JP2000302545A - Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION - Google Patents

Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION

Info

Publication number
JP2000302545A
JP2000302545A JP11113820A JP11382099A JP2000302545A JP 2000302545 A JP2000302545 A JP 2000302545A JP 11113820 A JP11113820 A JP 11113820A JP 11382099 A JP11382099 A JP 11382099A JP 2000302545 A JP2000302545 A JP 2000302545A
Authority
JP
Japan
Prior art keywords
powder
ferroelectric
sintering method
constant
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11113820A
Other languages
Japanese (ja)
Inventor
Shiro Shimada
志郎 嶋田
Junichi Takahashi
順一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11113820A priority Critical patent/JP2000302545A/en
Publication of JP2000302545A publication Critical patent/JP2000302545A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a Bi4Ti3O12 ferroelectric for a dense sintered compact by a simple process. SOLUTION: The designated amounts of TiO2 powder and Bi2O3 powder as raw materials are weighed, blended to obtain calcined powder, which is then compacted. The compacted body is filled in a carbon die together with reduction preventing powder, which is then sintered while plasma is discharged by a constant heating speed sintering method to sinter a sample by heating to 800-1,000 deg.C at a constant speed under pressure and holding for a prescribed time or a constant electric current sintering method to sinter a sample while supplying a constant electric current under pressure until 800-900 deg.C to produce the sintered compact having 95% relative density with good reproducibility.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子セラミック
スに用いられるBi4Ti3O12強誘電体に係り、放電プラズ
マ焼結法を用いて、短時間加熱で組成変動がなく、誘電
損失の少ない緻密なBi4Ti3O12強誘電体を得るBi4Ti3O12
強誘電体とその製造方法に関する。
TECHNICAL FIELD The present invention relates to a Bi 4 Ti 3 O 12 ferroelectric used in electronic ceramics, using the spark plasma sintering method, there is no composition change in a short time heating, low dielectric loss Bi 4 Ti 3 O 12 to obtain a dense Bi 4 Ti 3 O 12 ferroelectric
The present invention relates to a ferroelectric and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、電子セラミックス、機能性セラ
ミックス部品として用いられるBi4Ti3O12強誘電体は、
原料として、TiO2微粉とBi2O3微粉を所定量秤量後、湿
式混合、乾燥した後、700℃〜900℃で焼成して、仮焼粉
を得た後、粉砕後成形し、その後、大気中で1150℃で2
時間、焼結する普通焼結法により得られていた。
In general, electronic ceramics, functional ceramics Bi 4 Ti is used as component 3 O 12 ferroelectric,
As raw materials, after weighing a predetermined amount of TiO 2 fine powder and Bi 2 O 3 fine powder, wet mixing, drying, firing at 700 ° C to 900 ° C, obtaining calcined powder, pulverizing and molding, 2 at 1150 ° C in air
It has been obtained by the ordinary sintering method in which sintering is performed for a long time.

【0003】[0003]

【発明が解決しようとする課題】しかし、普通焼結法に
より得られた強誘電体は緻密化されるが、必ずしも、製
造プロセス上で容易な方法とは言い難い。
However, the ferroelectric obtained by the ordinary sintering method is densified, but it is not always easy in the manufacturing process.

【0004】この発明は、Bi4Ti3O12強誘電体を得るのに簡
単なプロセスで、誘電特性にすぐれた緻密な焼結体を作
製できるBi4Ti3O12強誘電体とその製造方法の提供を目
的としている。
[0004] The present invention provides a Bi 4 Ti 3 O 12 ferroelectric and a method for producing a dense sintered body having excellent dielectric properties by a simple process for obtaining a Bi 4 Ti 3 O 12 ferroelectric. It is intended to provide a method.

