JPH01195241A - Method for refining high cu, sn-containing molten iron - Google Patents

Method for refining high cu, sn-containing molten iron

Info

Publication number
JPH01195241A
JPH01195241A JP63018203A JP1820388A JPH01195241A JP H01195241 A JPH01195241 A JP H01195241A JP 63018203 A JP63018203 A JP 63018203A JP 1820388 A JP1820388 A JP 1820388A JP H01195241 A JPH01195241 A JP H01195241A
Authority
JP
Japan
Prior art keywords
molten iron
steel
oxygen
content
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63018203A
Other languages
Japanese (ja)
Inventor
Hirofumi Maede
前出 弘文
Yuji Kawachi
河内 雄二
Shinroku Matsuzaki
松崎 真六
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63018203A priority Critical patent/JPH01195241A/en
Publication of JPH01195241A publication Critical patent/JPH01195241A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To effectively remove Cu and Sn from high Cu, Sn-contg. molten iron and to extend the degree of freedom on the use of starting material by treating the molten iron under reduced pressure, regulating the pressure to a practical degree of vacuum and feeding a specified amt. of oxygen at a specified flow rate to form a local high-temp. region. CONSTITUTION:High Cu, Sn-contg. molten iron contg. >=0.10wt.% Cu and >=0.02wt.% Sn is treated under reduced pressure and the pressure of the atmosphere is regulated to <=3Torr. Oxygen is fed to the surface of the molten iron or into the molten iron by >=0.05Nm<3>/min/t-steel at >=50Nm/sec flow rate to form a local high-temp. region in the molten steel and the Cu and Sn are removed. Since the impurities are removed, a large amt. of low-cost commercial scraps can be melted in a steel manufacturing stage and the cost of manufacture of steel can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高Cu 、 Sn含有溶鉄のCu 、 Sn
除去法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is directed to high-Cu, Sn-containing molten iron.
It concerns removal methods.

(従来の技術) 溶鉄中の、Cu、Snはいわゆるトランプエレメントと
して、一部の鋼種を除き、おおむね有害とみなされ、そ
の低減化が望まれてきた。
(Prior Art) Cu and Sn in molten iron are generally considered to be harmful as so-called tramp elements, except for some steel types, and their reduction has been desired.

一方、高炉−転炉法による鉄鋼製造プロセスでは鉄源と
して用いる鉄鉱有中のCu 、 Sn含有量が低いため
、溶鉄中のCu、Sn含有量も極めて僅少となり、これ
ら元素を除去、低減化する必要性はほとんどなかった。
On the other hand, in the steel manufacturing process using the blast furnace-converter method, the content of Cu and Sn in the iron ore used as the iron source is low, so the content of Cu and Sn in the molten iron is also extremely small, and these elements are removed and reduced. There was little need.

しかしながら、最近の高炉−転炉法の技術動向は転炉に
おける含鉄6材多量使用であり、これによりコスト低減
、生産弾力性の向上が可能となる。この際、安価な含鉄
桧材であるスクラップ、特に市中に一般に流通している
いわゆる市中スクラップを多量に溶解することがコス 
 ”ト低減のため不可欠である。
However, a recent technological trend in the blast furnace-converter method is the use of a large amount of six iron-containing materials in the converter, which makes it possible to reduce costs and improve production flexibility. At this time, it is cost-effective to melt a large amount of scrap, which is cheap iron-containing cypress material, especially so-called commercial scrap that is commonly distributed in the market.
“It is essential to reduce

(発明が解決しようとする課題) しかし市中スクラップのCu、Sn含有量は高いため、
製造させる溶鉄のCu 、 Sn含有量も高くなり、こ
れら元素を効率的に除去する技術が要求されるに至って
いる。
(Problem to be solved by the invention) However, since the contents of Cu and Sn in commercial scrap are high,
The content of Cu and Sn in the molten iron produced has also increased, and a technology for efficiently removing these elements has been required.

