JPH06238478A - Laser beam welding method for thick metal plates - Google Patents

Laser beam welding method for thick metal plates

Info

Publication number
JPH06238478A
JPH06238478A JP5047168A JP4716893A JPH06238478A JP H06238478 A JPH06238478 A JP H06238478A JP 5047168 A JP5047168 A JP 5047168A JP 4716893 A JP4716893 A JP 4716893A JP H06238478 A JPH06238478 A JP H06238478A
Authority
JP
Japan
Prior art keywords
welded
welding
laser beam
gas
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5047168A
Other languages
Japanese (ja)
Inventor
Yukihiko Horii
行彦 堀井
Kunio Koyama
邦夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5047168A priority Critical patent/JPH06238478A/en
Publication of JPH06238478A publication Critical patent/JPH06238478A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To improve welding quality by providing a specified interval with materials to be welded to set up a gas interrupting plate and passing a specified a specified quantity of inert gas between the both. CONSTITUTION:A laser beam 2 generated by a laser beam generator 1 is condensed by a condenser 3, the materials 7 to be welded are irradiated through the gas interrupting plate 5 from a nozzle 4A with the laser beam and laser beam welding of the metal plates to exceed 8mm of the depth of penetration of one pass is performed. The interval of 1mm to 10mm is provided with the materials 7 to be welded to set up the gas interrupting plate 5 along the laser beam 2 irradiation side surface of the materials 7 to be welded. The inert gas of 10L/min to 50L/min is passed between the gas interrupting plate 5 and the materials 7 to be welded by using a nozzle 6 and the laser beam 2 is passed through the gas interrupting plate 5 to perform welding. Consequently, the appliable range of laser beam welding is extended and the quality of its structure can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属、特に鉄および鉄合
金の厚金属板のレーザー溶接に関するものである。
FIELD OF THE INVENTION The present invention relates to laser welding of thick metal plates of metals, especially iron and iron alloys.

【0002】[0002]

【従来の技術】近年、各種レーザー発生装置が開発・改
良され、金属の溶接や切断にも広く利用されつつある。
レーザー溶接は集中した高エネルギー密度のレーザービ
ームを熱源として使用するため、寸法精度の高い溶接が
高速度でできる。またレーザービームは電子ビームとは
異なり大気中で減衰しない等の性質もあり、今後もます
ます拡大成長していく技術である。炭酸ガスレーザーの
場合、20kWを越える出力のものも市販され始めてい
る。
2. Description of the Related Art In recent years, various laser generators have been developed and improved, and are being widely used for welding and cutting metals.
Since laser welding uses a concentrated high energy density laser beam as a heat source, welding with high dimensional accuracy can be performed at high speed. Unlike electron beams, laser beams also have the property of not being attenuated in the atmosphere, which is a technology that will continue to expand and grow. In the case of carbon dioxide gas lasers, those with an output of over 20 kW are beginning to be marketed.

【0003】レーザー溶接方法は凸レンズあるいは凹面
鏡で集光したレーザービームを被溶接材に照射し、これ
を溶融した後、熱源を移動あるいは停止させることで再
度凝固し、溶接が行われる。10kW出力炭酸ガスレー
ザーで10mm厚の鋼板を貫通溶接でき、20kW出力
では20mmを越える鋼板の貫通溶接も可能である(溶
接技術 1988年1月号 106頁)。
In the laser welding method, the material to be welded is irradiated with a laser beam focused by a convex lens or a concave mirror, and after melting the material, the heat source is moved or stopped to solidify again and welding is performed. With a 10 kW output carbon dioxide laser, a 10 mm thick steel plate can be penetrate-welded, and with a 20 kW output, a steel plate exceeding 20 mm can be penetrate-welded (welding technology January 1988 page 106).

