JPS61147913A - Meandering control method in thick plate rolling - Google Patents

Meandering control method in thick plate rolling

Info

Publication number
JPS61147913A
JPS61147913A JP59268462A JP26846284A JPS61147913A JP S61147913 A JPS61147913 A JP S61147913A JP 59268462 A JP59268462 A JP 59268462A JP 26846284 A JP26846284 A JP 26846284A JP S61147913 A JPS61147913 A JP S61147913A
Authority
JP
Japan
Prior art keywords
rolling
plate
meandering
plate thickness
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59268462A
Other languages
Japanese (ja)
Inventor
Takanori Miyake
三宅 孝則
Masatoshi Inoue
井上 正敏
Kazuo Omori
大森 和郎
Yuji Tanaka
田中 佑児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59268462A priority Critical patent/JPS61147913A/en
Publication of JPS61147913A publication Critical patent/JPS61147913A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering

Abstract

PURPOSE:To increase the shape quality and products yield by selecting the optimal gains for the plate thickness, plate width and estimated crown on each rolling pass and by performing the correction of the roll draft position based on this optimal gain. CONSTITUTION:The list of optimal gains is made and prepared on each pass by experienced or off-line simulation model in advance classified by the plate thickness, plate width and estimated crown in a PID gain setting part 7. The plate thickness, plate width and estimated crown information on each rolling pass are given from the host computer each rolling stock, the optimal gains list is retrieved on each time and the decided optimal gains are automatically selected. The divergence command of the right and left rolls is operated by the prescribed equation from the right and left differential load detected by a load cell 3 and the meandering of the rolling stock 2 is controlled by controlling the servo valve 6 for hydraulic automatic control. With this method, the shape quality and yield of the rolling stock 2 are increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は厚板圧延に際し、厚板のオフセンターに原因し
て発生するロール左右の圧延荷重差に基きロール左右の
開度を調整し、ロール圧下位置を修正する蛇行制御方法
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention adjusts the opening degree of the left and right rolls based on the rolling load difference between the left and right rolls that occurs due to the off-center of the thick plate when rolling a thick plate. The present invention relates to a meandering control method for correcting the rolled down position of a roll.

(従来の技術) 厚板圧延における圧延のモデル図を第1図に示している
。第1図(〜は板幅Bの圧延材2が圧延機lの中心から
ワークサイド(WS)にδ■だけずれて圧延されている
状態である。この状態では圧延材2に作眉するワークサ
イド圧延荷重PWとドライブサイド圧延荷重PDの合力
の中心Qは圧延機1の中心よりドライブサイド(DS)
に寄っていることから、圧延材2の幅方向単位長さ当り
の圧延荷重の分布は第1図(b)に示すようにPd >
 PWとなる。
(Prior Art) A model diagram of rolling in thick plate rolling is shown in FIG. Figure 1 (~ shows a state in which a rolled material 2 with a plate width B is rolled with a deviation of δ■ from the center of the rolling mill l to the work side (WS). In this state, the workpiece to be formed on the rolled material 2 is The center Q of the resultant force of the side rolling load PW and the drive side rolling load PD is located on the drive side (DS) from the center of the rolling mill 1.
Therefore, the distribution of rolling load per unit length in the width direction of the rolled material 2 is as shown in Fig. 1(b), where Pd >
It becomes PW.

pw > FDであることからロールギャップはWSで
開く方向、DSで閉じる方向に変化する。このため圧延
材2の出側板厚分布は第1図e)に示すようにワークサ
イドの板厚hwとドライブサイドの板厚hDはhW >
 hDとなる。このときWSに比べてDSの圧延材料2
の圧延機1入側での進行速度が遅くなり、圧延材料2は
入側でWSへ曲がろうとし、蛇行がさらに進行する。ま
た第1図に)においてkは圧延機1片側のバネ定数を示
しているが、圧延機1の出側の材料板厚hW 、 hD
は次式(1)で表わされる。
Since pw > FD, the roll gap changes in the direction of opening at WS and closing at DS. Therefore, the thickness distribution on the outlet side of the rolled material 2 is as shown in Figure 1 e), where the thickness hw of the work side and the thickness hD of the drive side are hW >
It becomes hD. At this time, compared to WS, the rolled material 2 of DS
The advancing speed at the input side of the rolling mill 1 becomes slow, and the rolled material 2 tends to bend toward the WS at the input side, and the meandering progresses further. In addition, in Fig. 1), k indicates the spring constant on one side of the rolling mill 1, but the material plate thicknesses hW, hD on the exit side of the rolling mill 1 are
is expressed by the following equation (1).