Cu 、 Snの除去に関しては二、三の基礎的研究結
果が報告されているのみであり、工業技術として実用化
された例は皆無である。基礎的研究結果は「鉄と鋼J 
; 51965)、P、1863に代表される、高温・
高真空下に招けるCu、Snの除去例である。しかしこ
の高温・高真空条件は工業技術としては到達困難なレベ
ルであり、それゆえ実用化には至っていない。
Regarding the removal of Cu and Sn, only a few basic research results have been reported, and no examples have been put into practical use as industrial technology. The basic research results are “Tetsu to Hagane J”
; 51965), P, 1863;
This is an example of removing Cu and Sn under high vacuum. However, these high temperature and high vacuum conditions are at a level that is difficult to achieve as an industrial technology, and therefore it has not been put into practical use.

本発明は、このような課題を有利に解決したものであり
、Cu、Snの真空除去原理をベースとして、これを工
業技術として完成させたものである。
The present invention has advantageously solved these problems, and has been completed as an industrial technology based on the principle of vacuum removal of Cu and Sn.

(課題を解決するための手段) 即ち、本発明の要旨とするところは、Cu含有量0.1
0重量%以上、Sn含有量0.02重量%以上の高Cu
、Sn含有溶鉄に減圧処理を施こし、雰囲気圧力を5 
torr以下となすと共に酸素吹錬をおこない、酸素0
.O5Nm3/min/t−steel以上を流速53
 Nm/sec以上で供給し局部高温域を形成させるこ
とにより、Cu 、 Snを除去することを特徴とした
高Cu 、 Sn含有溶鉄の精錬方法である。
(Means for solving the problem) That is, the gist of the present invention is that the Cu content is 0.1
High Cu with Sn content of 0% by weight or more and Sn content of 0.02% by weight or more
, Sn-containing molten iron is subjected to vacuum treatment, and the atmospheric pressure is reduced to 5.
Torr or less and oxygen blowing is performed to reduce oxygen to 0.
.. O5Nm3/min/t-steel or more at a flow rate of 53
This is a method for refining molten iron containing high Cu and Sn, which is characterized by removing Cu and Sn by supplying at a rate of Nm/sec or more to form a localized high temperature region.

以下、本発明の詳細について述べる。The details of the present invention will be described below.

本発明者らは、高温・高真空下においてCu。The present inventors developed Cu under high temperature and high vacuum.

Snが蒸発除去できる原理をいかに工業技術として実現
するかについて検討した。その結果、RH,DH等の減
圧処理設備を利用して、実用的な真空度の範囲で酸素吹
錬をおこない、溶鉄内に局部超高温域を形成させること
によりCu。
We considered how to realize the principle of Sn evaporation removal as an industrial technology. As a result, Cu is produced by oxygen blowing in a practical vacuum range using reduced pressure processing equipment such as RH and DH, and by forming a localized ultra-high temperature region within the molten iron.

Snを除去する方法を着想するに至った。即ち、この方
法は、真空度をさほど上げなくとも、局部的に2000
℃程度の超高温域を形成できればCu、Snを蒸発除去
できるとの基本的考え方に基づくものである。
This led to the idea of a method for removing Sn. In other words, this method can locally generate 2,000
This is based on the basic idea that Cu and Sn can be removed by evaporation if an ultra-high temperature region of about 0.degree. C. can be formed.

この着想に従い、120トン溶鉄規模の実験をおこない
、Cu 、 Snを除去できる条件について検討した。
Based on this idea, we conducted an experiment on a scale of 120 tons of molten iron and investigated the conditions under which Cu and Sn could be removed.