【0004】しかし、レーザービームを被溶接材に照射
したとき、その周辺にプラズマ蒸気が発生する。このプ
ラズマ蒸気はレーザービームを吸収する。このためレー
ザー溶接するときはプラズマ蒸気の発生しにくい雰囲気
にする、発生したプラズマ蒸気を吹き飛ばす、あるいは
またレーザービームを間欠的に照射する等の方法が行わ
れる。この中で、シールドガスを使用して、プラズマ蒸
気の発生しにくい雰囲気にし、発生したプラズマ蒸気を
吹き飛ばし、かつ溶融した金属の酸化を防止する方法が
一般的に行われている。
However, when the material to be welded is irradiated with the laser beam, plasma vapor is generated around it. This plasma vapor absorbs the laser beam. For this reason, when performing laser welding, a method is used in which an atmosphere in which plasma vapor is unlikely to be generated is created, the generated plasma vapor is blown off, or a laser beam is intermittently irradiated. Among them, a method is generally used in which a shield gas is used to create an atmosphere in which plasma vapor is unlikely to be generated, the generated plasma vapor is blown off, and the molten metal is prevented from being oxidized.

【0005】このシールドガスは通常、トーチノズルの
中央から噴射するものと、これと斜めの方向から噴射す
る方法が主に行われており、中央からの噴射は溶接ヒュ
ーム、熱等のノズル内への進入を阻止し、ノズル内の集
光レンズ等を保護すると共に溶接部の酸化を防止する。
一方、斜め方向からの噴射はプラズマ蒸気の除去等の効
果をさらに高めるために主に使用される。もちろん、中
央からのみの噴射、あるいは斜めからの噴射のみでも溶
接は可能である。
This shield gas is usually injected from the center of the torch nozzle and a method of injecting it obliquely from the center of the torch nozzle. The injection from the center is for welding fumes, heat, etc. into the nozzle. It prevents entry, protects the condenser lens in the nozzle, and prevents the oxidation of the weld.
On the other hand, the injection from the oblique direction is mainly used to further enhance the effects such as removal of plasma vapor. Needless to say, welding can be performed only by injection from the center or injection from an angle.

【0006】さらにこれらの効率を高めるために各種工
夫が行われている。例えば特開昭58−50191号公
報には被溶接面に密閉空間を作り、この空間にシールド
ガスを導入して溶接部の酸化防止をする方法、あるいは
特開昭63−76785号公報ではノズル周辺にシール
ドガスのカーテンを構成させ、空気の巻き込みを低減す
る方法と各種の方法が提案されている。またシールドガ
スの組成についても、ヘリウム、アルゴン、窒素等の他
に例えば特開昭58−173094号公報には微量の酸
素を吹き込む方法、特開昭59−189095号公報に
は炭酸ガスを使用する方法等も提案されている。
Further, various measures have been taken in order to improve these efficiencies. For example, Japanese Patent Laid-Open No. 58-50191 discloses a method in which a sealed space is formed on the surface to be welded and a shield gas is introduced into this space to prevent oxidation of the welded portion, or Japanese Patent Laid-Open No. 63-76785 discloses a nozzle periphery. Various methods have been proposed for reducing the entrainment of air by constructing a shield gas curtain in. Regarding the composition of the shield gas, in addition to helium, argon, nitrogen, etc., for example, JP-A-58-173094 uses a method of blowing a small amount of oxygen, and JP-A-59-189095 uses carbon dioxide gas. Methods have also been proposed.

【0007】[0007]