PW hW=sW +  /)、 、bn−sD+ PD/l
c・・・α)ここにSWはワークサイドのロール開度i
9Dはドライブサイドのロール開度 したがって左右板厚差h(1f(−hW −hD )は
h(If−C$1− SD ) + (PW −FD 
)/に−Sdf + Pdf/k  ・曲・−曲・曲…
・・曲曲曲(g)となる。こうして左右ロール開度差8
dfと圧延荷重の差P(ifを検出することにより、出
側左右板厚差Mfを知ることができる。
PW hW=sW + /), , bn-sD+ PD/l
c...α) Here, SW is the roll opening degree i on the work side.
9D is the roll opening degree of the drive side. Therefore, the left and right plate thickness difference h(1f(-hW -hD) is h(If-C$1-SD) + (PW -FD
)/ni-Sdf + Pdf/k ・Song・-Song・Song…
...becomes a melodic song (g). In this way, the left and right roll opening difference is 8
By detecting the difference P(if) between df and the rolling load, it is possible to know the difference Mf in thickness of the left and right plates on the exit side.

蛇行m*とはWSと田の入側で左と右で速度差をつけな
いように、WSと08の圧下率を等しくすることである
。たとえば入側板断面形状が矩形、すなわちWSとDB
の板厚が等しいとすると、板を蛇行させないためには、
haf−0とすればよい。
Meandering m* means that the rolling reduction ratios of WS and 08 are made equal so that there is no speed difference between the left and right sides of the WS and the entry side of the field. For example, the cross-sectional shape of the entrance plate is rectangular, that is, WS and DB.
Assuming that the plate thicknesses are the same, in order to prevent the plate from meandering,
It may be set to haf-0.

sdr + Pdf/k −o ・−−−−−曲−−−
−−・−(s)となるように5(ifを制御することに
より、wsとDSの板厚差を零とすることができる。す
なわちSat + aPdf/k −o  −−−−−
−−曲−(4)を満足するようにBClfを制御すれば
、すなわちα(PIDゲインのうちのPゲイン)を変え
ることにより、圧延機lの幅方向の見かけ上の剛性を変
えることができる。第1図の場合はPdf > 0であ
るので式(4)から St −5D−Bat −−αPdf/k < 0−(
5)となるので、SW<SDつまりWSe開き方向、D
Sを閉じ方向に制御することにより蛇行を防止すること
ができる。いいかえればWSへ板が蛇行した場合はWS
を、またDBへ蛇行した場合はDBを蛇行量を修正でき
る量だけ閉める制御を行なえばよい。
sdr + Pdf/k -o ・------ Song---
By controlling 5(if) so that it becomes --・-(s), the difference in thickness between ws and DS can be made zero. In other words, Sat + aPdf/k −o −−−−−
--Curve--If BClf is controlled to satisfy (4), that is, by changing α (P gain of PID gain), the apparent stiffness of the rolling mill l in the width direction can be changed. . In the case of Fig. 1, Pdf > 0, so from equation (4), St −5D−Bat −−αPdf/k < 0−(
5), so SW<SD, that is, WSe opening direction, D
Meandering can be prevented by controlling S in the closing direction. In other words, if the board snakes toward WS, it is WS.
If the winding meandered towards the DB, the DB may be controlled to be closed by an amount that can correct the meandering amount.

