JPH01195685A - Manufacture of ceramic heater - Google Patents

Manufacture of ceramic heater

Info

Publication number
JPH01195685A
JPH01195685A JP63019085A JP1908588A JPH01195685A JP H01195685 A JPH01195685 A JP H01195685A JP 63019085 A JP63019085 A JP 63019085A JP 1908588 A JP1908588 A JP 1908588A JP H01195685 A JPH01195685 A JP H01195685A
Authority
JP
Japan
Prior art keywords
metal
sintered
ceramic heater
sintering
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019085A
Other languages
Japanese (ja)
Inventor
Tatsuto Fukushima
立人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP63019085A priority Critical patent/JPH01195685A/en
Publication of JPH01195685A publication Critical patent/JPH01195685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture a ceramic heater of a complicated form by sintering a substance to be sintered, wherein powder paste of a metal IV or VA group is buried between a pair of metal Si pressed powder molded substances under an N2 atmosphere for forming a sintered substance to be given hot hydrostatic treatment. CONSTITUTION:A substance to be sintered, wherein powder paste 3 of a metal IV A or VA group is buried between a pair of metal Si pressed powder molded substances 2 and 2', is sintered under an N2 atmosphere to form a sintered substance for being given hot hydrostatic treatment. Accordingly, at the time of sintering, metal IV A group or VA group powder paste 3 reacts to N2 to generate a conductive nitride, on the other hand, the metal Si pressed powder molded substances 2 and 2' are nitrided by N2 so as to obtain silicon nitride (Si3N4) ceramics by reaction sintering. Thereby, a ceramic heater 1 of a complicated form can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックヒータの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing a ceramic heater.

(従来技術) セラミックヒータの製造方法には、特公昭62− + 
9034号公報に示すように、一対のセラミック成形体
でタングステン薄板よりなる発熱抵抗体を挟持し、それ
をホットプレス法により焼結するものが知られている。
(Prior art) The method for manufacturing ceramic heaters includes
As shown in Japanese Patent No. 9034, it is known that a heating resistor made of a thin tungsten plate is sandwiched between a pair of ceramic molded bodies and then sintered by a hot pressing method.

この製造方法によれば、焼結時に、ホットプレス法を用
いていることから、セラミック成形体とタングステン薄
板との収縮差に基づくクラックが抑えられることになる
と共に密度が高められることになる。
According to this manufacturing method, since a hot press method is used during sintering, cracks due to shrinkage differences between the ceramic molded body and the tungsten thin plate are suppressed, and the density is increased.

(発明が解決しようとする問題点) しかし、上記製造方法においては、ホットプレス法を用
いることから、セラミック成形体が金型の圧縮力を受け
ることになり、複雑形状のセラミック成形体の場合には
、圧縮力が部分的に異なって作用して、一対のセラミッ
ク成形体が相1にずれ、該一対のセラミック成形体間の
発熱抵抗体が切断される虞れがあった。このため、」1
記セラミックヒータの製造方法におCづるホットプレス
法においては、一対のセラミック成形体が相互にずれな
いようにするため、()1純形状のセラミック成形体し
か用いることができず、この結果、−1+7e方法では
、完成品としてのセラミックヒータは単純形状のものだ
けが対象となっていた。
(Problems to be Solved by the Invention) However, in the above manufacturing method, since a hot press method is used, the ceramic molded body is subjected to compressive force from the mold, and in the case of a ceramic molded body with a complicated shape, In this case, there is a possibility that the compressive force acts differently in some parts, causing the pair of ceramic molded bodies to shift to phase 1, and the heating resistor between the pair of ceramic molded bodies to be cut. For this reason, ``1
In the hot press method described in C in the manufacturing method of the ceramic heater, in order to prevent the pair of ceramic molded bodies from shifting from each other, only a ceramic molded body with a pure shape can be used.As a result, In the -1+7e method, only ceramic heaters with simple shapes were targeted as finished products.

本発明はE記実情に鑑みてなされたもので、その目的は
、複雑形状のセラミックヒータをも得ることができるセ
ラミックヒータの製造方法を提供することにある。
The present invention has been made in view of the actual situation described in E. An object of the present invention is to provide a method for manufacturing a ceramic heater that can also produce a ceramic heater with a complicated shape.