【発明が解決しようとする課題】このシールドガスを使
用した炭酸ガスレーザー溶接を厚鋼板で行ったところ、
溶接金属中に多数の気孔が発生した。この現象は被溶接
材の板厚が薄いときには生じないが厚くなるに従って著
しくなり、板厚が8mmを越えるあたりから多発する。
本発明は上記問題を解決することを目的とする。
When carbon dioxide gas laser welding using this shielding gas was performed on a thick steel plate,
Many pores were generated in the weld metal. This phenomenon does not occur when the plate thickness of the material to be welded is small, but it becomes remarkable as the plate thickness increases, and frequently occurs when the plate thickness exceeds 8 mm.
The present invention aims to solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、1パスの溶込み深さが8mmを越え
る金属板のレーザー溶接において、被溶接材と1mm以
上10mm以下の間隔を設けて被溶接材のレーザービー
ム照射側の面に沿ってガス遮断板を設置し、前記ガス遮
断板と被溶接材の間に不活性ガスを10リットル/分以
上150リットル/分以下流し、かつ前記ガス遮断板を
レーザービームが貫通して溶接することを特徴とする厚
金属板のレーザー溶接方法である。
Means for Solving the Problems The present invention is to solve the above problems, and in laser welding of a metal plate having a penetration depth of more than 8 mm in one pass, the distance between the material to be welded and 1 mm or more and 10 mm or less. And installing a gas blocking plate along the surface of the material to be welded on the laser beam irradiation side, and flowing an inert gas between 10 liters / minute and 150 liters / minute between the gas blocking plate and the material to be welded, Further, there is provided a laser welding method for a thick metal plate, which is characterized in that the laser beam penetrates through the gas blocking plate and is welded.

【0009】[0009]

【作用】前記のように一般的に行われているシールドガ
スを使用したレーザー溶接も厚板に適用すると気孔が多
発する。本発明者らは気孔中のガス成分分析調査等の研
究を行ったところ、気孔はシールドガスに起因すること
が判明した。厚板を溶接するには高いレーザー出力が必
要で、これはプラズマ蒸気の発生を促進する。このプラ
ズマ蒸気の影響低減にシールドガスの流れをより高速に
する。また厚板になると溶融する金属量も多くなり、不
規則な溶融金属の流れが発生する。これに高速化したシ
ールドガスの影響が加わり、溶融金属の乱れが大きくな
る。気孔発生はこれら溶融金属の流動の乱れに伴って不
規則な凝固が行われることによるものである。このため
シールドガスの作用をより効率化させ、プラズマ蒸気の
影響を低減させると共に、気孔の発生を防止する方法を
提供するものである。
When the laser welding using the shielding gas which is generally performed as described above is also applied to the thick plate, many pores are generated. The inventors of the present invention have conducted research such as investigation and analysis of gas components in the pores and found that the pores are caused by the shield gas. Welding thick plates requires high laser power, which promotes the generation of plasma vapors. The shield gas flow is made faster to reduce the effect of the plasma vapor. In addition, when the plate becomes thick, the amount of molten metal also increases, and an irregular flow of molten metal occurs. In addition to this, the influence of the shield gas, which has been accelerated, adds to the turbulence of the molten metal. The generation of pores is due to irregular solidification accompanying the disturbance of the flow of the molten metal. Therefore, the effect of the shield gas is made more efficient, the influence of plasma vapor is reduced, and the method of preventing the generation of pores is provided.

【0010】まず、図1に本発明の概念図を示す。レー
ザー発生装置1で発生したレーザービーム2を集光レン
ズ3で集光し、ノズル4Aから、被溶接材の前面に設置
したガス遮断板5を通して、被溶接材7に照射する。そ
のとき、酸化防止とプラズマ蒸気除去を目的にシールド
ガスをノズル6からガス遮断板と被溶接材との間に噴射
させる(これを内部シールドと記す)。またよりプラズ
マ蒸気除去を確実にするため、あるいは集光レンズを保
護する目的で、ノズル4Aから、場合によってはノズル
4Bからもシールドガスを噴射する(これを外部シール
ドと記す)。さらに貫通溶接の場合は裏面にもノズル8
を設けシールドガスを噴射することもある。
First, FIG. 1 shows a conceptual diagram of the present invention. The laser beam 2 generated by the laser generator 1 is condensed by the condenser lens 3, and is irradiated from the nozzle 4A to the welding material 7 through the gas blocking plate 5 installed on the front surface of the welding material. At that time, a shield gas is injected from the nozzle 6 between the gas blocking plate and the material to be welded for the purpose of preventing oxidation and removing plasma vapor (this is referred to as an inner shield). Further, in order to further ensure the removal of plasma vapor or to protect the condenser lens, a shielding gas is ejected from the nozzle 4A and, in some cases, the nozzle 4B (this is referred to as an outer shield). Furthermore, in the case of penetration welding, the nozzle 8 is
A shield gas may be sprayed.

