JPH01196177A - Field-effect transistor and its manufacture - Google Patents

Field-effect transistor and its manufacture

Info

Publication number
JPH01196177A
JPH01196177A JP2231588A JP2231588A JPH01196177A JP H01196177 A JPH01196177 A JP H01196177A JP 2231588 A JP2231588 A JP 2231588A JP 2231588 A JP2231588 A JP 2231588A JP H01196177 A JPH01196177 A JP H01196177A
Authority
JP
Japan
Prior art keywords
active layer
drain
source
gate
pinch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231588A
Other languages
Japanese (ja)
Inventor
Toshio Ueda
登志雄 上田
Toshihiko Takebe
武部 敏彦
Futatsu Shirakawa
白川 二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2231588A priority Critical patent/JPH01196177A/en
Publication of JPH01196177A publication Critical patent/JPH01196177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enhance a pinch-off characteristic by installing a gate structure where the thickness of a uniformly doped active layer is changed from a source to a drain in the active layer between the source and the drain. CONSTITUTION:A uniformly doped active layer 2 is formed on a semiinsulating substrate 1 of, e.g., GaAs by an MBE method or the like; the film thickness of the active layer 2 from the side of a source to the side of a drain is increased gradually from ds to da. A gate (G) is formed on the face of the active layer 2 which is inclined between a source (S) and a drain (D) due to the difference in the film thickness; a drain voltage Vds is impressed between the source (S) and the drain (D); a gate voltage Vg is impressed between the source (S) and the gate (G). Because, by this constitution, the shape of a depletion layer 3 is parallel to the interface between the active layer and the high-resistance substrate, the depletion layer 3 during a pinch-off comes into face contact with the interface. Accordingly, the pinch-off becomes sure and can suppress a leakage current.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電界効果トランジスタのゲート部の活性層の膜
厚をソースからドレイン方向に変イヒさせることにより
、ドレイン電流のピンチオフ番こ際し、ゲート下空乏層
の端が活性層と高抵抗基板の界面に平行になるように構
成した電界効果トランジスタおよびその製造方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for pinch-off of the drain current by changing the thickness of the active layer in the gate portion of a field effect transistor from the source to the drain direction. The present invention relates to a field effect transistor configured such that the end of the under-gate depletion layer is parallel to the interface between an active layer and a high-resistance substrate, and a method for manufacturing the same.

[従来技術と問題点] 第2図に従来の電界効果トランジスタ(FETという)
の構造を模式的に示す。
[Prior art and problems] Figure 2 shows a conventional field effect transistor (referred to as FET).
The structure of is shown schematically.

高抵抗基板ll上に例えば分子線エピタキシー法(以下
MBE法という)により活性層12が形成され、活性層
12の両端にそれぞれソースS、ドレインDの電極が設
けられ、これらの中間にp形のゲートGが設けられる。
An active layer 12 is formed on a high-resistance substrate 11 by, for example, molecular beam epitaxy (hereinafter referred to as MBE method), source S and drain D electrodes are provided at both ends of the active layer 12, and a p-type electrode is provided between these. A gate G is provided.

図はnチャンネル形のものを示している。The figure shows an n-channel type.

図示のようにソースSとドレインDとの間にドレイン電
圧Vdsを印加し、ソースSとゲートGとの間にゲート
電圧Vgを印加する。
As shown in the figure, a drain voltage Vds is applied between the source S and the drain D, and a gate voltage Vg is applied between the source S and the gate G.

このような構成において、活性層12と高抵抗基板11
との界面と、空乏層13とが、通常の動作条件では、ピ
ンチ・オフ時、図示のように、空乏層側A1高抵抗基板
側Bによる一点(正確には紙面に垂直な線)でしか接触
せず、前記界面でのリーク電流が大きくなってしまい、
良好なピンチオフがむつかしい。特に最近短ゲート化に
ともない、そのリーク電流の抑制が望まれる。
In such a configuration, the active layer 12 and the high resistance substrate 11
Under normal operating conditions, during pinch-off, the interface between There is no contact, and the leakage current at the interface increases,
Good pinch-off is difficult. In particular, with the recent trend toward shorter gates, suppression of leakage current is desired.