【0005】[0005]

【課題を解決するための手段】発明者は、簡単なプロセ
スで誘電特性にすぐれた緻密な焼結体を作製する方法に
ついて種々検討し、近年サーメット材料の製作に用いら
れる放電プラズマ焼結法に着目した。
Means for Solving the Problems The inventor has studied various methods for producing a dense sintered body having excellent dielectric properties by a simple process, and has recently developed a spark plasma sintering method used for producing cermet materials. I paid attention.

【0006】放電プラズマ焼結法は、カーボンダイス中に粉
末試料を充填し、加圧下で通電により急速昇温し、短時
間で試料を緻密化する焼結法である。しかし、この焼結
法の適用に関し、酸化物、特に電子材料の作製に関する
研究はあまり見あたらない。
[0006] The spark plasma sintering method is a sintering method in which a powder sample is filled in a carbon die, the temperature is rapidly increased by applying electricity under pressure, and the sample is densified in a short time. However, with respect to the application of this sintering method, few studies have been made on the production of oxides, particularly electronic materials.

【0007】発明者らは、非鉛化合物強誘電体であるBi4Ti3
O12に放電プラズマ焼結法を適用し、その製造条件につ
いて検討した。その結果、原料のTiO2粉末、Bi2O3粉末
を所定量秤量して仮焼粉を得た後、これを円柱状に成形
後、成形体を還元防止粉末と共にカーボンダイス内に充
填し、加圧下で定速(50℃/min)で800℃〜1000℃にまで
昇温して種々時間保持する定速昇温焼結法と、加圧下で
定電流にて800℃〜900℃になるまで通電、焼結する定電
流焼結法を試験した。
[0007] The inventors have found that a lead-free compound ferroelectric, Bi 4 Ti 3
O 12 discharge plasma sintering method is applied to, and examined the manufacturing conditions. As a result, a predetermined amount of the raw material TiO 2 powder and Bi 2 O 3 powder were weighed to obtain a calcined powder, which was formed into a columnar shape, and the formed body was filled into a carbon die together with a reduction preventing powder, Constant temperature ramp-up sintering method in which the temperature is raised to 800 ° C to 1000 ° C at constant speed (50 ° C / min) under pressure and held for various hours, and 800 ° C to 900 ° C at constant current under pressure The constant current sintering method of conducting and sintering was tested.

【0008】その結果、発明者らは、前者の定速昇温焼結法
では焼結の際に流れる電流値の変動とともに、得られる
Bi4Ti3O12焼結体の密度が変動するものの、相対密度が9
0%以上で、Bi4Ti3O12単一相の強誘電体が得られること
を知見した。
As a result, the inventors have obtained the former constant-speed temperature-increased sintering method with the fluctuation of the current value flowing during sintering.
Although the density of the Bi 4 Ti 3 O 12 sintered body fluctuates, the relative density is 9
It was found that a Bi 4 Ti 3 O 12 single phase ferroelectric substance was obtained at 0% or more.

【0009】また発明者らは、後者の定電流焼結法では電流
値に依存せず、850℃で緻密化が起こり、相対密度が約9
5%の焼結体が再現性よく作製でき、得られた焼結体の生
成相はBi4Ti3O12単一相からなり、均一な微細構造であ
ることを知見した。
[0009] In addition, in the latter constant-current sintering method, densification occurs at 850 ° C without depending on the current value, and the relative density is about 9%.
It was found that a 5% sintered body could be produced with good reproducibility, and the resulting phase of the obtained sintered body was composed of a single phase of Bi 4 Ti 3 O 12 and had a uniform microstructure.

【0010】すなわち、この発明は、所要の原料粉末の混合
粉を焼成して得られた仮焼粉を成形後、成形品を望まし
くは還元防止粉末と共に放電プラズマ焼結法にて焼結
し、相対密度が90%以上で、生成相がBi4Ti3O12の単一相
からなるBi4Ti3O12強誘電体を得ることを特徴とするBi4
Ti3O12強誘電体とその製造方法である。
[0010] That is, the present invention is to form a calcined powder obtained by firing a mixed powder of the required raw material powder, and then sinter the molded article together with a desirably reduced powder by a discharge plasma sintering method. a relative density of 90% or more, Bi 4 the production phase is characterized by obtaining a Bi 4 Ti 3 O 12 ferroelectric composed of a single phase of Bi 4 Ti 3 O 12
This is a Ti 3 O 12 ferroelectric and its manufacturing method.