【0011】従来の溶接方法でも1パスの溶込み深さが
8mmより小さいと特に気孔発生の問題は小さく、8m
m以上で本発明の効果が顕著であり、1パスの溶込み深
さを8mm以上とした。なお、図2に溶込み深さを図示
する。図中9が溶接金属、10が溶込み深さである。
Even in the conventional welding method, if the penetration depth of one pass is less than 8 mm, the problem of pore formation is particularly small, 8 m.
The effect of the present invention is remarkable when m or more, and the penetration depth of one pass is set to 8 mm or more. The penetration depth is shown in FIG. In the figure, 9 is the weld metal, and 10 is the penetration depth.

【0012】ガス遮断板3の材質は金属あるいはガラ
ス、セラミックスの耐熱性のある薄板を使用する。溶接
時の熱で変形・変質する等の材質は好ましくない。厚さ
は金属材料であれば0.2mm以上が好ましい。あまり
薄いと溶接熱で大きく変形する等で、好ましくない。ガ
ラス等の場合は強度等の関係で金属板より厚めがよい。
As the material of the gas blocking plate 3, a metal, glass, or ceramics heat-resistant thin plate is used. Materials that are deformed or deteriorated by heat during welding are not preferable. The thickness is preferably 0.2 mm or more if it is a metallic material. If it is too thin, it will be greatly deformed by welding heat, which is not preferable. In the case of glass or the like, it is better to be thicker than a metal plate due to the strength and the like.

【0013】また遮断板の形状は図1に示した平板でも
よいが図3に示すように両側に垂れを付けるのもシール
ド効果をより高め好ましい。また前後方向に垂れを付け
てもよい。更に、後方への長さは長いほど溶接後の溶接
部の酸化を防止する効果が高く、好ましい。この遮断板
の被溶接材との間隔であるが1mmより小さいと溶接熱
の影響で変形が大きい、また溶接時に形成される余盛に
接触する等で好ましくなく、1mm以上とした。また1
0mmを越えるような間隔になると遮断効果が小さく、
10mm以下とした。
Further, the shape of the blocking plate may be the flat plate shown in FIG. 1, but it is preferable that the blocking plate be provided on both sides as shown in FIG. 3 so as to further enhance the shielding effect. Moreover, you may attach a sag in the front-back direction. Furthermore, the longer the length toward the rear is, the higher the effect of preventing the oxidation of the welded portion after welding is, which is preferable. If the distance between the shield plate and the material to be welded is less than 1 mm, the deformation is large due to the influence of welding heat, and it is unfavorable because it may come into contact with a surplus formed during welding. Again 1
If the distance exceeds 0 mm, the blocking effect is small,
It was set to 10 mm or less.

【0014】また遮断板はあらかじめレーザービームの
通過するに必要な最小の孔あるいは溝を設けてもよい
が、薄板であればレーザービーム照射で容易に孔明けは
可能で、特にビーム通過用の孔あるいは溝のないもので
もよい。遮断板にあらかじめビーム通過用の孔を設ける
ときは、孔の周りに若干の凸部を設けるのもよい。凸部
を設けることで外部シールドガスの孔中への進入を低減
し、より多くの外部シールドガスの使用が可能になる。
Further, the blocking plate may be provided with a minimum hole or groove necessary for the laser beam to pass therethrough, but if it is a thin plate, it can be easily drilled by irradiating the laser beam, and especially a hole for passing the beam. Alternatively, it may have no groove. When a beam passage hole is previously formed in the blocking plate, a slight convex portion may be provided around the hole. Providing the convex portion reduces the invasion of the external shield gas into the hole and enables the use of a larger amount of the external shield gas.

