magnetic field approximately parallel to the surface of the base metal is formed corresponding to the Renide beam condensing irradiation section, and the laser beam is directed to the base metal. A laser welding method characterized in that welding is performed by irradiating the base metal with focused light through a magnetic field.
JP59097280A 1984-05-15 1984-05-15 Laser welding method Pending JPS60240394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097280A JPS60240394A (en) 1984-05-15 1984-05-15 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097280A JPS60240394A (en) 1984-05-15 1984-05-15 Laser welding method

Publications (1)

Publication Number Publication Date
JPS60240394A true JPS60240394A (en) 1985-11-29

Family

ID=14188099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097280A Pending JPS60240394A (en) 1984-05-15 1984-05-15 Laser welding method

Country Status (1)

Country Link
JP (1) JPS60240394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197086A (en) * 1988-02-02 1989-08-08 Sanwa Tokushu Seiko Kk Method for welding inside magnetic field
KR100848174B1 (en) * 2006-11-13 2008-07-23 주식회사 세원정공 Plasma control method and laser welding jig that happen at laser welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197086A (en) * 1988-02-02 1989-08-08 Sanwa Tokushu Seiko Kk Method for welding inside magnetic field
KR100848174B1 (en) * 2006-11-13 2008-07-23 주식회사 세원정공 Plasma control method and laser welding jig that happen at laser welding

Similar Documents

Publication Publication Date Title
JP4578901B2 (en) Extreme ultraviolet light source device
TW201423819A (en) X-ray generating apparatus
JPS6037700A (en) Anionic ion source
JPS60240394A (en) Laser welding method
JPH03194841A (en) Electron shower
Takahashi et al. Ablation plasma transport using multicusp magnetic field for laser ion source
JPS56127935A (en) Production of magnetic recording medium
JPH07266073A (en) Laser beam machining device
JP5962979B2 (en) Deposition equipment
JP3318595B2 (en) Laser ion plating equipment
JPS6186699A (en) Convergent high-speed atomic beam source
JPH08323491A (en) Laser head for laser welding
JP2666143B2 (en) Ion neutralizer
JPH0636735A (en) Substrate manufacturing device by polyvalent ion implanting method and manufacture of substrate
JPS61183900A (en) Fast atomic beam source
JPH06264225A (en) Ion plating device
Ohba et al. Characterization of gadolinium plasma in gadolinium vapor at high-rate evaporation by electron beam heating
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
JP2001020062A (en) Electronic beam vaporizer
JP2012129196A (en) Electron gun for vapor deposition
KR101628168B1 (en) Laser induced neutron generator with a tubular type target
JPH02112140A (en) Low speed ion gun
JPS6242480Y2 (en)
JPS62296358A (en) Ion beam device
JPH0547309A (en) Ion beam generator