JPH01195503A - Control method using function of evaluation - Google Patents

Control method using function of evaluation

Info

Publication number
JPH01195503A
JPH01195503A JP1937788A JP1937788A JPH01195503A JP H01195503 A JPH01195503 A JP H01195503A JP 1937788 A JP1937788 A JP 1937788A JP 1937788 A JP1937788 A JP 1937788A JP H01195503 A JPH01195503 A JP H01195503A
Authority
JP
Japan
Prior art keywords
function
value
evaluation function
controlled
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1937788A
Other languages
Japanese (ja)
Other versions
JP2649370B2 (en
Inventor
Tetsuo Mannaka
万中 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63019377A priority Critical patent/JP2649370B2/en
Publication of JPH01195503A publication Critical patent/JPH01195503A/en
Application granted granted Critical
Publication of JP2649370B2 publication Critical patent/JP2649370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the quality of products and to secure the operating safety by selecting an optimum weight coefficient of the function of evaluation in accordance with the control ability of a plant which varies by the operating conditions. CONSTITUTION:A form detecting device 1 sends the extension error rate distribu tion epsilon(x) to a form recognizing device 2 and the device 2 sends a quartic func tion coefficient ai of the epsilon(x) to an optimum controller 3. The controller 3 decides the vendor force DELTAFi and operates the vendor of a rolling mill so that the value of the function J of evaluation defined by the following equation and by means of the target form value air and the result ai. That is, J= W1(DELTAa1r-DELTAa1)<2>+W2(DELTAa2r-DELTAa2)<2>+W3(DELTAa3r-DELTAa3)<2 >+W4(DELTAa4r-DELTAa4)<2>, where Wi shows a weight coefficient, i.e., the function of the plate width of a rolling material. Then W3 and W4 are set at the small value since the correlation between DELTAa3 and DELTAa4 is increased as the plate width of the rolling material is reduced. The W3 and W4 are sent to the controller 3 from a weight coefficient setting device 4. Then the vendor of the rolling mill is controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は評価関数を用いた制御方法に係り、特に複数の
操作量を変化させることにより、複数の制御量を所定の
目標値に一致させることができる制御方法に関する。 〔従来の技術〕 目標値と実績値との偏差の自乗の項を、ひとつの要素と
する評価関数を最小にする様に、複数の操作量を用いて
、複数の制御量を制御する場合において、一般に操作量
Ml(i=1〜m)と、制御量C5(j=1〜n)の間
には、次式で表わされる関係がある。 ここで、GIJは操作量MJと制御量CIに関する伝達
関数である。一般にG I J≠0であり、これはある
操作量MIを変化させると、全ての制御量C1(i=1
〜n)がそれに伴って変化することを表わしている。 上記のような制御量をある目標値に近ずけるためには、
制御量と目標値との偏差の自乗和を要素とする評価関数
というものが用いられ、この評価関数の値が最大または
最小となるように制御する方法が知られている(例えば
特開昭59−168502号公報)。 しかし、上記公報の技術では、評価関数中の重み係数を
増減させる際に、CRT画面を眺めながら行なうように
すること、すなわちCRT画面を道具として利用するこ
とが開示されているが、その重み係数の値をどのように
して決定するのかということについては示されていなか
った。 また、従来の評価関数ではその基本的な考え方としては
、(1)式で表現される制御量を目標値に一致させるた
めに、(1)式の制御量に目標値を代入し、その連立方
程式を操作量について解き、求めるべき操作量Mを決定
することであった。 〔発明が解決しようとする課題〕 しかしながら、各操作端MtとMJとの間に強い相関関
係が存在し、独立性があまり見られない様な制御対象で
は、制御量を目標値に一致させるための前記制御量Mの
値は、大きな値となってしまう。一般に操作量Mは、制
御限界を持っているため、単純に(1)式の連立方程式
にて解いた答は実現不可能な値となる。つまり、独立な
n個の操作量を持つ制御対象では、n個の制御量を操作
量の限界内で操作することが可能であるが、その操作量
の間に強い相関関係が存在する場合は、n個の制御量を
独立に制御することは困難となる。 上記の様なシステムにて、制御量を目標値に一致させる
様な制御を行うと、常に操作量は上下限値に達し、プラ
ントの操業が非常に不安定になってしまう。 このような操作量間の相関関係は、操業条件に大きく依
存していることが普通である。実操業に於いてもある条
件ではn個の操作量にて、n個の制御量を操業上安定に
制御可能であるので、オペレータも品質向上のためなる
べく多くの制御量を操作するが、他のある条件ではn個
の制御量を操作しようとすると、操業が不安定になり事
故につながるため、ある程度誤差の許容出来る制御量は
ある程度フリーとし、最小限必要な制御量に注目して操
作を行なわざるを得ない。 本発明の目的は、複数の操作量によって複数の制御量が
相関関係を持って制御されるシステムにおいて、システ
ムが最も能力を発揮できるようすることができる評価関
数を用いた制御方法に関する。 〔課題を解決するための手段〕 上記目的を達成するために1本発明の評価関数を用いた
制御方法は、複数の目標値と複数の制御量との偏差の自
乗に重み係数を掛算し、その掛算値の総和を評価関数と
するとともに、該評価関数の値が最大または最小となる
ように複数の操作量を決定する評価関数を用いた制御方
法において。 前記操作量の互いの相関が強く、独立に制御される前記
制御量が減少したとき、該制御量を含む項に掛ける重み
係数を、他の項に掛ける重み係数よりも小さくすること
を特徴とする。
[Industrial Field of Application] The present invention relates to a control method using an evaluation function, and particularly to a control method that can make a plurality of controlled variables coincide with a predetermined target value by changing a plurality of manipulated variables. [Prior art] When controlling multiple controlled variables using multiple manipulated variables so as to minimize the evaluation function in which one element is the term of the square of the deviation between the target value and the actual value. Generally, there is a relationship expressed by the following equation between the manipulated variable Ml (i=1 to m) and the controlled variable C5 (j=1 to n). Here, GIJ is a transfer function regarding the manipulated variable MJ and the controlled variable CI. Generally, G I J≠0, which means that when a certain manipulated variable MI is changed, all controlled variables C1 (i=1