(問題点を解決するための手段、作用)かかる目的を達
成するために本発明にあっては、一対の金属Si圧粉成
形体で該一対の金属Si圧粉成形体間に金属IV A若
しくは■Δ族粉ペーストを埋設した被焼結体を、N2雰
囲気下で焼結して、焼結体に形成し、 前記焼結体に熱間静水圧処理を施す、 ことを特徴とするセラミックヒータの製造方法。
(Means and effects for solving the problem) In order to achieve the above object, the present invention provides a pair of metal Si powder compacts, and a metal IV A or ■ A ceramic heater characterized in that a sintered body in which a Δ group powder paste is embedded is sintered in an N2 atmosphere to form a sintered body, and the sintered body is subjected to hot isostatic pressure treatment. manufacturing method.

とした構成としである。This is the configuration.

北述の構成により、焼結時、金属IV A族若しくはV
A族粉ペーストはN2と反応して導電性窒化物が生成さ
れる一方、金属Si圧粉成形体は、N2により窒化され
、窒化珪素(SiffN*)系セラミックスが反応焼結
によって得られることになる。このため、手記方法にお
いては、常圧焼結とすることができることになり、ホッ
トプレス法の場合のように、焼結体が単純形状となる制
約を受けることがなくなる。
Due to the configuration described above, during sintering, metal IV group A or V
Group A powder paste reacts with N2 to generate conductive nitrides, while metal Si powder compacts are nitrided with N2, and silicon nitride (SiffN*)-based ceramics are obtained by reactive sintering. Become. Therefore, in the manual method, pressureless sintering can be performed, and unlike the hot press method, the sintered body is not restricted to a simple shape.

そして、焼結体は、次の熱間静水圧処理(以下、!+ 
I P処理)により、焼結体の形状にかかわりなく密度
が上げられることになり、所定性能のセラミックヒータ
とされることになる。この結果、所定性能を維持しつつ
複雑形状のセラミックヒータ夕をも、製造することがで
きることになる。。
Then, the sintered body is subjected to the following hot isostatic pressure treatment (hereinafter referred to as !+
IP treatment) increases the density regardless of the shape of the sintered body, resulting in a ceramic heater with a predetermined performance. As a result, it is possible to manufacture a ceramic heater plate having a complicated shape while maintaining a predetermined performance. .

また、Ntを利用した反応焼結とすることができること
から、セラミック成形体ではなくSi成形体を用いるこ
とができることになり、加工度の低く1価なSi粉末原
料を用いることができることになる。
Furthermore, since reaction sintering can be performed using Nt, a Si molded body can be used instead of a ceramic molded body, and a monovalent Si powder raw material with a low degree of processing can be used.

(実施例) 以下、本発明の実施例を、第1図、第2図に示すような
円環状のセラミックヒータlを製造する場合について説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to a case where an annular ceramic heater l as shown in FIGS. 1 and 2 is manufactured.

先ず、第3図、第4図に示すように、円環状の金属Si
圧粉成形体(以下、Si成形体)2を成形する。このS
i成形体2は、例えば、プレス1′E900kg/cm
2の金属プレス等により形成される。
First, as shown in FIGS. 3 and 4, a circular metal Si
A powder compact (hereinafter referred to as a Si compact) 2 is molded. This S
i The molded body 2 is, for example, press 1'E900kg/cm
2. It is formed by a metal press or the like.

次に、金属Ti粉ペースト3を、第5図、第6図に示す
ようにSi成形体2表面に数度にわたり塗布する。金属
′「i粉ペースト3は。平均粒径5μm以ドの金属]゛
ii粉末チルセルロースを加えて作られたものが用いら
れる。上記金属Ti粉ペースト3の塗布の厚さβは、例
えばfl、=150μmとされる。
Next, a metal Ti powder paste 3 is applied to the surface of the Si molded body 2 several times as shown in FIGS. 5 and 6. The metal Ti powder paste 3 is made by adding powdered chillulose (metal with an average particle size of 5 μm or less).The coating thickness β of the metal Ti powder paste 3 is, for example, fl , = 150 μm.

