JPH01195261A - Highly rust-resisting amorphous alloy - Google Patents

Highly rust-resisting amorphous alloy

Info

Publication number
JPH01195261A
JPH01195261A JP63019319A JP1931988A JPH01195261A JP H01195261 A JPH01195261 A JP H01195261A JP 63019319 A JP63019319 A JP 63019319A JP 1931988 A JP1931988 A JP 1931988A JP H01195261 A JPH01195261 A JP H01195261A
Authority
JP
Japan
Prior art keywords
amorphous alloy
rust
alloy
highly
resisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019319A
Other languages
Japanese (ja)
Inventor
Masahito Takeuchi
雅人 竹内
Mitsunori Hayashi
林 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP63019319A priority Critical patent/JPH01195261A/en
Publication of JPH01195261A publication Critical patent/JPH01195261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness

Abstract

PURPOSE:To obtain a highly rust-resisting amorphous alloy having superior rust resistance while maintaining excellent magnetic properties by specifying a composition consisting of Fe, Co, Cr, B, and Si. CONSTITUTION:This highly rust-resisting amorphous alloy has a composition represented by a general formula FevCowCrxBySiz (where the symbols (v), (w), (x), (y), and (z) stand for 60-78% by atom, 3-15%, 4-,12%, 8-20%, and 0-10%, respectively, and v+w+x+y+z=100% is satisfied) and this alloy maintains the superior magnetic properties of amorphous alloy. This amorphous alloy can be obtained by blending respective powders of the above metals, mixing them, melting the resulting mixture, and then subjecting the above molten alloy to super rapid cooling at >=about 10<4> deg.C/sec cooling rate. The above highly rust-resisting amorphous alloy can be suitably used as a material for various sensors for use in high-humidity places, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高耐錆性アモルファス合金に関し、特に、ア
モルファス合金の優れた磁気的特性(磁歪、透磁率、Δ
E効果等)を保持しつつ、しかも優れた耐錆性を備えた
高耐錆性アモルファス合金に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a highly rust-resistant amorphous alloy, and in particular, to the excellent magnetic properties (magnetostriction, magnetic permeability, Δ
The present invention relates to a highly rust-resistant amorphous alloy that maintains excellent rust resistance (e.g., E effect, etc.) and also has excellent rust resistance.

〔従来の技術〕[Conventional technology]

アモルファス合金は、金属を融解状態から結晶化を経な
いままに固化させて得られる非結晶体の材料であり、そ
の特殊な性質から種々の分野において実用化への開発が
進んでいる。特に鉄系のアモルファス合金は、磁歪およ
び透磁率が他の合金に比べて大きいため、機械信号と電
気信号との間の変換効率が高く、各種センサとしての応
用が期待されている。
Amorphous alloys are non-crystalline materials obtained by solidifying metals from a molten state without undergoing crystallization, and due to their special properties, they are being developed for practical use in various fields. In particular, iron-based amorphous alloys have higher magnetostriction and magnetic permeability than other alloys, so they have high conversion efficiency between mechanical signals and electrical signals, and are expected to be used as various sensors.

その例として、霜センサとしての利用(例えば特開昭5
7−35744号公報)、トルクセンサとしての利用(
例えば電気学会マグネティックス研究資料MAG−81
−72) 、流体圧センサ(特開昭6l−732)とし
ての利用、衝撃検知センサ(特開昭57−163827
)としての利用、位置センサ(特開昭6O−13581
9)としての利用等がすでに提案されている。
An example of this is its use as a frost sensor (for example,
7-35744), use as a torque sensor (
For example, the Institute of Electrical Engineers of Japan magnetics research material MAG-81
-72), use as a fluid pressure sensor (Japanese Unexamined Patent Publication No. 61-732), impact detection sensor (Unexamined Japanese Patent Application No. 57-163827)
) as a position sensor (Japanese Unexamined Patent Publication No. 6O-13581
9) has already been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、公知のアモルファス合金は良好な磁気的
特性を有しているが、錆易いという欠点を有しており、
湿度の高い場所、屋外などの厳しい環境下で使用される
材料としては利用しにくいという問題点がある。
However, although known amorphous alloys have good magnetic properties, they have the disadvantage of being susceptible to rust.
The problem is that it is difficult to use as a material for use in harsh environments such as in humid places or outdoors.