【0015】被溶接材と遮断板の間のシールドガスの流
量であるが10リットル/分より少ないとプラズマ蒸気
の除去が十分でなく溶込みが浅い。150リットル/分
を越える量になると気孔発生が増加する傾向にあり、ま
た溶接ビード形状も不良になる。これらより被溶接材と
遮断板の間のシールドガス流量は10リットル/分以
上、150リットル/分以下とした。またこのシールド
ガスを噴射するノズル6の形状は断面が円形、四角形等
いずれでもよいが、遮断板と被溶接材との間にシールド
ガスの流れを作るよう被溶接材に沿う形で噴き出すのが
好ましい。このため、遮断板と被溶接材の間隔が狭いと
きには偏平な四角形にするのも好ましい。
When the flow rate of the shield gas between the material to be welded and the shield plate is less than 10 liters / minute, the plasma vapor is not sufficiently removed and the penetration is shallow. If the amount exceeds 150 liters / minute, the generation of pores tends to increase, and the weld bead shape becomes poor. From these, the flow rate of the shield gas between the material to be welded and the shield plate was set to 10 liter / min or more and 150 liter / min or less. The nozzle 6 for injecting the shield gas may have a circular cross section, a quadrangle, or the like, but the nozzle 6 is ejected along the welded material so as to create a flow of the shield gas between the blocking plate and the welded material. preferable. Therefore, it is also preferable to make a flat quadrangle when the gap between the blocking plate and the material to be welded is narrow.

【0016】[0016]

【実施例】以下実施例で本発明を詳細に説明する。実施
例の概要は表1にまとめて示す。レーザー発生装置は1
5kW炭酸ガスレーザー発振器を使用し、13kW出力
で実施した。被溶接材は20mm厚の軟鋼板を使用し、
下向き、ビードオン溶接を、被溶接材を移動する方法で
実施した。被溶接材の移動速度は1m/分で、一部のも
のについて1.5と2m/分で実施した。気孔は溶接後
の試料をX線透視で観察して溶接長さ1mあたり10個
以下を良好とした。また溶込み深さはビードを切断し、
断面で観察した。
The present invention will be described in detail with reference to the following examples. The outline of the examples is summarized in Table 1. 1 laser generator
A 5 kW carbon dioxide laser oscillator was used, and the output was 13 kW. The material to be welded uses a 20 mm thick mild steel plate,
Downward, bead-on welding was performed by the method of moving the material to be welded. The moving speed of the material to be welded was 1 m / min, and some of them were performed at 1.5 and 2 m / min. The number of porosity was 10 or less per 1 m of the welding length when the sample after welding was observed by X-ray fluoroscopy. Also, the penetration depth cuts the bead,
The cross section was observed.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例1 被溶接材の上に2mmの間隔を置き0.2mmの薄鉄板
を設置し、この上方からレーザービームを照射して溶接
した。被溶接材と遮断板の間にはヘリウムを15リット
ル/分の割合で流し、遮断板上の外部シールドガスも2
0リットル/分で流した。溶接後のビードは気孔は6個
/mで良好なビードが得られた。また溶込みも16mm
ほどで十分であり、ビード形状も良好であった。
Example 1 A 0.2 mm thin iron plate was placed on the material to be welded with an interval of 2 mm, and a laser beam was irradiated from above to perform welding. Helium is flown at a rate of 15 liters / minute between the material to be welded and the shield plate, and the external shield gas on the shield plate is also 2
Run at 0 liters / minute. The bead after welding had 6 pores / m, and a good bead was obtained. The penetration is also 16 mm
However, the bead shape was also good.