~n) changes accordingly. In order to bring the above control amount close to a certain target value,
An evaluation function whose element is the sum of the squares of the deviation between the control amount and the target value is used, and a method of controlling the evaluation function so that the value becomes the maximum or minimum is known (for example, Japanese Patent Application Laid-Open No. 59 -168502). However, the technique disclosed in the above publication discloses that the weighting coefficient in the evaluation function is increased or decreased while looking at the CRT screen, that is, the CRT screen is used as a tool. There was no indication as to how to determine the value of . In addition, the basic idea of conventional evaluation functions is that in order to make the controlled variable expressed by equation (1) match the target value, the target value is substituted for the controlled variable in equation (1), and the simultaneous The purpose was to solve the equation for the manipulated variable and determine the manipulated variable M to be obtained. [Problem to be solved by the invention] However, in a controlled object where there is a strong correlation between each operating end Mt and MJ and little independence is seen, it is difficult to make the controlled variable match the target value. The value of the control amount M becomes a large value. Since the manipulated variable M generally has a control limit, the answer simply solved by the simultaneous equations of equation (1) will be an unrealizable value. In other words, for a controlled object that has n independent manipulated variables, it is possible to manipulate the n controlled variables within the limits of the manipulated variables, but if there is a strong correlation between the manipulated variables, , n control variables independently. When such a system as described above performs control such that the controlled variable matches the target value, the manipulated variable always reaches the upper and lower limit values, making the operation of the plant extremely unstable. The correlation between such manipulated variables usually largely depends on operating conditions. In actual operation, under certain conditions, it is possible to stably control n controlled variables using n manipulated variables, so operators also manipulate as many controlled variables as possible to improve quality. Under certain conditions, if you try to manipulate n control variables, the operation will become unstable and lead to an accident. Therefore, the control variables that can tolerate a certain degree of error should be set free to some extent, and the operations should focus on the minimum required control variables. I have no choice but to do it. An object of the present invention is to relate to a control method using an evaluation function that allows the system to exhibit its full potential in a system in which a plurality of control variables are controlled in a correlated manner by a plurality of manipulated variables. [Means for Solving the Problems] In order to achieve the above object, a control method using the evaluation function of the present invention multiplies the square of the deviation between a plurality of target values and a plurality of control variables by a weighting coefficient, In a control method using an evaluation function that uses the sum of the multiplication values as an evaluation function and determines a plurality of manipulated variables so that the value of the evaluation function becomes maximum or minimum. When the manipulated variables have a strong mutual correlation and the independently controlled controlled variable decreases, a weighting coefficient applied to a term including the controlled amount is made smaller than a weighting coefficient applied to other terms. do.