その結果第1図に示すように、実用的な真空度範囲5 
torr以下において、酸素を0.05Na+3/wi
n/t−steel以上供給すればCuを50%以上、
Snを60%以上除去できることが明らかとなった。こ
の結果から5 torr以下程度の真空度においても酸
素を0.O5Nm3/min/t−steel以上供給
すれば酸素の供給火点を中心に超高温域が形成され、C
u、Snが除去できることがわかった。
As a result, as shown in Figure 1, the practical degree of vacuum range is 5.
Below torr, oxygen is 0.05Na+3/wi
If more than n/t steel is supplied, Cu can be more than 50%,
It has become clear that 60% or more of Sn can be removed. From this result, even in a vacuum of about 5 torr or less, oxygen can be reduced to 0. If O5Nm3/min/t-steel or more is supplied, an ultra-high temperature region will be formed around the oxygen supply flash point, and C
It was found that u and Sn can be removed.

なお120トン溶鉄規模の実験は以下の要領でおこなっ
た。取鍋内の溶鉄(C:0.1〜0.5%、51 : 
0.05〜0.30%、Mn : 0.20〜0.50
%、P : 0.01〜0.03%、 S:0.01〜
0.02%、温度: 1600〜1650℃)に金属C
u及びSnを添加し、Cu含有量を0.10〜0.50
%、Sn含有量を0.02〜0.10%に調整した後、
RH処理をおこなった。RH処理条件は真空度1〜20
 torrであり、RH槽内上部に設置されたランスに
より酸素を供給(吹付け)した。RH処理時間は15〜
20分間とした。
The experiment on a scale of 120 tons of molten iron was conducted in the following manner. Molten iron in the ladle (C: 0.1-0.5%, 51:
0.05-0.30%, Mn: 0.20-0.50
%, P: 0.01~0.03%, S: 0.01~
0.02%, temperature: 1600-1650°C) with metal C
Add u and Sn to increase Cu content from 0.10 to 0.50
%, after adjusting the Sn content to 0.02-0.10%,
RH treatment was performed. RH processing conditions are vacuum degree 1-20
torr, and oxygen was supplied (sprayed) through a lance installed in the upper part of the RH tank. RH processing time is 15~
The duration was 20 minutes.

次にCu及びSn含有量の規定理由について述べる。Next, the reason for specifying the Cu and Sn contents will be described.

本発明者らは、本発明法の除去効果と処理前Cu、Sn
含有量範囲の関係について調査した。その結果、Cu 
O,10重量%以下、Sn O,02重量%以下では除
去率が著るしく低下することを確認した。それゆえ本発
明法は、Cu O,10重量%以上、Sn 0.02重
量%以上の高Cu 、 Sn含有溶鉄に適用することが
望ましい。ちなみにCu O,1重量%以下、Sn O
,02重量%以下ではCu 、 Snの鋼材品質に及ぼ
す影響はほとんどない。
The present inventors investigated the removal effect of the method of the present invention and the Cu, Sn before treatment.
We investigated the relationship between content ranges. As a result, Cu
It was confirmed that the removal rate decreased significantly when O was less than 10% by weight and Sn O was less than 2% by weight. Therefore, it is desirable that the method of the present invention be applied to molten iron containing high Cu and Sn content of 10% by weight or more of CuO and 0.02% by weight or more of Sn. By the way, CuO, 1% by weight or less, SnO
,02% by weight or less, Cu and Sn have almost no effect on the quality of the steel material.

次に酸素の供給方法について述べる。RH等の減圧処理
装置における酸素の供給方法としては■溶鉄表面上より
吹付ける方法と■溶鉄内に直接吹込む方法があり、本発
明ではいずれの方法も採用できる。即ち本発明者らはい
ずれの方法においても酸素を0.O5Nm3/min/
t−steel以上供給し、かつ酸素供給流速を50 
Nm/sec以上確保すれば局部高温域が形成され、C
u、Snを除去できることを確認した。また本発明者ら
がおこなった実験によれば酸素供給流速が5 Q Nm
/sec以下では酸素供給火点近傍の温度がさほど上昇
せずCu、Snの除去効果が低下した。それゆえ酸素供
給流速は50 Nm/sec以上確保しなければならな
い。
Next, the method of supplying oxygen will be described. Methods for supplying oxygen in a reduced pressure treatment apparatus such as RH include (1) a method of spraying from above the surface of the molten iron, and (2) a method of directly blowing into the molten iron. Either method can be employed in the present invention. That is, the present inventors used both methods to reduce oxygen to 0. O5Nm3/min/
t-steel or more, and the oxygen supply flow rate is 50
If Nm/sec or more is ensured, a local high temperature area will be formed and C
It was confirmed that u and Sn could be removed. Furthermore, according to experiments conducted by the present inventors, the oxygen supply flow rate was 5 Q Nm.
/sec or less, the temperature in the vicinity of the oxygen supply flash point did not rise so much and the effect of removing Cu and Sn decreased. Therefore, the oxygen supply flow rate must be maintained at 50 Nm/sec or more.