【0011】[0011]

【発明の実施の形態】この発明において、仮焼粉は、原
料のTiO2粉末とBi2O3粉末をBi4Ti3O12組成になる如く秤
量し、湿式混合、乾燥後、700℃で焼成して仮焼粉を得
る方法など、公知のいずれの仮焼粉の製造方法を採用で
きる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a calcined powder is prepared by weighing raw materials of TiO 2 powder and Bi 2 O 3 powder so as to have a Bi 4 Ti 3 O 12 composition, wet-mixing and drying, and then heating at 700 ° C. Any known calcined powder manufacturing method such as a method of calcining to obtain a calcined powder can be adopted.

【0012】この発明において、仮焼粉の成形方法は、実施
例に示す一軸加圧および冷間静水圧プレス(CIP)方法の
他、公知のいずれの成形法も採用できる。
In the present invention, any known molding method can be employed as a method for molding the calcined powder, in addition to the uniaxial pressing and cold isostatic pressing (CIP) method described in the embodiments.

【0013】この発明において、放電プラズマ焼結法は、前
記成形体に直接パルス状の電気エネルギーを加え、発生
した放電プラズマを熱拡散、電界拡散に応用して、従来
の焼結法に比較して低温、短時間で緻密な焼結体を製造
するものであり、ここでは定速昇温焼結法と定電流焼結
法が採用できる。
[0013] In the present invention, the discharge plasma sintering method is compared with the conventional sintering method by directly applying pulsed electric energy to the compact and applying the generated discharge plasma to thermal diffusion and electric field diffusion. The method is for producing a dense sintered body in a short time at a low temperature, and here, a constant-speed sintering method and a constant-current sintering method can be adopted.

【0014】定速昇温焼結法は、実施例に示すごとく、成形
体を還元防止粉末と共にダイス内に充填し、加圧下で焼
結温度800℃〜1000℃にまで、定速、例えば50℃/minで
昇温し、その後0〜30分保持するもので、電流値、昇温
速度や保持時間は、目的とする密度、後述する還元防止
粉末種などに応じて適宜選定するとよい。
As shown in the examples, the constant-speed temperature-increased sintering method involves filling a compact together with a reduction-preventing powder in a die, and sintering under pressure to a sintering temperature of 800 ° C. to 1000 ° C. at a constant speed, for example, 50 ° C. The temperature is raised at a rate of ° C./min, and then the temperature is held for 0 to 30 minutes. The current value, the rate of temperature rise, and the holding time may be appropriately selected according to the target density, the type of the anti-reduction powder described below, and the like.

【0015】定電流焼結法は、実施例に示すごとく、成形体
を還元防止粉末と共にダイス内に充填し、加圧下で例え
ば、450A、700Aで800℃〜900℃になるまで通電し、焼結
するもので、電流値などは、目的とする密度、後述する
還元防止粉末種などに応じて適宜選定するとよい。
[0015] In the constant current sintering method, as shown in the examples, the compact is filled in a die together with the anti-reduction powder, and a current is applied under pressure, for example, at 450A, 700A until the temperature reaches 800 ° C to 900 ° C, and the sintering is performed. The current value and the like may be appropriately selected according to the target density, the type of the anti-reduction powder described below, and the like.

【0016】この発明において、ダイスは、耐熱性、導電性
を考慮してカーボンダイスを採用することが望ましい。
又、加圧力は成形体の形状や目的とする密度などに応じ
て適宜選定するとよい。
[0016] In the present invention, it is desirable to adopt a carbon die in consideration of heat resistance and conductivity.
Further, the pressing force may be appropriately selected according to the shape of the molded body, the target density, and the like.