【作用】[Effect]

上記方法によ九ば、操業条件により、各操作量間の相関
が強くなり、独立に制御される制御量が減少した場合、
相関の強い制御量に関する評価関数の項の重み係数を他
の項の重み係数より小さくする事により、制御量の不具
合を許容出来る範囲で犠牲にして、相関の強い操作量が
操作限界tこ達する事を防止でき、操業の安定化を図れ
る。逆に各操作量の独立性が出る様な操業条件に於いて
は、各制御量の重み係数の値を等しくする事により。 操業の安定性を確保すると同時に、各制御量を目標値に
一致させることができる。 〔実施例〕 以下に本発明の一実施例として、圧延プラント↓こおけ
る圧延材の形状制御について説明する。 第2図に示すように圧延機10は、各々一対づつ設けら
れたワークロール11、中間ロール12゜およびバック
アップロール13より構成され、バックアップロール1
3に圧延力を加えて、上下のクークロール11に挾持さ
れた圧延材14を圧延するようになっている。圧延され
た圧延材14は圧延機1の出側に設置された形状検出器
1.5にょリ、その形状が検出される。 ところで、一般に圧延材の形状は、第3図に示すように
、圧延による圧延材長手方向の伸びの板幅方向での分布
で表わされる。これを定量的に表わしたのが伸び差率ε
であり、この伸び差率εは次式により求められる。 Q。 ここで、Qo:圧延材の長平方向の基準直線長さQ:Q
0区間での圧延材波弧長 X :圧延材の板幅方向での任意位置 である。 本実施例の形状制御は、上記伸び差率ξの分布が目標値
になるように制御することである。 伸び差率εの分布は、圧延力によるロールの撓みや、ロ
ール形状、圧延材の厚み分布等により決まる。一般に圧
延材の形状を操作する手段としては、ワークロール11
に撓みを与えるワークロールベンダー(図示せず)や、
中間ロール12に撓みを与える中間ロールベンダー(図
示せず)がある。これらの両ベンダは圧延機の駆動側と
操作側に設けられており、駆動側および操作側について
、対称に操作する場合と非対称に操作する場合とがある
ので、本実施例では4種類の操作量を持つことになる。 一方、伸び差率εの分布を制御するためには、この伸び
差率εを制御変数としてv!、ylし直す必要がある。 この方法は種々提案されているが、その一つとして、次
式に示す4次の中級数の係数にて板幅方向の伸び差率分
布を表現する方法がある。 ε ==  a、x+ a2x2+  a3x’+  
a4x’     −(3)ここで、x:圧延材の板幅
方向座枠 al (i==1〜4):中級数係数 である。 そして、ベンダーと伸び差率分布の中級数のa+(i=
1〜4)との関係は次式にて表わされる。 ここで、F工:ワークロールベンダー(対称成分)F2
:(非対称成分) F3=中間ロールベンダー(対称成分)F4=    
     (非対称成分)GthにΔF、とΔa1どの
伝達関数 Δ:変化分を表わす記号 である。 また、それぞれのベンダーの対称成分はΔa、。 Δa、にほとんど影響を及ぼさないことと、非対称成分
はΔa21 Δa4に影響を及ぼさないことより、(4
)式はさらに次式に変形可能である。 ここで、(5)式と(6)式は独立に取扱えるため、以
下(5)式で表わされる制御対象について説明する8G
は圧延条件により変化し、特に圧延材の板幅に大きく影
響する。中間ロールとワークロールは通常ロール径が異
なるためベンダーによるロールのたわみ分布の形が異な
る。しかしながら、圧延材の板幅が狭くなって来ると、
圧延材に接している部分のロールのたわみ分布形状はほ
ぼ同一となり、これはΔF1とΔF3に強い相関関係が
ある事になる。 したがって、板幅の狭い圧延材の形状をΔa2、Δa4
の両方について制御しようとすると、ΔF1とΔF、の
値は上・下限値に達し、圧延が不安定となるばかりでな
く、形状不具合自身も修正されない結果となる。 そこで、上記のような現象に対して、本実施例では第1
図に示すような制御システムを適用している。 まず形状検出装置1は、伸び差率分布ε(、)を形状認
識装置2に対して出力する。形状認識装置2は、E(、
)の4次関数係数at(i=1〜4)を最適制御装置3
に対して出力する。最適制御装置3は、形状目標値at
r(i=1〜4)と実績a。 (i=1〜4)を用い、次式で定義された評価関数Jの
値を最小にする様に、ベンダー力ΔFi(i=1〜4)
を決定し圧延機のベンダーを操作する。 J=w1(Δa1r−Δa x)” + vi’x (
Δair−Δa2)2+W、(Δa、r−Δa3)”+
W4(Δa4r−Δa4)8・・・(7) ここで、wt(i=1〜4)は重み係数である。なお、
このwt(i=1〜4)は圧延材の板幅の関数であり、
板幅が狭くなるとΔa39 Δa4は相関が強くなるた
め、W、、 W、は板幅の広い時に較べて小さな値とな
る様に決定される。決定されたWの値は、重み係数設定
装置4から最適制御装置3に出力され、ワークロールベ
ンダーおよび中間ロールベンダーが制御される。 したがって、板幅の狭い圧延材にて操業する場合は、形
状不良の高次成分(Δa3tΔaJ を多少犠牲にし、
大きな形状不良成分(Δa工、Δa2)を集中して制御
する。 その結果、ベンダーが限界値にまで達することなく安定
な操業を確保できるとともに、形状不良についても低次
の大まかな形状不良の修正が可能となる。 〔発明の効果〕 以上説明したように1本発明によれば、操業条件により
変化するプラントの制御能力に応じて。 評価関数の重み係数を最適な値に選択することが可能と
なり、製品品質の向上と操業の安定性確保を図ることが
できる。
According to the above method, if the correlation between each manipulated variable becomes strong depending on the operating conditions and the number of independently controlled controlled variables decreases,
By making the weighting coefficient of the term of the evaluation function regarding the highly correlated controlled variable smaller than the weighting coefficient of other terms, the highly correlated manipulated variable can reach the operating limit t, at the expense of an acceptable range of defects in the controlled variable. This can prevent problems and stabilize operations. Conversely, under operating conditions where each manipulated variable becomes independent, the weighting coefficients for each controlled variable should be made equal. While ensuring operational stability, each controlled variable can be made to match the target value. [Example] As an example of the present invention, shape control of a rolled material in a rolling plant will be described below. As shown in FIG. 2, the rolling mill 10 is composed of a pair of work rolls 11, an intermediate roll 12°, and a backup roll 13, each of which is provided in pairs.