次いで、Si成形体2に対して別のSi成形体2′を重
ね、再度プレスして第一段目の焼結を行なう。」二記別
のSi成形体2′は金属1゛i粉ペースト:3が収まる
溝部(図示略)を有しており、このSi成形体2′と1
1」記Si成形体2と金属Ti粉ペースト3とが被焼結
体を構成する。焼結は、N、雰囲気中、例えば1400
℃、150hrの条件の下で行なわれる。これにより、
Si成形体2.2′は、N2によって窒化され、焼結体
として5izNaが反応焼結によって得られ、同時に金
属Ti粉ペースト3のTi扮末もTiNとなってTiN
導電体層(導電性窒化物)となることになる。また、ペ
ースト成分であるセルロースも一部、カーボンCとなっ
て残留している。この段階では、焼結層は、気孔率が約
20%となっており、TiNが空気中の02と反応して
酸化され、強度も低くなっている。
Next, another Si molded body 2' is stacked on the Si molded body 2 and pressed again to perform the first stage of sintering. The other Si molded body 2' has a groove (not shown) in which the metal 1 powder paste 3 is accommodated, and this Si molded body 2' and 1
1'' The Si molded body 2 and the metal Ti powder paste 3 constitute a body to be sintered. Sintering is carried out in an atmosphere of N, e.g. 1400
C. for 150 hours. This results in
The Si molded body 2.2' is nitrided with N2, and 5izNa is obtained as a sintered body by reaction sintering, and at the same time, the Ti powder of the metal Ti powder paste 3 also turns into TiN.
This will become a conductive layer (conductive nitride). In addition, a portion of cellulose, which is a paste component, remains as carbon C. At this stage, the sintered layer has a porosity of about 20%, TiN reacts with 02 in the air and is oxidized, and its strength is also low.

このため、上記内容を解決するために第二段[]の焼結
としてHI P処理を行なう。この場合、ガラスカプセ
ル法によって外周面を封じる必要がある。HI P処理
は、例えば1650℃でlhr、N2ガス圧2000気
圧下で行われる。
Therefore, in order to solve the above problem, HIP treatment is performed as the second stage [] of sintering. In this case, it is necessary to seal the outer peripheral surface using a glass capsule method. The HIP process is performed, for example, at 1650° C. for 1 hr under N2 gas pressure of 2000 atm.

この結果、緻密なSi:+Naの焼結体4が得られると
同時に、TiN導電体層5も緻密化され、良好な発熱抵
抗体となった。
As a result, a dense Si:+Na sintered body 4 was obtained, and at the same time, the TiN conductor layer 5 was also made dense, resulting in a good heating resistor.

次に、ゴiNの端部6を露出させるように切断して抵抗
値を測定した。結果はR(25℃)=80mΩであった
。なお、TiN導電体層5の断面形状は厚さ100μm
、幅4mmで、発熱抵抗体としての長さはX線透過にて
約8cmである事を確認した。
Next, the GoiN was cut to expose the end portion 6, and the resistance value was measured. The result was R (25°C) = 80 mΩ. Note that the cross-sectional shape of the TiN conductor layer 5 has a thickness of 100 μm.
It was confirmed by X-ray transmission that the width was 4 mm, and the length as a heating resistor was about 8 cm.

次に、このようにして得られたセラミックヒータ1の1
,7温特性を調べた。電源は12Vバツテリを用いた。
Next, 1 of the ceramic heater 1 obtained in this way
, 7-temperature characteristics were investigated. A 12V battery was used as the power source.

その結果は第7図に示すように所望のものとなった。The results were as desired as shown in FIG.

以」二天施例について説明したが本発明にあっては、次
のようなものを包含する。
Although two embodiments have been described above, the present invention includes the following.

■1”iに代えて、■、I−1f、Z「等IV A l
疾、VA族の金属を用いて扮ペーストを作ること。これ
らは、窒化物として導電性を有し、反応焼結時の温度に
て融解しないからである。
■Instead of 1”i, ■, I-1f, Z” etc.IV A l
To make a paste using metals from the VA group. This is because these have conductivity as nitrides and do not melt at the temperature during reaction sintering.

■本発明に係るIyJ造方法により、第8図、第9図に
示すように、ディーゼルエンジンにおける渦流室噴[1
部7を形成すること。その場合、Si成形体は:3分割
で作り、発熱体層は2層形成することになる。その池、
自動iNエンジンにおける吸気ヒータ、グロープラグ簿
を製造すること。
■By the IyJ manufacturing method according to the present invention, as shown in FIGS. 8 and 9, swirl chamber jet [1
Forming part 7. In that case, the Si molded body will be made by dividing into three parts, and two heating element layers will be formed. That pond,
To manufacture intake heaters and glow plugs for automatic iN engines.

(発明の効果) 本発明は以に述へたように、所定性能を維持し、111 つつ複雑形状のセラミックヒータをも製造することがで
きる。
(Effects of the Invention) As described below, the present invention can maintain a predetermined performance and manufacture ceramic heaters with complex shapes.