【0019】実施例2 被溶接材と5mmの間隔になるようレーザー照射トーチ
に4mm厚のセラミックス板を設置して溶接した。セラ
ミックス材にはあらかじめ直径1.5mmのビーム通過
孔を設けた。被溶接材と遮断板の間にはアルゴンを50
リットル/分流し、遮断板上の外部シールドガスも50
リットル/分流した。溶接後のビードは実施例1と同じ
ように気孔は少なく、溶込みも十分で、形状も良好であ
った。
Example 2 A ceramic plate having a thickness of 4 mm was placed on a laser irradiation torch and welded to a material to be welded at a distance of 5 mm. A beam passage hole having a diameter of 1.5 mm was previously provided in the ceramic material. Argon should be 50 between the material to be welded and the shield.
L / min. Flow, and the external shield gas on the shutoff plate is also 50
L / min. The bead after welding had few pores as in Example 1, sufficient penetration, and good shape.

【0020】実施例3 被溶接材の上に10mmの間隔で1mmのステンレスの
遮断板を置き、溶接した。遮断板の両側に側板を設け
た。被溶接材と遮断板の間に窒素を150リットル/分
流し、遮断板上の外部シールドガスも20リットル/分
流した。溶接後のビードは実施例1と同じように気孔は
少なく、溶込みも十分で、形状も良好であった。
Example 3 A 1 mm stainless steel blocking plate was placed on the material to be welded at intervals of 10 mm and welded. Side plates were provided on both sides of the barrier plate. Nitrogen was flowed between the material to be welded and the blocking plate at 150 liters / minute, and the external shielding gas on the blocking board was also flowed at 20 liters / minute. The bead after welding had few pores as in Example 1, sufficient penetration, and good shape.

【0021】実施例4 被溶接材の上に5mmの間隔で1mmのステンレスの遮
断板を置き、溶接した。遮断板の両側に側板を設け、ま
たビーム通過用の1.5mm幅の溝を設けた。被溶接材
と遮断板の間にはヘリウムを50リットル/分で流し、
遮断板上の外部シールドガスも20リットル/分流し
た。溶接後のビードは実施例1と同じように、気孔は少
なく、溶込みも十分で、形状も良好であった。
Example 4 A 1 mm stainless steel blocking plate was placed on the material to be welded at intervals of 5 mm and welded. Side plates were provided on both sides of the blocking plate, and a 1.5 mm wide groove for passing the beam was provided. Flow helium at 50 liters / minute between the material to be welded and the barrier plate,
The external shield gas on the blocking plate was also flown at 20 liters / minute. As in Example 1, the welded beads had few pores, sufficient penetration, and good shape.

【0022】比較例1 遮断板は設置せず、溶接速度を2m/分で溶接した。シ
ールドガスはヘリウムを50リットル/分で流した。気
孔は少なく、ビード形状も良好であったが、溶込みは7
mmであった。
Comparative Example 1 Welding was performed at a welding speed of 2 m / min without installing a blocking plate. The shield gas was helium at 50 liters / minute. Porosity was small and bead shape was good, but penetration was 7
It was mm.

【0023】比較例2 比較例1と同じように遮断板は設置せず、1.5m/分
の溶接速度で溶接した。シールドガスはヘリウムを50
リットル/分流した。溶込み深さが10mmと深くなっ
たが、気孔が連続的に発生した。
Comparative Example 2 As in Comparative Example 1, no blocking plate was installed and welding was performed at a welding speed of 1.5 m / min. Shield gas is helium 50
L / min. Although the penetration depth was as deep as 10 mm, pores were continuously generated.

【0024】比較例3 被溶接材の上に0.5mmの間隔で0.2mm厚の鉄板
を設置し、溶接した。被溶接材と遮断板の間にはヘリウ
ムを20リットル/分流し、遮断板上の外部シールドガ
スも50リットル/分流した。溶接途中遮断板の大きな
変形やビードとの引っかかりが発生し、ビード形状も不
良であった。
Comparative Example 3 A 0.2 mm thick iron plate was placed on the material to be welded at intervals of 0.5 mm and welded. Helium was flown at a rate of 20 liters / minute between the material to be welded and the blocking board, and the external shield gas on the blocking board was also flowed at 50 liters / minute. During the welding, the blocking plate was greatly deformed and caught with the bead, and the bead shape was also poor.