ところが、厚板正弧においては、圧延材の左右温度差、
入側の左右板厚差、左右の圧延荷重検出値のアンバラン
スのため、左右圧延荷重差と蛇行量−との関係がl対l
に対応しない。それで前述のような原因により発生した
左右圧延荷重差を圧延材の蛇行によるものと誤認し、誤
った制御を行なわないようにするため、蛇行以外の原因
で発生する差荷重をPaft1 (ロックオン差荷重)
として次の方法で蛇行を制御する方法が一般的に行われ
ている。すなわちPatを圧延中に検出される実差荷重
とすれば、patより蛇行以外の原因で発生する差荷重
Pafoを引いた値ΔPdfが蛇行が原因で生じた差荷
重であるので、次式の如くなる。
However, in the normal arc of a thick plate, the temperature difference between the left and right sides of the rolled material,
Due to the difference in the thickness of the left and right plates on the entry side and the unbalance of the detected rolling load values on the left and right sides, the relationship between the difference in rolling load on the left and right sides and the amount of meandering is l to l.
does not correspond to Therefore, in order to prevent the left-right rolling load difference caused by the above-mentioned cause from being mistakenly caused by the meandering of the rolled material and to perform erroneous control, the differential load caused by causes other than meandering is set to Paft1 (lock-on difference). load)
The following method is generally used to control meandering. In other words, if Pat is the actual differential load detected during rolling, then the value ΔPdf, which is obtained by subtracting the differential load Pafo caused by causes other than meandering from pat, is the differential load caused by meandering, so it is expressed as the following equation: Become.

ΔPdf −Par −Pdfo・−−−−−−−−−
−−(6)板を蛇行させないためには式(4)によって
次式8df+αΔPdf/k −Q−・・・・・・・・
−(?)を満足するように5att−制御すればよい。
ΔPdf −Par −Pdfo・−−−−−−−−
--(6) In order to prevent the plate from meandering, use the following formula 8df + αΔPdf/k -Q-...
- (?) It is sufficient to perform 5att- control so as to satisfy.

従来から鋼帯等の圧延に際し、蛇行に基く板形状の修正
について、特公昭45−8780.特公昭56−100
8、特公昭59−86866等に記載の方法が提案され
ている。
Japanese Patent Publication No. 45-8780 describes correction of plate shape based on meandering when rolling steel strips, etc. Special Public Service 1977-100
8, the method described in Japanese Patent Publication No. 59-86866 has been proposed.

従来実施されている蛇行制御の一例を第2図にブロック
図で示す。同図に示すように従来の蛇行fa御法は圧延
材2を圧延する圧延機のワークロールlと圧延材2がオ
フセンター(蛇行)したことによって発生する差荷重p
af−pws −PDSを測定する左、右一対のロード
セル8と、ロードセル8から荷重を電圧として取出す四
−ド七ル盤4と、その中に圧延材3の噛込み(メタルイ
ン)直後(例えばO,S秒)の圧延荷重Pdfoを記憶
するりツクオン差荷重用メ令り−8と、ロックオン差荷
重P(ifoと差荷重P(ifとを比較し、その差Pd
f−P(if。
An example of conventional meandering control is shown in a block diagram in FIG. As shown in the figure, the conventional meandering fa control method is based on the differential load p generated when the work roll l of the rolling mill that rolls the rolled material 2 and the rolled material 2 are off-center (meandering).
A pair of left and right load cells 8 for measuring af-pws-PDS, a four-door seven plate 4 for taking out the load from the load cells 8 as voltage, Memorize the rolling load Pdfo (O, S seconds), and compare the lock-on differential load P(ifo and differential load P(if) with the lock-on differential load Pdfo, and calculate the difference Pd
f-P(if.