従って、アモルファス合金はセンサを始めその他種々の
用途が提案されているにも拘わらず未だ有効に利用され
ていないのが現状である。
Therefore, although amorphous alloys have been proposed for various uses including sensors, the current situation is that they have not yet been effectively utilized.

本発明は、上述した従来技術の問題点に鑑みてなされた
もので、アモルファス合金の優れた磁気的特性を保持し
つつ、しかも良好な耐錆性を備えた高耐錆性アモルファ
ス合金を提供することを目的としている。
The present invention has been made in view of the problems of the prior art described above, and provides a highly rust-resistant amorphous alloy that maintains the excellent magnetic properties of amorphous alloys and also has good rust resistance. The purpose is to

本発明者らは、上記目的に沿って鋭意研究し、まずFe
−B−8i系の鉄系アモルファス合金に、鉄の耐食性向
上に効果の大きいCrを第4成分として添加しその効果
を調べた。その結果、C「を導入すると確かに耐食性は
向上するが、磁歪と透磁率の低下が著しく、種々組成比
を変えて検討したが、これを改善するに至らなかった。
The present inventors conducted intensive research in line with the above objectives, and first
Cr, which is highly effective in improving the corrosion resistance of iron, was added as a fourth component to a -B-8i iron-based amorphous alloy, and its effect was investigated. As a result, it was found that although the corrosion resistance was certainly improved when C was introduced, the magnetostriction and magnetic permeability were significantly lowered, and although various composition ratios were investigated, this problem could not be improved.

そこで第5成分として種々の金属元素について検討した
結果、Crに加えてGoを所定量添加すると、磁歪が増
加するとともに、その組み合わせにより透磁率が著しく
改善され、しかも優れた耐錆性を打するアモルファス合
金が得られることを見い出し、本発明に到達した。
Therefore, as a result of studying various metal elements as the fifth component, we found that adding a certain amount of Go in addition to Cr increases magnetostriction, and the combination significantly improves magnetic permeability, and also provides excellent rust resistance. It was discovered that an amorphous alloy can be obtained, and the present invention was achieved.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

すなわち、本発明の高耐錆性センサ用アモルファス合金
は、一般式 %式% (上記式中、V十實+x +y +z 〜10(l a
t、%(原子%)であり、かつ、■は60〜78 at
、%、Wは3〜15at、%、Xは4〜12at%、y
は8〜20at、%、2は0=lOat、%である)で
示される組成を有することを特徴とする。
That is, the amorphous alloy for highly rust-resistant sensors of the present invention has the general formula % (in the above formula, V + x + y + z ~ 10 (la
t,% (atomic %), and ■ is 60 to 78 at
, %, W is 3 to 15 at%, %, X is 4 to 12 at%, y
is 8 to 20at, %, and 2 is 0=lOat,%).

〔作用〕[Effect]

本発明は、前記組成により、高耐錆性を得ることができ
る。
In the present invention, high rust resistance can be obtained by the above composition.

本発明の高耐錆性センサ用アモルファス合金は、従来か
ら知られているFe−B−Si系の鉄系アモルファス合
金を基合金とするものであり、Fe1BおよびSiの含
有量は、Feが60〜78 at、%、Bが8〜20a
t、%、そしてSiがO〜1Oat、%である。これら
の元素の含有量が上記範囲外では鉄系アモルファス合金
としての良好な磁気的特性が得られない。
The highly rust-resistant amorphous alloy for sensors of the present invention has a conventionally known Fe-B-Si iron-based amorphous alloy as its base alloy, and the content of Fe1B and Si is such that Fe is 60%. ~78 at, %, B is 8~20a
t, %, and Si is O~1 Oat, %. If the content of these elements is outside the above range, good magnetic properties as an iron-based amorphous alloy cannot be obtained.