A rolling force is applied to 3 to roll the rolled material 14 held between the upper and lower rolls 11. The shape of the rolled material 14 is detected by a shape detector 1.5 installed on the exit side of the rolling mill 1. By the way, the shape of a rolled material is generally expressed by the distribution of elongation in the longitudinal direction of the rolled material due to rolling in the width direction of the material, as shown in FIG. The quantitative expression of this is the elongation difference rate ε
, and this elongation difference rate ε is obtained by the following formula. Q. Here, Qo: Standard straight line length in the longitudinal direction of the rolled material Q: Q
Rolled material wave arc length X in section 0: An arbitrary position in the width direction of the rolled material. The shape control of this embodiment is to control so that the distribution of the elongation difference ratio ξ becomes a target value. The distribution of the elongation difference ε is determined by the deflection of the roll due to the rolling force, the roll shape, the thickness distribution of the rolled material, etc. Generally, the work roll 11 is used as a means for manipulating the shape of the rolled material.
A work roll bender (not shown) that gives deflection to the
There is an intermediate roll bender (not shown) that provides deflection to the intermediate roll 12. Both of these benders are provided on the drive side and the operation side of the rolling mill, and there are cases where they are operated symmetrically and cases where they are operated asymmetrically on the drive side and operation side, so there are four types of operations in this example. It will have a quantity. On the other hand, in order to control the distribution of the differential elongation rate ε, this differential elongation rate ε is used as a control variable v! , it is necessary to redo the yl. Various methods have been proposed for this, and one of them is a method of expressing the elongation difference distribution in the sheet width direction using a coefficient of a fourth-order intermediate series shown in the following equation. ε == a, x+ a2x2+ a3x'+
a4x' - (3) where x: plate width direction seat frame al of rolled material (i==1 to 4): intermediate series coefficient. Then, a+(i=
1 to 4) is expressed by the following equation. Here, F work: Work roll bender (symmetrical component) F2
: (Asymmetrical component) F3 = Intermediate roll bender (symmetrical component) F4 =
(Asymmetric component) Gth, ΔF, and Δa1, which are transfer functions Δ: Symbols representing changes. Also, the symmetrical component of each bender is Δa. (4
) can be further transformed into the following equation. Here, since equations (5) and (6) can be treated independently, the following 8G
varies depending on the rolling conditions, and has a particularly large effect on the width of the rolled material. Since intermediate rolls and work rolls usually have different roll diameters, the shape of the roll deflection distribution depending on the bender differs. However, as the width of the rolled material becomes narrower,
The deflection distribution shape of the roll in the portion in contact with the rolled material is almost the same, which means that there is a strong correlation between ΔF1 and ΔF3. Therefore, the shape of the narrow rolled material is Δa2, Δa4
If an attempt is made to control both ΔF1 and ΔF, the values of ΔF1 and ΔF will reach the upper and lower limits, and not only will rolling become unstable, but the shape defect itself will not be corrected. Therefore, in order to deal with the above phenomenon, in this embodiment, the first
The control system shown in the figure is applied. First, the shape detection device 1 outputs the differential elongation rate distribution ε(,) to the shape recognition device 2. The shape recognition device 2 has E(,
) of the quartic function coefficient at (i=1 to 4) by the optimal control device 3