【0025】比較例4 被溶接材の上に2mmの間隔を置き0.2mmの薄鉄板
を設置し、溶接した。被溶接材と遮断板の間にはヘリウ
ムを8リットル/分の割合で流し、遮断板上の外部シー
ルドガスも20リットル/分流した。溶接後のビードは
気孔の少ない良好なビードが得られた。しかし、実施例
1に比較して溶込みが小さく満足できるものでなかっ
た。
Comparative Example 4 A 0.2 mm thin iron plate was placed on the material to be welded with an interval of 2 mm and welded. Helium was flown between the material to be welded and the blocking plate at a rate of 8 l / min, and the external shield gas on the blocking plate was also flowed at 20 l / min. The bead after welding was a good bead with few pores. However, the penetration was smaller than that of Example 1 and was not satisfactory.

【0026】比較例5 被溶接材の上に2mmの間隔を置き0.2mmの薄鉄板
を設置し、溶接した。被溶接材と遮断板の間にはヘリウ
ムを180リットル/分の割合で流し、遮断板上の外部
シールドガスも50リットル/分流した。溶接後のビー
ドは気孔が多く、ビード形状も乱れたものであった。
Comparative Example 5 A 0.2 mm thin iron plate was placed on the material to be welded with an interval of 2 mm and welded. Helium was flowed between the material to be welded and the blocking plate at a rate of 180 liters / minute, and the external shielding gas on the blocking plate was also flowed at 50 liters / minute. The bead after welding had many pores and the bead shape was also disordered.

【0027】比較例6 被溶接材の上に12mmの間隔を置き1mmのステンレ
ス板を設置して溶接した。被溶接材と遮断板の間にはヘ
リウムを50リットル/分流し、遮断板上の外部シール
ドガスも20リットル/分流した。溶接後のビードは気
孔がやや多く、溶込みも少なく満足できるものでなかっ
た。
Comparative Example 6 A 1 mm stainless plate was placed on the material to be welded with an interval of 12 mm and welded. Helium was made to flow between the material to be welded and the shield plate at 50 liters / minute, and the external shield gas on the shield plate was also made to flow at 20 liters / minute. The bead after welding had a few large pores and had little penetration, which was not satisfactory.

【0028】[0028]

【発明の効果】レーザー溶接は広く使用されつつある
が、現状技術での厚金属板の溶接は溶接部に気孔が多発
する。本発明のシールド方法を使用することで、簡便に
気孔発生を防止し、溶接品質が著しく向上できる。これ
によって、レーザー溶接の適用可能範囲が拡大し、その
構造物の品質を向上することができる。
Although laser welding is being widely used, the welding of thick metal plates in the state of the art often causes porosity in the weld. By using the shielding method of the present invention, generation of pores can be easily prevented and welding quality can be remarkably improved. As a result, the applicable range of laser welding is expanded and the quality of the structure can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレーザー溶接方法の概念を示す図FIG. 1 is a diagram showing the concept of a laser welding method of the present invention.

【図2】レーザー溶接ビードの断面を示す図FIG. 2 is a view showing a cross section of a laser welding bead.

【図3】遮断板の側に垂れを付けた例を示す図FIG. 3 is a diagram showing an example in which a side of a blocking plate is provided with a sag.

【符号の説明】[Explanation of symbols]