に&/k (ここにat係数、kstル定数)を掛ける
演算部10と、ざらにゲインαx(1)をかけ80PI
Dゲイン設定部γ等をもつ左右ロール開度指令出力用マ
イコン9と、左右の油圧自動厚味制脚弁6を作動させる
油圧圧下制御盤6等とから111成されている。この制
御方法の動作を説明すると、圧延材8がオフセンター(
蛇行)したことによって発生する差荷重Pe1tをロー
ドセル8を介してロード七ル盤4で検出し、左右ロール
開度指令用マイコン9によって、圧延材3が噛込まれた
直後のロックオン差荷重Pdfoと比較し、その差Pd
f−Pdf0に演算部1Gによって&/k (a :係
数、k:主〃。
The calculation unit 10 multiplies &/k (at coefficient here, kst constant) and roughly multiplies gain αx (1) to 80PI.
The system 111 consists of a microcomputer 9 for outputting left and right roll opening commands having a D gain setting section γ, etc., and a hydraulic pressure reduction control panel 6 for operating the left and right hydraulic automatic thickening leg valves 6, etc. To explain the operation of this control method, the rolled material 8 is off-center (
The differential load Pe1t generated by the rolling material 3 is detected by the load panel 4 via the load cell 8, and the lock-on differential load Pdfo immediately after the rolled material 3 is bit is detected by the microcomputer 9 for commanding the left and right roll opening. The difference Pd
&/k (a: coefficient, k: main) by the calculation unit 1G on f-Pdf0.

、定数)を掛け、更にPIDゲイン設定部によってゲイ
ンα(%)を掛け、左右ロール開度差指令値Δ−C(Δ
S※WS−ΔS※DS )を決定する。ロール開度差指
令値ΔSo7はリール胴長方向のセンターに対して%Δ
SO※ずつ開度差を振り分けて、油圧圧下制御盤5を介
して、左右の油圧自動厚味制御サーボ弁6の油圧レベル
をダイナミックに制御する。
, constant), and further multiplied by gain α (%) by the PID gain setting section to obtain the left and right roll opening difference command value Δ-C (Δ
S*WS−ΔS*DS) is determined. The roll opening degree difference command value ΔSo7 is %Δ with respect to the center in the reel body length direction.
The oil pressure level of the left and right oil pressure automatic thickness control servo valves 6 is dynamically controlled via the oil pressure reduction control panel 5 by distributing the opening difference by SO*.

(解決しようとする問題点) しかしながら従来の制御方法では板厚が大きいときと、
板厚が小さいときではオフセンター量(ミルセンターに
対する板幅上ンターのずれ)が同じでも、板厚が小さい
ときの方が差荷重の発生量が大きい、すなわち ΔP工:板厚が小であるときのオフセンタ一時の実際の
差荷重 ΔP、:板厚が大であるときのオフセンタ一時の実際の
差荷重 ΔP00□:板厚が小であるときのオフセンター要因の
みにより発生する差荷重 Δpoo、 :板厚が大であるときのオフセンター要因
のみにより発生する差荷重 ΔPkmよ:板厚が小であるときの変形抵抗差により発
生する差荷重 ΔPkBs :板厚が大であるときの変形抵抗差により
発生する差荷重 とすると、 ΔP −Δpoo  +ΔPkm、−・−−−−−・−
・CB)ΔP−Δpoo +ΔPkms  ・・・・・
・・・・・・・・・・(9)s であるから、板厚が小であるときのオフセンター要因の
みにより発生する差荷重と、板厚が大であるときのオフ
センター要因のみにより発生する差荷重とが等しい、す
なわち Δpoa−ΔP00゜ であっても、ΔPkInよ〉ΔPkm、のためΔP工〉
ΔP。
(Problem to be solved) However, with conventional control methods, when the plate thickness is large,
When the plate thickness is small, even if the off-center amount (deviation of the top center of the plate width relative to the mill center) is the same, the amount of differential load generated is larger when the plate thickness is small, that is, ΔP machining: the plate thickness is small. Actual differential load ΔP at the off-center moment when the plate thickness is large: Actual differential load ΔP00 at the off-center moment when the plate thickness is small: Differential load Δpoo caused only by off-center factors when the plate thickness is small: Differential load ΔPkm caused only by off-center factors when the plate thickness is large: Differential load ΔPkBs generated due to the deformation resistance difference when the plate thickness is small: Due to the deformation resistance difference when the plate thickness is large Assuming the differential load that occurs, ΔP −Δpoo +ΔPkm, −・−−−−−・−
・CB)ΔP−Δpoo +ΔPkms・・・・・・
・・・・・・・・・・・・(9) s Therefore, the differential load caused only by the off-center factor when the plate thickness is small, and the difference load caused only by the off-center factor when the plate thickness is large. Even if the differential load that occurs is equal, that is, Δpoa - ΔP00°, ΔPkIn〉ΔPkm, so ΔP engineering〉
ΔP.