本発明においては、上記Fe−B−8t系の鉄系アモル
ファス合金に、所定量のCOおよび所定量のCrを加え
ることにより、磁気的特性を損なうことなく耐錆性を向
上させるものである。
In the present invention, by adding a predetermined amount of CO and a predetermined amount of Cr to the Fe-B-8t-based iron-based amorphous alloy, the rust resistance is improved without impairing the magnetic properties.

特に、Crは耐錆性を向上するために含有され、合金中
4〜12 at、%含有される。その含有量が4at、
5未満では耐錆性を向上させる効果が小さく、12 a
t、%を越えると、センサ合金として必要な高磁歪が得
られない、と同時に、製造上でもより高融点、高粘度化
するために不都合が生じてくる。
In particular, Cr is contained in order to improve rust resistance, and is contained in the alloy in an amount of 4 to 12 at%. Its content is 4at,
If it is less than 5, the effect of improving rust resistance is small, and if it is less than 12 a
If it exceeds t,%, the high magnetostriction necessary for the sensor alloy cannot be obtained, and at the same time, there will be problems in manufacturing since the melting point and viscosity will be higher.

coは、前述した通り、Crの添加による磁気的特性の
劣化を防止するために含有され、合金中3〜15 at
、%含有される。その含有量が3  at、5未満では
磁歪、透磁率等の磁気的特性が不十分であり、15 a
t、%を越えると、透磁率が著しく悪化しセンサ合金と
して必要な磁気的特性が得られなくなる。
As mentioned above, co is contained in order to prevent deterioration of magnetic properties due to the addition of Cr, and contains 3 to 15 at
,% contained. If the content is less than 3 at, the magnetic properties such as magnetostriction and magnetic permeability will be insufficient;
If it exceeds t,%, the magnetic permeability deteriorates significantly and the magnetic properties required as a sensor alloy cannot be obtained.

本発明の高耐錆性センサ用アモルファス合金は、例えば
上記金属の粉末を上記組成で混合してなる混合金属粉を
融解し、この融解状態から結晶化を経ないままに急速に
冷却固化さ仕て得られる。例えば10’℃/sec以上
、通常104〜1011℃/SeCの冷却速度で超急冷
し、固化させることによって非晶質性であるアモルファ
ス合金が得られる。溶融状態の合金を超急冷する場合に
は、溶融合金をノズルから噴射させ、双ロール法、片ロ
ール法、遠心急冷法等の種々の公知の方法を採用して行
なう。このような超高速の冷却固化を行なうと、アモル
ファス合金は、通常、20〜30μmの薄帯状、薄線状
または細粉状で得られる。
The highly rust-resistant amorphous alloy for sensors of the present invention is prepared by melting a mixed metal powder obtained by mixing powders of the above metals with the above composition, and rapidly cooling and solidifying the molten state without undergoing crystallization. can be obtained. For example, by ultra-quenching and solidifying at a cooling rate of 10'C/sec or more, usually 104 to 1011C/SeC, an amorphous alloy can be obtained. When super-quenching a molten alloy, the molten alloy is injected from a nozzle and various known methods such as a twin-roll method, a single-roll method, and a centrifugal quenching method are employed. When such ultra-high-speed cooling and solidification is performed, an amorphous alloy is usually obtained in the form of a ribbon, thin wire, or fine powder of 20 to 30 μm.

また、上記組成は各種スパッタ法(高周波、プラズマ、
マグネトロン等)により特定基板に積層し、アモルファ
ス薄膜を得ることもできる。
In addition, the above composition can be modified using various sputtering methods (high frequency, plasma,
It is also possible to obtain an amorphous thin film by laminating it on a specific substrate using a magnetron, etc.).