1 レーザー発生装置 2 レーザービーム 3 集光レンズ 4A,4B ノズル(外部) 5 ガス遮断板 6 ノズル(内部) 7 被溶接材 8 ノズル(裏面) 9 溶接金属 10 溶け込み深さ G シールドガス 1 Laser generator 2 Laser beam 3 Condenser lens 4A, 4B Nozzle (outside) 5 Gas blocking plate 6 Nozzle (inside) 7 Welding material 8 Nozzle (back side) 9 Welding metal 10 Penetration depth G Shield gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1パスの溶込み深さが8mmを越える金
属板のレーザー溶接において、被溶接材と1mm以上1
0mm以下の間隔を設けて被溶接材のレーザービーム照
射側の面に沿ってガス遮断板を設置し、前記ガス遮断板
と被溶接材の間に不活性ガスを10リットル/分以上1
50リットル/分以下流し、かつ前記ガス遮断板をレー
ザービームが貫通して溶接することを特徴とする厚金属
板のレーザー溶接方法。
1. In laser welding of a metal plate having a penetration depth of more than 8 mm per pass, the material to be welded is 1 mm or more and 1 mm or more.
A gas blocking plate is installed along the surface of the material to be welded on the laser beam irradiation side with a space of 0 mm or less, and the inert gas is 10 liters / min or more between the gas blocking plate and the material to be welded 1
A method for laser welding a thick metal plate, which comprises flowing 50 liters / minute or less and welding the gas barrier plate with a laser beam penetrating the gas barrier plate.
JP5047168A 1993-02-15 1993-02-15 Laser beam welding method for thick metal plates Withdrawn JPH06238478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047168A JPH06238478A (en) 1993-02-15 1993-02-15 Laser beam welding method for thick metal plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047168A JPH06238478A (en) 1993-02-15 1993-02-15 Laser beam welding method for thick metal plates

Publications (1)

Publication Number Publication Date
JPH06238478A true JPH06238478A (en) 1994-08-30

Family

ID=12767543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047168A Withdrawn JPH06238478A (en) 1993-02-15 1993-02-15 Laser beam welding method for thick metal plates

Country Status (1)

Country Link
JP (1) JPH06238478A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120541A3 (en) * 2008-03-26 2009-12-17 Electro Scientific Industries, Inc. Laser micromachining through a sacrificial protective member
KR101449118B1 (en) * 2012-08-31 2014-10-10 주식회사 포스코 Method for laser welding and welded metal using the same
US9352417B2 (en) 2002-04-19 2016-05-31 Electro Scientific Industries, Inc. Increasing die strength by etching during or after dicing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352417B2 (en) 2002-04-19 2016-05-31 Electro Scientific Industries, Inc. Increasing die strength by etching during or after dicing
WO2009120541A3 (en) * 2008-03-26 2009-12-17 Electro Scientific Industries, Inc. Laser micromachining through a sacrificial protective member
KR101449118B1 (en) * 2012-08-31 2014-10-10 주식회사 포스코 Method for laser welding and welded metal using the same
CN104602860A (en) * 2012-08-31 2015-05-06 Posco公司 Method for laser welding and welded metal using the same
JP2015526298A (en) * 2012-08-31 2015-09-10 ポスコ Laser welding method and laser welding member using the same

Similar Documents

Publication Publication Date Title
US6740845B2 (en) Laser welding with beam oscillation
US4162390A (en) Laser welding chamber
GB2191434A (en) Methods of cutting metallic workpieces by laser
US20040188395A1 (en) Laser-hybrid welding with beam oscillation
JP2008126315A (en) Laser welding process with improved penetration
JP2005501737A (en) Hybrid laser-arc welding method with gas flow control
US5142119A (en) Laser welding of galvanized steel
Naito et al. Effect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid welding
JP4876260B2 (en) Welding method and welding apparatus
JP2010172941A (en) Laser beam welding apparatus
JP2009166080A (en) Laser beam welding method
JPH06238478A (en) Laser beam welding method for thick metal plates
US5152453A (en) Laminar barrier inerting for leading and/or trailing shield in welding application
US5750955A (en) High efficiency, variable position plasma welding process
JPH042353B2 (en)
JPH067984A (en) Laser beam welding method
Hamadou et al. Study of assist gas flow behavior during laser welding
JP4394808B2 (en) Melt processing equipment using laser beam and arc
JPH06182570A (en) Laser beam welding method
JP3694979B2 (en) Laser welding method
JP2001150155A (en) Method for electron beam welding of aluminum or aluminum alloy material
JP4036588B2 (en) Laser welding method
JPH02263585A (en) Combined heat source welding equipment
JPH0631451A (en) Welding method in inert gaseous atmosphere
Faerber et al. Process gases for laser welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509