[発明の構成コ 本発明は、上記FETにおけるピンチオフ性能を改善す
る目的でなされたもので、ソース、ドレイン間の活性層
において、均一にドープされた活性層厚がソースからド
レインに向って変化するようなゲート構造を備えるFE
Tおよびその製造方法にある。
[Structure of the Invention] The present invention was made for the purpose of improving the pinch-off performance in the above-mentioned FET, and the thickness of the uniformly doped active layer changes from the source to the drain in the active layer between the source and drain. FE with gate structure like
T and its manufacturing method.

第1図は本発明の実施例を示す。図示のように、GaA
sのような半絶縁性基板1上に、例えばMBE法により
、均一にドープされた活性層2が形成されるが、ソース
側からドレイン側に向かって活性層2の膜厚がdsから
daまて厚くなっている場合を模式的に示している。な
お、MBE法のかわりにイオン注入法を用いることもで
き右。
FIG. 1 shows an embodiment of the invention. As shown, GaA
A uniformly doped active layer 2 is formed on a semi-insulating substrate 1 such as s by, for example, MBE, but the thickness of the active layer 2 varies from ds to da from the source side to the drain side. This diagram schematically shows a case in which the thickness is increased. Note that ion implantation can also be used instead of MBE.

図示のようにソースSとドレインDの間で膜厚の相違に
よって傾斜する活性層2の面にゲー)Gを設け、ソース
SとドレインDとの間にドレイン電圧V。を、またソー
スSとゲートGとの間にゲート電圧Vgを印加する。
As shown in the figure, a gate electrode (G) is provided on the surface of the active layer 2 which is inclined due to the difference in film thickness between the source S and the drain D, and a drain voltage V is applied between the source S and the drain D. , and a gate voltage Vg is applied between the source S and the gate G.

このような構成によれば、空乏層3の形状は活性層と高
抵抗基板との界面に平行になるので、ピンチオフ時の空
乏層13と界面とが面接触する。
According to such a configuration, the shape of the depletion layer 3 is parallel to the interface between the active layer and the high-resistance substrate, so that the depletion layer 13 and the interface come into surface contact at the time of pinch-off.

従ってピンチオフが確実なものとなり、リーク電流を抑
制することができる。
Therefore, pinch-off becomes reliable, and leakage current can be suppressed.

ここに、前述のようにソース側からドレイン側に向って
の活性層膜厚を次第に厚くすれば、リーク電流を抑制で
きる理由について説明する。
Here, we will explain why leakage current can be suppressed by gradually increasing the thickness of the active layer from the source side to the drain side as described above.

ゲート下に生ずる空乏層の厚みWは、 但し、■g:ゲート電圧 φB:ンヨットキー障壁高さ Eo:伝導帯底のエネルギー E、:フェルミエネルギー q :紫電荷重 no:キャリア濃度 ここで、vgがゲート下で、ゲート長方向(X方向)に
一定であれば、φ□+n0が一定である限り、WはXに
依存しない。
The thickness W of the depletion layer formed under the gate is, however, g: gate voltage φB: Njotsky barrier height Eo: energy at the bottom of the conduction band E,: Fermi energy q: violet charge weight no: carrier concentration, where vg is the gate voltage Below, if W is constant in the gate length direction (X direction), W does not depend on X as long as φ□+n0 is constant.

ところが、ゲート電圧Vgに加えて、ドレイン電圧Va
tが通常印加された状態で、FETは動作させる。その
場合、実際にはX方向にv8が実効的には変化し、ソー
ス側で、vg(x=O)=vgsは低く、ドレイン側で
はVg(x=1)=Vgdは高くなる。
However, in addition to the gate voltage Vg, the drain voltage Va
The FET is operated with t normally applied. In that case, v8 actually changes in the X direction, with vg(x=O)=vgs being low on the source side and Vg(x=1)=Vgd being high on the drain side.