上記のようにして得られる本発明のアモルファス合金は
、湿度が高い場所、屋外等の厳しい環境下で用いられる
種々のセンサ用材料として好ましく用いられる。例えば
、霜センサ、位置センサ、トルクセンサ、流体圧センサ
等のセンサ部に好適に適用できる。
The amorphous alloy of the present invention obtained as described above is preferably used as a material for various sensors used in harsh environments such as places with high humidity and outdoors. For example, it can be suitably applied to sensor units such as frost sensors, position sensors, torque sensors, and fluid pressure sensors.

ここでいう霜センサとは、アモルファス合金からなる磁
歪薄帯に弾性波を生じさせておき、磁歪薄帯に霜が付着
した際、弾性波の伝播損失が急激に増加する性質を利用
して、霜を検出するセンサをいう。
The frost sensor here refers to the property that an elastic wave is generated in a magnetostrictive ribbon made of an amorphous alloy, and when frost adheres to the magnetostrictive ribbon, the propagation loss of the elastic wave increases rapidly. A sensor that detects frost.

また、ここでいう位置センサとは、アモルファス磁歪薄
帯に巻回したコイルにパルス電圧を加え、所定の位置(
コイル上)にバイアス磁界(永久磁石による)を与える
と、その位置から磁歪振動波による誘導電圧が発生する
ので、そのタイミングを検出することにより指定位置を
正確に知ることができるものである。
Furthermore, the position sensor referred to here refers to a coil wound around an amorphous magnetostrictive ribbon, which is applied with a pulse voltage to a predetermined position (
When a bias magnetic field (by a permanent magnet) is applied to the coil (on the coil), an induced voltage due to magnetostrictive vibration waves is generated from that position, so by detecting the timing, the specified position can be accurately determined.

また、ここでいうトルクセンサとは、トルクを伝達する
回転軸表面にアモルファス磁歪薄帯を固着し、トルクに
より軸表面に発生する歪を前記薄帯の透磁率の変化とし
て検知するものである。
The torque sensor referred to herein is one in which an amorphous magnetostrictive ribbon is fixed to the surface of a rotating shaft that transmits torque, and the strain generated on the shaft surface due to torque is detected as a change in the magnetic permeability of the ribbon.

さらに、液体圧センサとは、アモルファス磁歪薄帯をダ
イヤフラムとし、そこにかかる流体圧を前記薄帯の透磁
率変化として検知するものである。
Furthermore, a liquid pressure sensor uses an amorphous magnetostrictive ribbon as a diaphragm, and detects the fluid pressure applied thereto as a change in magnetic permeability of the ribbon.

同様、衝撃検知センサとは、アモルファス磁歪薄帯に外
部から加わる衝撃応力を前記薄帯の透磁率変化として検
知するものである。
Similarly, an impact detection sensor detects an impact stress applied from the outside to an amorphous magnetostrictive ribbon as a change in magnetic permeability of the ribbon.

なお、本発明のアモルファス合金は、これら各種センサ
に限らず、耐錆性の要求される部位に用いるアモルファ
ス合金として有用である。
Note that the amorphous alloy of the present invention is useful not only for these various sensors but also as an amorphous alloy for use in areas where rust resistance is required.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と比較しつつ説明する。 Examples of the present invention will be described below while comparing them with comparative examples.

〈実施例t〜3および比較例1〜4〉 Fe   Co  Cr  B   Si4 よりなる
組75−X   7   x  14 成のアモルファス合金を単ロール液体急冷法で作製した
<Examples t to 3 and Comparative Examples 1 to 4> Amorphous alloys of the set 75-X7x14 consisting of FeCoCrBSi4 were produced by a single roll liquid quenching method.

なお、XはO(比較例1)、l(比較例2)、3 (比
較例3)、5(実施例1)、6(実施例2)、7(実施
例3)、8.(実施例4)と変化させた。
Note that X is O (Comparative Example 1), l (Comparative Example 2), 3 (Comparative Example 3), 5 (Example 1), 6 (Example 2), 7 (Example 3), 8. (Example 4).