Output for. The optimum control device 3 determines the shape target value at
r (i=1-4) and performance a. (i = 1 to 4), the bender force ΔFi (i = 1 to 4) is applied so as to minimize the value of the evaluation function J defined by the following formula.
Determine and operate the rolling mill bender. J=w1(Δa1r−Δa x)” + vi'x (
Δair−Δa2)2+W, (Δa, r−Δa3)”+
W4(Δa4r−Δa4)8 (7) Here, wt (i=1 to 4) is a weighting coefficient. In addition,
This wt (i=1 to 4) is a function of the plate width of the rolled material,
As the plate width becomes narrower, the correlation between Δa39 and Δa4 becomes stronger, so W,, W, are determined to be smaller values than when the plate width is wide. The determined value of W is output from the weighting factor setting device 4 to the optimum control device 3, and the work roll bender and intermediate roll bender are controlled. Therefore, when operating a rolled material with a narrow plate width, it is necessary to sacrifice the higher-order components of shape defects (Δa3tΔaJ to some extent,
Concentrate and control large shape defect components (Δa work, Δa2). As a result, it is possible to ensure stable operation without the bender reaching its limit value, and it is also possible to correct low-order rough shape defects. [Effects of the Invention] As explained above, according to the present invention, the control ability of the plant changes depending on the operating conditions. It becomes possible to select the weighting coefficient of the evaluation function to an optimal value, and it is possible to improve product quality and ensure operational stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る制御システムを示すブロック図、
第2図は本発明が適用される圧延プラントの模式図、第
3図は圧延材の形状を説明する図である。 1・・・形状検出装置、2・・・形状認識装置、3・・
・最適制御装置、4・・・重み係数設定装置、10・・
・圧延機、11・・・ワークロール、12・・・中間ロ
ール、13・・・バックアップロール、14・・・圧延
材、15・・・形状検出器。
FIG. 1 is a block diagram showing a control system according to the present invention,
FIG. 2 is a schematic diagram of a rolling plant to which the present invention is applied, and FIG. 3 is a diagram illustrating the shape of a rolled material. 1... Shape detection device, 2... Shape recognition device, 3...
・Optimal control device, 4...Weighting coefficient setting device, 10...
- Rolling mill, 11... Work roll, 12... Intermediate roll, 13... Backup roll, 14... Rolled material, 15... Shape detector.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の目標値と複数の制御量との偏差の自乗に重
み係数を掛算し、その掛算値の総和を評価関数とすると
ともに、該評価関数の値が最大または最小となるように
複数の操作量を決定する評価関数を用いた制御方法にお
いて、前記操作量の互いの相関が強く、独立に制御され
る前記制御量が減少したとき、該制御量を含む項に掛け
る重み係数を、他の項に掛ける重み係数よりも小さくす
ることを特徴とする評価関数を用いた制御方法。
(1) Multiply the square of the deviation between multiple target values and multiple control variables by a weighting coefficient, use the sum of the multiplied values as an evaluation function, and select multiple values so that the value of the evaluation function becomes the maximum or minimum In a control method using an evaluation function that determines a manipulated variable, when the manipulated variables have a strong mutual correlation and the independently controlled controlled variable decreases, a weighting coefficient to be applied to a term including the controlled variable is A control method using an evaluation function characterized in that the weighting coefficient is set smaller than the weighting coefficient multiplied by other terms.
JP63019377A 1988-01-29 1988-01-29 Control method using evaluation function Expired - Lifetime JP2649370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019377A JP2649370B2 (en) 1988-01-29 1988-01-29 Control method using evaluation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019377A JP2649370B2 (en) 1988-01-29 1988-01-29 Control method using evaluation function