となる、また逆に板厚が小であるときのオフセンタ一時
の実際の差荷重と、板厚が大であるときのオフセンタ一
時の実際の差荷重とが等しいとき、すなわち ΔP−ΔP。
Conversely, when the actual differential load at the off-center moment when the plate thickness is small is equal to the actual differential load at the off-center moment when the plate thickness is large, that is, ΔP - ΔP.

のとき ΔP km 、>ΔPkm、 #ΔP00□〈ΔP00
.となり、板厚率の方が、オフセンター量が小さくなる
When ΔP km, > ΔPkm, #ΔP00□〈ΔP00
.. Therefore, the off-center amount is smaller when the plate thickness ratio is higher.

従来の蛇行制御方法では、板厚の大小に拘わらずゲイン
一定で式(7)で左右ロール開度差指令の出力を出して
いた。そのため前述のように発生差荷重が同じ場合に、
左右ロール開度差指令が同じとなり、板厚が小であると
きは、オフセンター量が小さいにも拘わらず制御量が大
きくなりすぎ、逆に板の蛇行を助長するか、あるいは制
御しきれない結果となっていた。又板幅が広いか板クラ
ウンが小さいか、負のクラウンの場合、求心作用が小さ
いため、板噛込み後差荷重をロックオンし、その後差荷
重の偏差分だけ左右のロール開度差を制御しても、板の
蛇行は防止し難く、板厚が厚く、板幅が狭く、板クラウ
ンが大きい場合に比べて、どうしても板の横曲りが発生
していた。
In the conventional meandering control method, the gain is constant regardless of the size of the plate thickness, and the left and right roll opening difference command is output using equation (7). Therefore, as mentioned above, when the differential load is the same,
When the left and right roll opening difference commands are the same and the plate thickness is small, the control amount becomes too large even though the off-center amount is small, conversely promoting meandering of the plate or not being able to control it enough. That was the result. In addition, if the plate width is wide, the plate crown is small, or the plate has a negative crown, the centripetal action is small, so the differential load is locked on after the plate is engaged, and then the left and right roll opening difference is controlled by the deviation of the differential load. However, it is difficult to prevent the meandering of the board, and sideways bending of the board inevitably occurs compared to when the board is thick, narrow, and has a large crown.

(問題点を解決するための手段) 本発明は、従来の方法の有する欠点ならびに問題点を除
去、改善することのできる、厚板圧延における蛇行制御
方法に提供することを目的とするものであり、特許請求
の範囲記載の厚板圧延における蛇行制御方法を提供する
ことによって前記目的を達成することができる。すなわ
ちこの発明は厚板圧延に際し、厚板のオフセンターに原
因して発生するロール左右の圧延荷重差に基きロール左
右の開度を調整し、ロール圧下位置を修正する蛇行制御
方法において:圧延パス毎の被圧延材の板厚、板幅、予
測クラウンに応する最適ゲインを選択し;前記最適ゲイ
ンに基き前記ロール圧下位置を修正することにより、各
圧延パス内において被圧延材の蛇行とキャンパーの発生
を抑制する厚板圧延における蛇行制御方法に関する。
(Means for Solving the Problems) The present invention aims to provide a meandering control method in thick plate rolling that can eliminate and improve the drawbacks and problems of conventional methods. The above object can be achieved by providing a meandering control method in plate rolling as described in the claims. That is, the present invention provides a meandering control method in which the opening degree of the left and right rolls is adjusted based on the rolling load difference between the left and right rolls that occurs due to the off-center of the thick plate during rolling of a thick plate, and the rolling position of the rolls is corrected. Select the optimum gain corresponding to the plate thickness, plate width, and predicted crown of the rolled material for each rolling pass; By correcting the roll rolling position based on the optimum gain, meandering and camper of the rolled material can be reduced in each rolling pass. The present invention relates to a meandering control method in thick plate rolling that suppresses the occurrence of meandering.