直線近似とすると、 Vg (X) =vgs+v’d□/1・×・・・・・
・(2)Vt (x=、、l’) =Vgd=Vgs+
V’as >Vgs但し V ’ds :ゲートの両端
の電位差と表わされる。この分布のため、空乏層幅Wも
そのX方向に分布をもつことになる。
Assuming linear approximation, Vg (X) = vgs + v'd□/1・×・・・・・・
・(2) Vt (x=,,l') =Vgd=Vgs+
V'as > Vgs where V'ds: Expressed as the potential difference between both ends of the gate. Due to this distribution, the depletion layer width W also has a distribution in the X direction.

但し、ε3:半導体の誘電率 従って このようにゲート下における空乏層の厚みWはW6から
Wdへと変化する。
However, ε3: dielectric constant of the semiconductor Therefore, the thickness W of the depletion layer under the gate changes from W6 to Wd.

そこで、本発明では、ゲート下の活性層厚をw6とW6
の差の分たけエツチングにより変化させ、活性層と高抵
抗基板との界面と、空乏層端を平行にするものである。
Therefore, in the present invention, the active layer thickness under the gate is set to w6 and W6.
The interface between the active layer and the high-resistance substrate is made parallel to the edge of the depletion layer.

[実施例] 2″φ半絶縁性GaAs基板上に、MBE法によりSi
ドープした均一の活性層、厚さ0.2j1m −、no
=1.0×1017を成長させた。
[Example] Si was deposited on a 2″φ semi-insulating GaAs substrate by the MBE method.
Doped uniform active layer, thickness 0.2j1m −, no
=1.0×1017 was grown.

ソースとドレインのオーミック電極は、AuGeN1合
金電極を用い、ショットキーゲート1μm長のAu/P
t/Tiで形成される。
The source and drain ohmic electrodes are AuGeN1 alloy electrodes, and the Schottky gate is Au/P with a length of 1 μm.
It is made of t/Ti.

これによってFET動作を行なうと、Vgs=t、o(
V)。
When FET operation is performed with this, Vgs=t, o(
V).

V gd= 1.5(V )となり、空乏層厚さは、W
8→1570人 IId崎1790人  と計算される。
V gd = 1.5 (V ), and the depletion layer thickness is W
8 → 1570 people IIdsaki 1790 people It is calculated.

これに対して、上記と同様に形成した活性層にソース側
からドレイン側に約200人と計算される深さより直線
的にOレベル(活性層の表面)に達する集束イオンエッ
チグを施した。その後ゲート電極を形成し、FETを製
作した。
On the other hand, the active layer formed in the same manner as above was subjected to focused ion etching that reached the O level (the surface of the active layer) linearly from a depth calculated to be about 200 people from the source side to the drain side. After that, a gate electrode was formed and an FET was manufactured.

このFETの実測値は、Vth”  1.54Vである
The actual value of this FET is Vth" 1.54V.

一方、従来構造ノFETハ、vth=−1,60Vテア
リ、■d++=toμA以下で、Vgの変化に対し、■
dsの減少の仕方が小さくなっており、ピンチオフ時に
空乏層が点で接触し、リークが起っているものと考えら
れる。
On the other hand, for a FET with a conventional structure, vth=-1, 60V tear, ■d++=toμA or less,
The way in which ds decreases is small, and it is thought that the depletion layer contacts at a point during pinch-off, causing leakage.