得られたアモルファス合金の耐錆性および磁気的特性を
調べるために、下記に示す発錆試験および飽和磁歪試験
を行なった。
In order to investigate the rust resistance and magnetic properties of the obtained amorphous alloy, the following rust development test and saturation magnetostriction test were conducted.

(発  錆  試  験) 発錆試験においては、試験片を室温の蒸溜水に浸漬し、
発錆状態を目視によって観察し、錆が発生した時間によ
って発錆性を評価した。その結果を第1図に示す。
(Rust test) In the rust test, the test piece is immersed in distilled water at room temperature.
The state of rusting was visually observed, and the rusting ability was evaluated based on the time it took for rust to occur. The results are shown in FIG.

第1図から明らかなように、耐錆性はCrの含有量の増
加につれて向上し、約4  at、%から著しく向上す
ることが判る。
As is clear from FIG. 1, the rust resistance improves as the Cr content increases, and increases markedly from about 4 at.%.

(飽和磁歪試験) 飽和磁歪試験は次のようにして行なった。(Saturation magnetostriction test) The saturation magnetostriction test was conducted as follows.

試料の表面に半導体歪ゲージをゲージ用の瞬間接着剤に
て貼付した。次に外部より試料の磁化が飽和するまで磁
界を印加し、試料の伸縮を半導体歪ゲージの抵抗変化に
より測定した。磁界の印加力向を、リボン長手方向(λ
X)、中方向(λy)にし、以下の式により求めた。
A semiconductor strain gauge was attached to the surface of the sample using instant gauge adhesive. Next, a magnetic field was applied from the outside until the magnetization of the sample was saturated, and the expansion and contraction of the sample was measured by the change in resistance of a semiconductor strain gauge. The applied force direction of the magnetic field is set to the ribbon longitudinal direction (λ
X), and in the middle direction (λy), and was calculated using the following formula.

その結果を第2図に示す。The results are shown in FIG.

第2図から明らかなように、飽和磁歪はCrの含有量の
増加につれて減少する。
As is clear from FIG. 2, the saturation magnetostriction decreases as the Cr content increases.

〈実施例5〜6および比較例4〜6〉 片ロール液体急冷法により、 Fe   Co  Cr  B  Si4 よりなる組
75−x   X   7 14 成のアモルファス合金を得た。
<Examples 5-6 and Comparative Examples 4-6> Amorphous alloys having the composition 75-x X 7 14 consisting of Fe Co Cr B Si4 were obtained by a single roll liquid quenching method.

なお、XはO(比較例4)、7(実施例5)、15 (
実施例6)、22(比較例5)、30(比較例6)と変
化させた。
In addition, X is O (comparative example 4), 7 (example 5), 15 (
Example 6), 22 (Comparative Example 5), and 30 (Comparative Example 6).

得られ元アモルファス合金の磁気的特性を調べるために
、上記した飽和磁歪試験および下記に示す透磁率試験を
行なった。飽和磁歪試験の結果を第3図に示す。
In order to examine the magnetic properties of the obtained original amorphous alloy, the saturation magnetostriction test described above and the magnetic permeability test described below were conducted. Figure 3 shows the results of the saturation magnetostriction test.

第3図から明らかなように、飽和磁歪はCOの含有量の
増加につれて増加し、約3  at、%からセンサ用合
金として好ましい飽和磁歪を示すことが判る。
As is clear from FIG. 3, the saturation magnetostriction increases as the CO content increases, and from about 3 at.%, the saturation magnetostriction is preferred as a sensor alloy.

(透磁率試験) 透磁率試験は次のようにして行なった。(Magnetic permeability test) The magnetic permeability test was conducted as follows.

Y HP L Fインピータンスアナライザー4192
Aにより、50KIIz 、 5 mo e印加時のイ
ンダクタンス値L[H]より以下の式から算出した。
Y HP LF Impedance Analyzer 4192
A, it was calculated from the inductance value L[H] when 50KIIz and 5 moe were applied using the following formula.