以下本発明の厚板圧延における蛇行制御方法を説明する
。本発明においても基本的には第2図のブロック図で説
明した従来方法の蛇行制御と同様であり、圧延材2がオ
フセンター(蛇行)したことによって発生する差荷重P
dfをロードセル8を介してロードセル盤4で検出し、
左右ロール開度指令用マイコン9によって、圧延材2が
噛込まれた直後のロックオン差荷重P dfoと比較し
、その差Pdf −Pafoに演算部10によってa/
k (a :係数、k:tル定数)を掛け、更にPID
ゲイン設定部フによってゲインα(%)を掛け、左右ロ
ール開度差指令値ΔSc※(Δs”ws−ΔS※Da)
を決定する。ロール開度差指令値Δs(3はロール胴長
方向のセンターに対してhΔs□  ずつ開度差を振り
分けて、油圧圧下制御盤6を介して、左右の油圧自動厚
味[1gサーボ弁6の油圧レベルをダイナ主ツタに制御
することは同じであるが、従来の方法とはPIDゲイン
設定部の設定内容において著しく異なる。板厚が薄く、
板幅が広゛<、予測クラウンが小さいほど蛇行に対する
感受性が高いので、PIDゲイン設定部)において、板
厚、板幅、予測クラウン別にゲインを小さく設□・定で
きるように、圧延材毎にまたは圧延各パス毎□に、あら
かじめ、硅験的あるいはオフラインシミュレーションモ
デルで予測した圧延サイズ別の最適ゲインでもって自動
的に蛇行制御できるように表を作製する。表は例えば第
1表の如くであって板′厚(パスの出側板厚)、板幅、
予測クラウン別にゲインαl)がXI 、Xs * X
s・・・・・・・・・・・・の如く第1表 興見られている。圧延材毎、圧延各パス毎の板厚、板幅
、予測クラウン情報は上位計算機(プロコン)より与え
られ、第1表をそのたびに検索し、決定された最適ゲイ
ンαを自動的に選択し、検出され※ た差荷重から左右ロール開度指令Δs□  を次の式で
決定し、左右の油圧圧下自動制御を行い蛇行を制御する
のである。
The meandering control method in thick plate rolling according to the present invention will be explained below. The present invention is basically the same as the meandering control of the conventional method explained in the block diagram of FIG.
df is detected by the load cell board 4 via the load cell 8,
The left and right roll opening command microcomputer 9 compares the lock-on differential load P dfo immediately after the rolled material 2 is bitten, and the calculation unit 10 calculates a/
Multiply by k (a: coefficient, k: t constant), and then PID
Multiply the gain α (%) by the gain setting section F to obtain the left and right roll opening difference command value ΔSc*(Δs”ws−ΔS*Da)
Determine. The roll opening difference command value Δs (3 is hΔs Although the oil pressure level is controlled by the dynamo main vine, it is significantly different from the conventional method in the settings of the PID gain setting section.The plate thickness is thinner,
The wider the strip width and the smaller the predicted crown, the higher the sensitivity to meandering, so in the PID gain setting section), the gain is set for each rolled material so that the gain can be set smaller for each strip thickness, strip width, and predicted crown. Alternatively, for each rolling pass, a table is prepared so that meandering can be automatically controlled using the optimum gain for each rolling size predicted experimentally or by an offline simulation model in advance. For example, the table is as shown in Table 1, where plate thickness (pass exit side plate thickness), plate width,
The gain αl) for each predicted crown is XI, Xs * X
The first performance was watched as s...... The plate thickness, plate width, and predicted crown information for each rolled material and each rolling pass are given by the host computer (Procomputer), and Table 1 is searched each time, and the determined optimal gain α is automatically selected. The left and right roll opening command Δs□ is determined from the detected differential load using the following formula, and the left and right hydraulic pressure is automatically controlled to control meandering.