[発明の効果コ 本発明では、ゲートの、ソースドレイン方向の電位分布
を反映させ、活性層の厚さを変化させて、・活性層−高
抵抗界面と空乏層端を平行にする。これによってピンチ
オフ時にはゲート真下で、その長さ方向すべての点にお
いて、空乏層を高抵抗基板側と接触させることができ、
FETのピンチオフ特製が向上するので、周波数特製が
良くなり、同一材料において、より高周波動作が行なえ
る。
[Effects of the Invention] In the present invention, the thickness of the active layer is changed to reflect the potential distribution of the gate in the source-drain direction, so that the active layer-high resistance interface and the edge of the depletion layer are parallel to each other. As a result, during pinch-off, the depletion layer can be brought into contact with the high-resistance substrate side at all points along its length, directly under the gate.
Since the pinch-off characteristics of the FET are improved, the frequency characteristics are improved, and higher frequency operation can be performed with the same material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例を模式的に示す。 第2図は、従来のFETを模式的に示す。 1・・・半絶縁性基板、2・・・活性層、8・・・空乏
層。 賽! 悶 那2図
FIG. 1 schematically shows an embodiment of the present invention. FIG. 2 schematically shows a conventional FET. DESCRIPTION OF SYMBOLS 1... Semi-insulating substrate, 2... Active layer, 8... Depletion layer. Dice! Agony 2

Claims (2)

【特許請求の範囲】[Claims] (1)ソース、ドレイン間の活性層において、均一にド
ープされた活性層厚がソースからドレインに向って変化
するゲート構造を持つことを特徴とする電界効果トラン
ジスタ。
(1) A field effect transistor characterized in that the active layer between the source and the drain has a gate structure in which the thickness of the uniformly doped active layer changes from the source to the drain.
(2)集束イオンエッチングによりゲート部分の均一に
ドープされた活性層の厚さをソースからドレイン方向に
変化させることを特徴とする電界効果トランジスタの製
造方法。
(2) A method for manufacturing a field effect transistor, characterized in that the thickness of the uniformly doped active layer in the gate portion is varied from the source to the drain direction by focused ion etching.
JP2231588A 1988-02-01 1988-02-01 Field-effect transistor and its manufacture Pending JPH01196177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231588A JPH01196177A (en) 1988-02-01 1988-02-01 Field-effect transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231588A JPH01196177A (en) 1988-02-01 1988-02-01 Field-effect transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH01196177A true JPH01196177A (en) 1989-08-07

Family

ID=12079298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231588A Pending JPH01196177A (en) 1988-02-01 1988-02-01 Field-effect transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH01196177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309007A (en) * 1991-09-30 1994-05-03 The United States Of America As Represented By The Secretary Of The Navy Junction field effect transistor with lateral gate voltage swing (GVS-JFET)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309007A (en) * 1991-09-30 1994-05-03 The United States Of America As Represented By The Secretary Of The Navy Junction field effect transistor with lateral gate voltage swing (GVS-JFET)

Similar Documents

Publication Publication Date Title
US5362677A (en) Method for producing a field effect transistor with a gate recess structure
US4471366A (en) Field effect transistor with high cut-off frequency and process for forming same
JP5325198B2 (en) Field effect transistor
US4916498A (en) High electron mobility power transistor
CA1242287A (en) Semiconductor device exhibiting negative transconductance
EP0246641A2 (en) Heterojunction field-effect device
JPS5595370A (en) Compound semiconductor field-effect transistor
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
US5900641A (en) Field effect semiconductor device having a reduced leakage current
JPH01196177A (en) Field-effect transistor and its manufacture
US5107314A (en) Gallium antimonide field-effect transistor
US5311045A (en) Field effect devices with ultra-short gates
US6246093B1 (en) Hybrid surface/buried-channel MOSFET
JP3555805B2 (en) Compound semiconductor device
JPH0271563A (en) Semiconductor device, insulated gate type field effect transistor and schottky gate type field effect transistor
EP0283878A1 (en) Field effect transistor
JP2578745B2 (en) Field effect transistor
JPH0210873A (en) Thin film transistor
US6278141B1 (en) Enhancement-mode semiconductor device
JPH04199518A (en) Field-effect transistor and manufacture thereof
JP2553673B2 (en) Field effect transistor
JPH0328062B2 (en)
JPH0513462A (en) Compound semiconductor structure
JPH01196178A (en) Field-effect transistor and its manufacture
JP2569626B2 (en) Semiconductor integrated circuit device