Mi= Ldx 10’/ 4 S N’ここでdは試
料コアの平均直径、Sは有効断面積[cn+]、Nはコ
イル巻数である。
Mi= Ldx 10'/4 S N' where d is the average diameter of the sample core, S is the effective cross-sectional area [cn+], and N is the number of coil turns.

その結果を第4図に示す。The results are shown in FIG.

センサ合金の性能は、以下の式の電気機械結合係数Kに
よって、おおよその効率を知ることができる。この式よ
り、センサ用合金としては、大きな磁歪変化と高い透磁
率が必要であることが判る。
The approximate efficiency of the sensor alloy performance can be determined by the electromechanical coupling coefficient K in the following equation. From this equation, it can be seen that a sensor alloy needs to have a large magnetostriction change and high magnetic permeability.

(B:磁束密度、H:磁界、E:ヤング率、μ:透磁率
) 第4図から明らかなように、透磁率はCoの含有量が約
10 at、%で最大となり、それ以上含有させると減
少し、ゆえにcoの含有量は3〜15at。
(B: Magnetic flux density, H: Magnetic field, E: Young's modulus, μ: Magnetic permeability) As is clear from Figure 4, the magnetic permeability reaches its maximum when the Co content is about 10 at.%, and if more than that is contained. Therefore, the co content is 3 to 15 at.

%が好適であることが判る。It turns out that % is suitable.

即ち、従来の知見ではl;’esiBにCOを添加する
と透磁率が減少するとされていたが、この実施例か明ら
かなように、所定量のOrと組み合わせることにより3
〜15 at、%の間で透磁率が大幅に増大する。これ
により、高い透磁率とそこそこの磁歪を有する高性能高
耐錆性センサ用合金が得られる。
In other words, the conventional knowledge is that adding CO to l;'esiB reduces the magnetic permeability, but as is clear from this example, by combining it with a predetermined amount of Or, the permeability decreases.
The permeability increases significantly between ~15 at,%. This results in a high-performance, highly rust-resistant sensor alloy with high magnetic permeability and reasonable magnetostriction.

〈比  較  例  7 〉 従来公知の鉄系アモルファス合金である、Fe78B1
3Si19について、上記飽和磁歪試験、上記透磁率試
験および発錆試験を行ない、上記実験例2と比較した。
<Comparison Example 7> Fe78B1, a conventionally known iron-based amorphous alloy
3Si19 was subjected to the above saturation magnetostriction test, the above magnetic permeability test, and the rust development test, and compared with the above Experimental Example 2.

なお、発錆試験においては、試験片を40℃、湿度95
%以上−の条件下に放置し、発錆状態を目視によって観
察し、錆が発生した時間によって発錆性を評価した。そ
の結果を第1表に示す。
In addition, in the rusting test, the test piece was kept at 40℃ and humidity 95℃.
% or more, the state of rusting was visually observed, and the rusting property was evaluated based on the time it took for rust to develop. The results are shown in Table 1.

第  1  表 〔発明の効果〕 以上説明したように本発明によれば、アモルファス合金
の優れた磁気的特性を保持しつつ、しかも良好な防錆性
を備えた高耐錆性アモルファス合金を提供することがで
きる。
Table 1 [Effects of the Invention] As explained above, the present invention provides a highly rust-resistant amorphous alloy that maintains the excellent magnetic properties of an amorphous alloy and also has good rust prevention properties. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例および比較例における発錆試験の結果を
示す図、第2図および第3図は飽和磁歪試験の結果を示
す図、第4図は透磁率試験の結果を示す図である。 特許出顆人     三井石油化学工業株式会社JC口 第1図 Cr倉肩t X (at、%) 第2図 Cr名有量X(at、%)
Figure 1 is a diagram showing the results of the rust development test in Examples and Comparative Examples, Figures 2 and 3 are diagrams showing the results of the saturation magnetostriction test, and Figure 4 is a diagram showing the results of the magnetic permeability test. . Patent issuer Mitsui Petrochemical Industries Co., Ltd. JC Figure 1 Cr warehouse t X (at, %) Figure 2 Cr famous quantity X (at, %)