※。*.

Δs□−(cpar−paro)x”/、)α−(10
)ここに(lc:tル定数、a;係数、αニゲイン)次
に本発明を実施例について説明する。
Δs□−(cpar−paro)x”/,)α−(10
) where (lc: t constant, a: coefficient, α-gain) Next, the present invention will be described with reference to embodiments.

実施例 従来厚板圧延においてPIDゲインは90%に設定して
いたものを、板厚4.5〜8謡、板幅aoo。
Example In conventional thick plate rolling, the PID gain was set at 90%, but the plate thickness was 4.5 to 8 mm and the plate width was aoo.

〜4 Q Q QlllB、板長80,000 N40
,000mの圧延サイズにiいて第2表の如くゲインを
設定した。
~4 Q Q QllllB, plate length 80,000 N40
The gains were set as shown in Table 2 for a rolling size of ,000 m.

第2表 ゲイン設定表 このゲイ/を眉いて前記寸法の厚板を圧延し、圧延後の
最大横曲り量をシャーライン設置の形状認識装置で測定
した結果第8表の如く、蛇行はほぼ完全に制御され、板
の横曲り量(キャンバ−)が着しく減少した。
Table 2: Gain setting table A thick plate with the dimensions mentioned above was rolled with this gain/gay/ The amount of lateral bending (camber) of the board was significantly reduced.

但しnはデータ数 Xはキャンパー量の平均値で■はDJ への曲り、Oはwsへの曲り Fはキャンバ−のバラツキ なおこの実施例の場合、厚板の仕上圧延工程の全パスに
本発明の方法を適用したものであるが、本発明の方法は
必ずしも全パスに適用する必要はなく適当なパスを選ん
で実施しても、その効力を発揮できることは勿論である
However, n is the number of data. Although the method of the present invention is applied, it is of course not necessary to apply the method of the present invention to all passes, and the effectiveness can be exerted even if an appropriate pass is selected and implemented.

(発明の効果) 以上説明した如く本発明の厚板圧延における蛇行制御方
法においては、圧延パス毎の被圧延材の板厚、板幅、予
測クラウンに応する最適ゲインを選択し、前記最適ゲイ
ンに基きロール圧下位置を修正することにより、板の曲
りを大幅に減少することができ、良好な形状の厚板が得
られることになったので、製品の歩留りが向上し、その
効果は極めて大である。
(Effects of the Invention) As explained above, in the meandering control method in thick plate rolling of the present invention, the optimum gain is selected according to the plate thickness, plate width, and predicted crown of the material to be rolled for each rolling pass, and the optimum gain is By correcting the rolling position of the rolls based on the above, we were able to significantly reduce the bending of the plate and obtain thick plates with a good shape, improving the product yield and having an extremely large effect. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図<8)は圧延機モデル図、第1図伽)は圧延荷重
モデル図、第1図@)は板厚分布図、第2図は従来の蛇
行制御ブロック図である。 l・・・圧延機ワークロールS2・・・圧[材、8・・
・ロードセル(荷重検出器)、4・・・ロードセル盤、
5・・・油圧圧下制御板、6・・・油圧自動厚味制御用
サーボ弁、7・・・PID ケイン設定部、8・・・ロ
ックオフ荷重記憶層メモ!J −,9*7・左、有田−
ル開度差指令出力用マイコン、1G・・・演算部。 41rrass人 川崎−鉄株式金社 −代場人弁坦士 村田政治 同 弁理士 秦 iyg  也
Fig. 1 <8) is a rolling mill model diagram, Fig. 1 ス) is a rolling load model diagram, Fig. 1 @) is a plate thickness distribution diagram, and Fig. 2 is a conventional meandering control block diagram. l...Rolling mill work roll S2...pressure [material, 8...
・Load cell (load detector), 4...Load cell panel,
5...Hydraulic reduction control board, 6...Hydraulic automatic thickness control servo valve, 7...PID cane setting section, 8...Lock-off load storage layer memo! J-, 9*7・Left, Arita-
Microcomputer for outputting the valve opening difference command, 1G... calculation section. 41rrass person Kawasaki-Tetsu Co., Ltd. Kinsha-Daibanto Bentanshi Seitoshi Murata Patent attorney Hata IYG Ya