【0017】この発明において、還元防止粉末としては、Al
2O3粉末、ZrO2粉末、SbドープSnO2粉末、SnO2-ZrO2混合
粉末が考えられるが、Al2O3粉末では焼結体の相対密度
が65%で緻密化が十分でなく、又ZrO2粉末では相対密度
が75%で緻密化が十分でなく、又SbドープSnO2粉末ではS
nO2粉末自体が焼結し、焼結体と強く接合するので好ま
しくなく、SnO2-ZrO2混合粉末を使用した場合は、電流
量に関係なしに焼結温度850℃以上で、相対密度は95%以
上が得られるため好ましい。
[0017] In the present invention, as the anti-reduction powder, Al
2 O 3 powder, ZrO 2 powder, Sb-doped SnO 2 powder, SnO 2 -ZrO 2 mixed powder can be considered, but with Al 2 O 3 powder, the relative density of the sintered body is 65% and densification is not enough, ZrO 2 powder has a relative density of 75% and is not sufficiently densified, while Sb-doped SnO 2 powder has
Since the nO 2 powder itself sinters and strongly bonds to the sintered body, it is not preferable.If the SnO 2 -ZrO 2 mixed powder is used, the sintering temperature is 850 ° C. or higher regardless of the current amount, and the relative density is It is preferable because 95% or more can be obtained.

【0018】この発明による製造方法で得られた焼結体は、
組成変動のない緻密なセラミックスとなる。
[0018] The sintered body obtained by the manufacturing method according to the present invention is:
It becomes a dense ceramic without composition fluctuation.

【0019】[0019]

【実施例】実施例1 TiO2粉末とBi2O3粉末をBi4Ti3O12組成になる如く秤量
し、湿式混合、乾燥後、700℃で焼成して仮焼粉を得
た。この仮焼粉を一軸加圧(50MP)およびCIP(100MP)で外
径10mm、厚み2mmに成形した。
Example 1 TiO 2 powder and Bi 2 O 3 powder were weighed so as to have a Bi 4 Ti 3 O 12 composition, wet-mixed, dried, and fired at 700 ° C. to obtain a calcined powder. This calcined powder was formed into an outer diameter of 10 mm and a thickness of 2 mm by uniaxial pressing (50MP) and CIP (100MP).

【0020】得られた成形体を、Al203、ZrO2、SnO2、SnO2/
ZrO2の還元防止粉末と共に、カーボンダイス内に充填
し、39MPaの加圧下で、表1に示すごとく焼結温度800℃
〜1000℃にまで、50℃/minの定速で昇温し、その後0〜3
0分保持する定速昇温焼結法による放電プラズマ焼結を
行い、緻密化を調べた。
[0020] The resulting molded article, Al 2 0 3, ZrO 2 , SnO 2, SnO 2 /
Filled together with ZrO 2 anti-reduction powder in a carbon die and pressurized at 39MPa, sintering temperature 800 ℃ as shown in Table 1.
Up to 1000 ° C at a constant rate of 50 ° C / min.
Spark plasma sintering was performed by a constant-speed temperature-rising sintering method for 0 minutes, and the densification was examined.

【0021】Al203粉末の場合には、800〜900℃の焼結でBi4
Ti3O12の単一相が得られたが、相対密度に違いは見られ
ず、約65%であった。そこで、さらに高温の1000℃での
焼結を試みたが、還元により金属Biが生成した。
In the case of Al 2 O 3 powder, Bi 4
Although a single phase of Ti 3 O 12 was obtained, there was no difference in relative density, and it was about 65%. Then, sintering at a higher temperature of 1000 ° C. was attempted, but metal Bi was generated by reduction.