またセラミック成形体ではなくSi成形体を用いること
ができることになり、加工度の低く廉価なSi粉末原料
を用いることができる。
Moreover, it is possible to use a Si molded body instead of a ceramic molded body, and it is possible to use an inexpensive Si powder raw material with a low degree of processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円環状セラミックヒータを示す手面図、 第2図は第1図の正面図、 第3図は円環状Si成形体を示す9It−面図、第4図
は第3図の正面図、 第5図はSi成形体表面に金属Ti粉ペーストを塗布し
た状態を示す′Ttlrii図、第6図は第5図の正面
図、 第7図はセラミックヒータの表+ni温度−通電時間、
電流−通電時間の関係を示す特性線図、第8図は本発明
に係る方法を用いて形成された渦流室噴口部を示すf面
図、 第9図は第8図の縦断面図である。 I:セラミックヒータ 2.2′ :成形体 3:金属Ti粉ペースト 特許出廓人マツダ株式会社 第1図   第3図 第2図   第4図
Fig. 1 is a hand view showing the annular ceramic heater, Fig. 2 is a front view of Fig. 1, Fig. 3 is a 9It-plane view showing an annular Si molded body, and Fig. 4 is a front view of Fig. 3. Figure 5 is a 'Ttlrii diagram showing a state in which metal Ti powder paste is applied to the surface of a Si molded body, Figure 6 is a front view of Figure 5, Figure 7 is a table of ceramic heater + ni temperature - energizing time,
A characteristic diagram showing the relationship between current and energization time; FIG. 8 is a f-plane view showing the vortex chamber nozzle formed using the method according to the present invention; FIG. 9 is a longitudinal cross-sectional view of FIG. 8. . I: Ceramic heater 2.2': Molded body 3: Metal Ti powder paste Patent distributor Mazda Motor Corporation Figure 1 Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)一対の金属Si圧粉成形体で該一対の金属Si圧
粉成形体間に金属VIA若しくはVA族粉ペーストを埋設
した被焼結体を、N_2雰囲気下で焼結して、焼結体に
形成し、 前記焼結体に熱間静水圧処理を施す、 ことを特徴とするセラミックヒータの製造方法。
(1) Sintering a pair of metal Si compacted bodies with metal VIA or VA group powder paste embedded between the pair of metal Si compacted bodies is sintered in an N_2 atmosphere. 1. A method for manufacturing a ceramic heater, comprising: forming a ceramic heater into a ceramic heater body, and subjecting the sintered body to hot isostatic pressure treatment.
JP63019085A 1988-01-29 1988-01-29 Manufacture of ceramic heater Pending JPH01195685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019085A JPH01195685A (en) 1988-01-29 1988-01-29 Manufacture of ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019085A JPH01195685A (en) 1988-01-29 1988-01-29 Manufacture of ceramic heater

Publications (1)

Publication Number Publication Date
JPH01195685A true JPH01195685A (en) 1989-08-07

Family

ID=11989613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019085A Pending JPH01195685A (en) 1988-01-29 1988-01-29 Manufacture of ceramic heater

Country Status (1)

Country Link
JP (1) JPH01195685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226767A (en) * 1988-03-07 1989-09-11 Hitachi Ltd Electrically conductive material and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226767A (en) * 1988-03-07 1989-09-11 Hitachi Ltd Electrically conductive material and production thereof

Similar Documents

Publication Publication Date Title
US4427915A (en) Spark plug and the process for production thereof
KR100705991B1 (en) Sintered stick-shaped heater
EP0933342A3 (en) Ceramic heater and method of manufacturing the same
JPH0512402B2 (en)
JPH01195685A (en) Manufacture of ceramic heater
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
DE2812986B2 (en) Process for the manufacture of a body from silicon nitride
JP3963412B2 (en) Heating resistor for ceramic heater, ceramic heater, and method for manufacturing ceramic heater
JPS60186480A (en) Manufacture of press processed matter
JPH02240201A (en) Forming die for compact body and manufacture of compact body
JP3981482B2 (en) Method for producing silicon nitride sintered body and method for producing ceramic heater
JPH0770610A (en) Method for sintering injection-molded product
JP2530209B2 (en) Ceramic heater manufacturing method
JP3151663B2 (en) Method for producing Mo (Al, Si) 2-based material at low temperature
JPS58121588A (en) Cylindrical ceramic heater
JPH03150276A (en) Multilayered ceramic material and production thereof
JPH04347329A (en) Ceramics sub-combustion chamber for diesel engine and manufacture thereof
JP2585132B2 (en) Manufacturing method of powdered sintered products
JPH03151258A (en) Manufacture method for anisotropic electrically conductive ceramic composite
JPH02311376A (en) Production of sintered material by hot isotropic pressurizing treatment
JPS643829B2 (en)
JPS6459720A (en) Manufacture of superconductive ceramic processing material
JPH0328303A (en) Mold material for metallic mold
JP2000302545A (en) Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION
JPH0437655A (en) Production of ceramic sintered body