Claims (1)

【特許請求の範囲】 1、厚板圧延に際し、厚板のオフセンターに原因して発
生するロール左右の圧延荷重差に基きロール左右の開度
を調整し、ロール圧下位置を修正する蛇行制御方法にお
いて: 圧延パス毎の被圧延材の板厚、板幅、予測 クラウンに応する最適ゲインを選択し; 前記最適ゲインに基き前記ロール圧下位置 を修正することにより、各圧延パス内において被圧延材
の蛇行とキャンバーの発生を抑制することを特徴とする
厚板圧延における蛇行制御方法。
[Claims] 1. A meandering control method that adjusts the opening degree of the left and right rolls based on the rolling load difference between the left and right rolls that occurs due to the off-center of the thick plate during rolling of a thick plate, and corrects the rolled down position of the rolls. In: Select the optimum gain corresponding to the plate thickness, plate width, and predicted crown of the rolled material for each rolling pass; By correcting the roll rolling position based on the optimum gain, the rolled material can be adjusted in each rolling pass. A method for controlling meandering in thick plate rolling, which is characterized by suppressing the occurrence of meandering and camber.
JP59268462A 1984-12-21 1984-12-21 Meandering control method in thick plate rolling Pending JPS61147913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59268462A JPS61147913A (en) 1984-12-21 1984-12-21 Meandering control method in thick plate rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59268462A JPS61147913A (en) 1984-12-21 1984-12-21 Meandering control method in thick plate rolling

Publications (1)

Publication Number Publication Date
JPS61147913A true JPS61147913A (en) 1986-07-05

Family

ID=17458835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59268462A Pending JPS61147913A (en) 1984-12-21 1984-12-21 Meandering control method in thick plate rolling

Country Status (1)

Country Link
JP (1) JPS61147913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320111A (en) * 1986-07-14 1988-01-27 Ishikawajima Harima Heavy Ind Co Ltd Meandering controller
KR100425601B1 (en) * 1999-12-28 2004-04-03 주식회사 포스코 Real-time simulator of shape control system for rolling mills

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320111A (en) * 1986-07-14 1988-01-27 Ishikawajima Harima Heavy Ind Co Ltd Meandering controller
KR100425601B1 (en) * 1999-12-28 2004-04-03 주식회사 포스코 Real-time simulator of shape control system for rolling mills

Similar Documents

Publication Publication Date Title
JPS61147913A (en) Meandering control method in thick plate rolling
JP2001269706A (en) Method for controlling shape at continuous cold rolling
KOndo et al. A new automatic gauge control system for a reversing cold mill
JP3244117B2 (en) Edge drop control method in sheet rolling
JP2921779B2 (en) Asymmetric rolling compensating rolling mill
JP3067913B2 (en) Warpage control method in rolling
JPH0112566B2 (en)
JPH0347613A (en) Thickness control device for cold tandem mill
JPH059166B2 (en)
JPS61253109A (en) Control device for strip shape
JPH05237527A (en) Hot-rolled plate profile control method
JP3518508B2 (en) Rolling method of skin pass mill
JPH04305305A (en) Method for controlling elongation percentage of skinpass rolling mill
JPH09155420A (en) Method for learning setup model of rolling mill
JPS63260614A (en) Device for controlling shape in cluster mill
JPH0318963B2 (en)
JPH07204722A (en) Method for controlling strip position by automatic level adjusting device
JPS6011570B2 (en) Rolling equipment to prevent bending of rolled material
JPS6329606B2 (en)
JPH10128420A (en) Edge drop control method in cold rolling of plate
JPH03216207A (en) Method for controlling meandering of rolled stock
JPS63192507A (en) Controller for sheet flatness
JPH0234241B2 (en)
JPH09201610A (en) Method for controlling plate thickness in continuous rolling mill
JPS6372416A (en) Thickness compensation method for bited end part of rolled stock