【0022】また、ZrO2粉末の場合に、900℃で0〜30分焼結
を行った結果、焼結時間5分以後は相対密度の変化はな
く、約75%であった。導電性酸化物であるSbドーブSnO2
粉末を用いて、緻密な焼結体の作製を試みたところ、Sn
O2粉末自体が焼結するとともに試料との強い接合が生じ
た。
In the case of ZrO 2 powder, sintering was performed at 900 ° C. for 0 to 30 minutes. As a result, the relative density did not change after sintering time of 5 minutes, and was about 75%. Sb Dove SnO 2 is a conductive oxide
When trying to make a dense sintered body using powder, Sn
The O 2 powder itself sintered and a strong bond with the sample occurred.

【0023】SnO2粉末とZrO2粉末との混合粉末を用いた場合
の焼結について調べた。表2にその結果を示す。焼結に
及ぼす導電性粉末使用の効果は大きく、著しい高密度化
が見られた。
The sintering in the case of using a mixed powder of SnO 2 powder and ZrO 2 powder was examined. Table 2 shows the results. The effect of using the conductive powder on sintering was great, and a remarkable increase in density was observed.

【0024】[0024]

【表1】 【table 1】

【0025】[0025]

【表2】 [Table 2]

【0026】実施例2 次に、SnO2粉末とZrO2粉末との混合粉末(SnO2/ZrO2=3/
1)と共にカーボンダイス内に充填し、39MPaの加圧下で
定電流450A(800℃以上での平均昇温速度75℃/min)、ま
たは700A(250℃/min)で800〜900℃になるまで通電し、8
50℃に到達後、直ちに通電を止めた。昇温時間、加熱時
間合わせて8〜10分であった。
Example 2 Next, a mixed powder of SnO 2 powder and ZrO 2 powder (SnO 2 / ZrO 2 = 3 /
Fill into a carbon die together with 1), constant current 450A under the pressure of 39MPa (average heating rate 75 ° C / min above 800 ° C), or 800-900 ° C at 700A (250 ° C / min) Energize, 8
Immediately after the temperature reached 50 ° C., the power supply was stopped. The total time for heating and heating was 8 to 10 minutes.

【0027】作製したBi4Ti3O12焼結体試料の相対密度は、
電流量によらず850℃以上で約95%であり、生成相は図1
に示すごとくBi4Ti3O12の単一相であった。
The relative density of the manufactured Bi 4 Ti 3 O 12 sintered body sample was
Approximately 95% above 850 ° C regardless of the amount of current.
As shown in the figure, it was a single phase of Bi 4 Ti 3 O 12 .

【0028】焼結体の微細構造を観察したところ、昇温速度
により顕著な違いが現れた。450Aで作製した焼結体は、
試料全体で均一な組織(図2a)を有していたが、700Aで急
速昇温により作製したものは、緻密な部分(図2b)とネッ
ク形成しか見られない部分(図2c)が混在した組織であっ
た。
Observation of the microstructure of the sintered body revealed a remarkable difference depending on the heating rate. The sintered body made with 450A
Although the whole sample had a uniform structure (Fig. 2a), the one produced by rapid heating at 700A had a mixture of a dense part (Fig. 2b) and a part where only neck formation was observed (Fig. 2c). Organization.

【0029】従って、放電プラズマ焼結法は、固相反応で合
成したBi4Ti3O12粉末に対しては、得られた成形体をSnO
2粉末とZrO2粉末との混合粉末(SnO2/ZrO2=3/1)で覆い、
450Aで850℃まで定電流加熱することが最適条件である
ことが明らかになった。
[0029] Therefore, the spark plasma sintering method uses SnO powder for Bi 4 Ti 3 O 12 powder synthesized by a solid phase reaction.
2 powder and a mixed powder of ZrO 2 powder (SnO 2 / ZrO 2 = 3/1),
It became clear that heating at 450A to 850 ℃ with constant current was the optimal condition.