Publications (2)

Publication Number Publication Date
JPH01195503A true JPH01195503A (en) 1989-08-07
JP2649370B2 JP2649370B2 (en) 1997-09-03

Family

ID=11997631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019377A Expired - Lifetime JP2649370B2 (en) 1988-01-29 1988-01-29 Control method using evaluation function

Country Status (1)

Country Link
JP (1) JP2649370B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148714A (en) * 1989-11-04 1991-06-25 Katsuhisa Furuta Furnace temperature controller by control input
JPH04277801A (en) * 1991-01-22 1992-10-02 Internatl Business Mach Corp <Ibm> Process controlling method and process controller, and method for controlling size in mask region

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168502A (en) * 1983-03-15 1984-09-22 Kansai Electric Power Co Inc:The Weight setting system for calculation of optimum control value

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168502A (en) * 1983-03-15 1984-09-22 Kansai Electric Power Co Inc:The Weight setting system for calculation of optimum control value

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148714A (en) * 1989-11-04 1991-06-25 Katsuhisa Furuta Furnace temperature controller by control input
JPH04277801A (en) * 1991-01-22 1992-10-02 Internatl Business Mach Corp <Ibm> Process controlling method and process controller, and method for controlling size in mask region

Also Published As

Publication number Publication date
JP2649370B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
KR930001222B1 (en) Method of controlling a shape of a rolled sheet material
EP0063605B1 (en) System for controlling the shape of a strip
Asano et al. Interaction measure of tension-thickness control in tandem cold rolling
JPH01195503A (en) Control method using function of evaluation
JP4470667B2 (en) Shape control method in temper rolling mill
US20020112514A1 (en) Method of operating a rolling train and a control system for a rolling train
JP4086119B2 (en) Shape control method in cold rolling of hot rolled steel strip before pickling
JPS6316804A (en) Method for controlling shape of sheet for multistage cluster rolling mill
JPH06134508A (en) Device for setting manipulated variable of sheet shape in rolling mill
JPS62230412A (en) Shape controlling method for rolling mill
JPH01181911A (en) Plate material shape controller for rolling mill
JPH04294811A (en) Method for controlling meandering in rolling mill
JP2696421B2 (en) Edge drop control method in strip rolling
JPS63264208A (en) Control method for shape of sheet stock
JPH04351214A (en) Controller for plate flatness
JPH10263650A (en) Method for controlling shape in cluster rolling mill
JP3770266B2 (en) Determining device for set value of plate crown and shape in rolling mill
JP2505990B2 (en) Edge-drop control method for strip rolling
JPH1043806A (en) Controller for shape of rolling mill
JPH1029010A (en) Method for controlling plate thickness in width direction of plate material
JPS61147913A (en) Meandering control method in thick plate rolling
JP3438871B2 (en) Rolling mill shape control method
JPH07256320A (en) Presetting method for rolling mill
JPH11123428A (en) Control method for shape in rolling of plate
JPH01254305A (en) Control method for shape of plate