Claims (1)

【特許請求の範囲】[Claims] (1) 一般式 Fe_vCo_wCr_xB_ySi_z (上記式中、v+w+x+y+z=100at.%であ
り、かつ、vは60〜78at.%、wは3〜15at
.%、xは4〜12at.%、yは8〜20at.%、
zは0〜10at.%である)で示される組成を有する
ことを特徴とする高耐錆性アモルファス合金。
(1) General formula Fe_vCo_wCr_xB_ySi_z (in the above formula, v+w+x+y+z=100 at.%, and v is 60 to 78 at.% and w is 3 to 15 at.
.. %, x is 4 to 12 at. %, y is 8 to 20 at. %,
z is 0 to 10 at. A highly rust-resistant amorphous alloy characterized by having a composition shown in (%).
JP63019319A 1988-01-29 1988-01-29 Highly rust-resisting amorphous alloy Pending JPH01195261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019319A JPH01195261A (en) 1988-01-29 1988-01-29 Highly rust-resisting amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019319A JPH01195261A (en) 1988-01-29 1988-01-29 Highly rust-resisting amorphous alloy

Publications (1)

Publication Number Publication Date
JPH01195261A true JPH01195261A (en) 1989-08-07

Family

ID=11996088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019319A Pending JPH01195261A (en) 1988-01-29 1988-01-29 Highly rust-resisting amorphous alloy

Country Status (1)

Country Link
JP (1) JPH01195261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
EP2286422A1 (en) * 2008-06-03 2011-02-23 Amogreentech Co., Ltd. Magnetic core for electric current sensors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
EP2286422A1 (en) * 2008-06-03 2011-02-23 Amogreentech Co., Ltd. Magnetic core for electric current sensors
EP2286422A4 (en) * 2008-06-03 2011-06-08 Amogreentech Co Ltd Magnetic core for electric current sensors

Similar Documents

Publication Publication Date Title
JPH0230448B2 (en)
JP2552274B2 (en) Glassy alloy with perminer characteristics
Meeks et al. Piezomagnetic and elastic properties of metallic glass alloys Fe67CO18B14Si1 and Fe81B13. 5Si3. 5C2
Narita et al. Recent researches on high silicon-iron alloys
EP0084138B1 (en) Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability
JPH01195261A (en) Highly rust-resisting amorphous alloy
Fujimori et al. Enhancement of high frequency permeability in amorphous CoNbTi/SiO 2 layered films
JPS6358902B2 (en)
JPS59226882A (en) Magnetic signal converting element
JP2697808B2 (en) Vitreous alloy with almost zero magnetostriction for high frequency use
JPS6052557A (en) Low-loss amorphous magnetic alloy
Wun‐Fogle et al. Magnetoelastic effects in amorphous wires and amorphous ribbons with nonmagnetic thin‐film coatings
Flanders et al. Magnetic properties of amorphous magnetic alloys
JPH0417649A (en) Iron-base low magnetostriction amorphous alloy
JPS609643B2 (en) temperature sensor
JP3019400B2 (en) Amorphous soft magnetic material
JPS61205000A (en) Magnetic shield part
JPH0255497B2 (en)
JP2727274B2 (en) Soft magnetic thin film
KOHMOTO et al. Wear-resistant audio head using amorphous alloy material
KR100281985B1 (en) Thin Films of Tb Based Highly Magnetostrictive Alloys
Shishido et al. The magnetic domain and properties of amorphous ribbons
Hayashi et al. Tb-Fe sputtered films with large magnetostriction for use in magnetomechanical thin-film devices
JPS59170234A (en) Magnetic alloy
JPH0255496B2 (en)