【0030】[0030]

【発明の効果】この発明は、実施例に明らかなように、
Bi4Ti3O12強誘電体を得るのに放電プラズマ焼結法を用
いて、簡単なプロセスで短時間加熱で組成変動がなく、
誘電損失の少ない緻密なBi4Ti3O12強誘電体を得ること
ができる。
According to the present invention, as is apparent from the embodiments,
Using a plasma plasma sintering method to obtain Bi 4 Ti 3 O 12 ferroelectric material, there is no change in composition with a simple process and short-time heating,
A dense Bi 4 Ti 3 O 12 ferroelectric material having a small dielectric loss can be obtained.

【0031】特に、定電流焼結法による放電プラズマ焼結で
は、電流値に依存せず、850℃で緻密化が起こり、相対
密度が95%の焼結体が再現性よく作製でき、生成相がBi4
Ti3O12単一相の均一な微細構造からなるBi4Ti3O12強誘
電体が得られる。
In particular, in spark plasma sintering by the constant current sintering method, densification occurs at 850 ° C. without depending on the current value, and a sintered body having a relative density of 95% can be produced with good reproducibility. But Bi 4
A Bi 4 Ti 3 O 12 ferroelectric having a uniform fine structure of a Ti 3 O 12 single phase is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明によるBi4Ti3O12焼結体のXRDパターン
図である。
FIG. 1 is an XRD pattern diagram of a Bi 4 Ti 3 O 12 sintered body according to the present invention.

【図2】a,b,cはこの発明によるBi4Ti3O12焼結体の微細
構造を示す顕微鏡写真である。
FIGS. 2a, 2b and 2c are photomicrographs showing the microstructure of a Bi 4 Ti 3 O 12 sintered body according to the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA11 AA12 AA31 AA35 BA09 GA07 5G303 AA10 AB20 BA09 BA12 CA01 CB05 CB31 CB35 CB39 CC08 DA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G031 AA11 AA12 AA31 AA35 BA09 GA07 5G303 AA10 AB20 BA09 BA12 CA01 CB05 CB31 CB35 CB39 CC08 DA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 相対密度が90%以上で、生成相がBi4Ti3O
12の単一相からなるBi4Ti3O12強誘電体。
Claims: 1. The relative density is 90% or more, and the generated phase is Bi 4 Ti 3 O
Bi 4 Ti 3 O 12 ferroelectric consisting of 12 single phases.
【請求項2】 所要の原料粉末の混合粉を焼成して得ら
れた仮焼粉を成形後、成形品を放電プラズマ焼結法にて
焼結するBi4Ti3O12強誘電体の製造方法。
2. Production of a Bi 4 Ti 3 O 12 ferroelectric material in which a calcined powder obtained by firing a mixed powder of required raw material powders is molded, and the molded product is sintered by a discharge plasma sintering method. Method.
【請求項3】 所要の原料粉末の混合粉を焼成して得ら
れた仮焼粉を成形後、成形品を還元防止粉末と共に放電
プラズマ焼結法にて焼結するBi4Ti3O12強誘電体の製造
方法。
3. A Bi 4 Ti 3 O 12 steel which is formed by calcining a calcined powder obtained by calcining a mixed powder of required raw material powders and then sintering the molded product together with a reduction preventing powder by a discharge plasma sintering method. A method for manufacturing a dielectric.
【請求項4】 請求項2又は請求項3において、放電プラ
ズマ焼結法を定速昇温焼結法にて行うBi4Ti3O12強誘電
体の製造方法。
4. The method for producing a Bi 4 Ti 3 O 12 ferroelectric according to claim 2 or 3, wherein the spark plasma sintering method is performed by a constant-speed temperature-rise sintering method.
【請求項5】 請求項2又は請求項3において、放電プラ
ズマ焼結法を定電流焼結法にて行うBi4Ti3O12強誘電体
の製造方法。
5. The method for producing a Bi 4 Ti 3 O 12 ferroelectric according to claim 2, wherein the spark plasma sintering method is a constant current sintering method.
【請求項6】 請求項3において、還元防止粉末は、SnO2
粉末とZrO2粉末の混合粉末であるBi4Ti3O12強誘電体の
製造方法。
6. The method according to claim 3, wherein the reduction-preventing powder comprises SnO 2
A method for producing Bi 4 Ti 3 O 12 ferroelectric, which is a mixed powder of powder and ZrO 2 powder.
【請求項7】 請求項3において、SnO2粉末とZrO2粉末と
の混合割合が重量比で3:1であるBi4Ti3O12強誘電体の製
造方法。
7. The method for producing a Bi 4 Ti 3 O 12 ferroelectric according to claim 3, wherein a mixing ratio of the SnO 2 powder and the ZrO 2 powder is 3: 1 by weight.
JP11113820A 1999-04-21 1999-04-21 Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION Pending JP2000302545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11113820A JP2000302545A (en) 1999-04-21 1999-04-21 Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11113820A JP2000302545A (en) 1999-04-21 1999-04-21 Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION

Publications (1)

Publication Number Publication Date
JP2000302545A true JP2000302545A (en) 2000-10-31

Family

ID=14621874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11113820A Pending JP2000302545A (en) 1999-04-21 1999-04-21 Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION

Country Status (1)

Country Link
JP (1) JP2000302545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036433A (en) * 2010-08-05 2012-02-23 Mitsubishi Materials Corp BiTi BASED OXIDE SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036433A (en) * 2010-08-05 2012-02-23 Mitsubishi Materials Corp BiTi BASED OXIDE SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
TW201243996A (en) Method for producing electrostatic chuck and electrostatic chuck
Kong et al. Preparation of PMN–PT ceramics via a high-energy ball milling process
CN107046739B (en) High-power silicon nitride ceramics heating sheet and its interior hard outer soft production method
CN106376107A (en) Large-power silicon nitride ceramic heating plate and inner-soft outer-hard manufacturing method thereof
JP4571728B2 (en) Silicon nitride sintered body and manufacturing method thereof
CN101734924B (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
CN112919902A (en) Preparation method of electric field assisted low-temperature rapid sintering fine-grain barium titanate capacitor ceramic
CN107129301A (en) A kind of PLZT/ alumina composite ceramics material and preparation method thereof
Vasylkiv et al. Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering—a comparative study
CN106977201A (en) High-purity high-strength high-ductility zirconia composite ceramics ultra thin plate and preparation method thereof
CN106977199A (en) High-purity ultra-toughness zirconia composite ceramics gear and preparation method thereof
JP2000302545A (en) Bi4Ti3O12 FERROELECTRIC AND ITS PRODUCTION
JP3034132B2 (en) Zirconia solid electrolyte
CN109456055A (en) A kind of high breakdown high polarization bismuth-sodium titanate ceramic material, preparation method and application
JPH07126061A (en) Magnesia-based sintered material and production thereof
CN114773034A (en) Preparation method of high-stability negative temperature coefficient thermal sensitive ceramic material
JP7414300B2 (en) Zirconium boride/boron carbide composite and its manufacturing method
JP2002223013A (en) Thermoelectric conversion element and manufacturing method of it
JP2000247729A (en) Alumina base sintered compact
JPH0770610A (en) Method for sintering injection-molded product
KR101021848B1 (en) METHOD OF FABRICATING A SPUTTERING TARGET OF ZnS COMPOSITE AND SPUTTERING TARGET OF ZnS COMPOSITE PREPARED THEREBY
JP2005213131A (en) Ceramics and method of manufacturing the same
JP2000302546A (en) Bi4Ti3O12 FERROELECTRIC SUBSTANCE AND ITS PRODUCTION
WO2024023499A1 (en) Uniform flash sintering
CN117550610A (en) High-entropy disilicide and preparation method thereof