以下に本発明の実施例並びに比較例を述べ、本発明の効
果について記載する。
Examples and comparative examples of the present invention will be described below, and the effects of the present invention will be described.

(実 施 例) 120トン転炉において、高炉溶鉄70トン、布中スク
ラップ50トンを主原料として第1表に示す組成の溶鉄
120トンを得た。当該溶鉄を取鍋に装入し、ひき続い
てRH処理を施した。
(Example) In a 120-ton converter, 120 tons of molten iron having the composition shown in Table 1 was obtained using 70 tons of blast furnace molten iron and 50 tons of cloth scrap as main raw materials. The molten iron was charged into a ladle and subsequently subjected to RH treatment.

RH処理条件は真空度2 torrであり、RH槽内の
ランスにより酸素を0.1ONm’/min/t−st
eel吹付けた。この際酸素供給流速は12ONm/s
ecであり、処理時間は20分間であった。この処理に
より第1表に示す組成の溶鉄が得られCuは0.3−0
.07%、Smは0.05−0.015%まで大幅に低
下した。
The RH treatment conditions were a vacuum level of 2 torr, and a lance in the RH tank to supply oxygen at a rate of 0.1ONm'/min/t-st.
I sprayed it with eel. At this time, the oxygen supply flow rate was 12ONm/s.
ec, and the treatment time was 20 minutes. Through this treatment, molten iron with the composition shown in Table 1 was obtained, with a Cu content of 0.3-0
.. 07%, and Sm significantly decreased to 0.05-0.015%.

(比 較 例) RHでの酸素供給条件を0.(13Nm’/min/t
−steel s供給流速38 Nm/secとし、そ
の他の条件は実施例と同様の精錬をおこなったが、第1
表に示すようにCu 、 Snの除去は僅少に留った。
(Comparison example) Oxygen supply conditions at RH are set to 0. (13Nm'/min/t
- steel s supply flow rate was set to 38 Nm/sec, and other conditions were the same as in the example, but the first
As shown in the table, the removal of Cu and Sn remained slight.

(発明の効果) 以上述べたように本発明により鋼材品買上好ましくない
Cu 、 Snを大幅に除去することが可能となった。
(Effects of the Invention) As described above, the present invention has made it possible to significantly remove Cu and Sn, which are undesirable when purchasing steel products.

これにより製鋼工程において安価な布中スクラップを多
量に溶解でき溶製コストの低減、原料使用上の自由度の
拡大が達成され、鉄鋼業にとって極めて有益である。
This makes it possible to melt a large amount of inexpensive cloth scrap in the steelmaking process, reducing melting costs and increasing the degree of freedom in the use of raw materials, which is extremely beneficial to the steel industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Cu、Snの除去率に及ぼす真空度、酸素供
給量の影響を示す図面である。 第1図
FIG. 1 is a diagram showing the influence of the degree of vacuum and the amount of oxygen supply on the removal rate of Cu and Sn. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  Cu含有量0.10重量%以上、Sn含有量0.02
重量%以上の高Cu、Sn含有溶鉄に減圧処理を施こし
、雰囲気圧力を3torr以下となすと共に酸素吹錬を
おこない、酸素0.05Nm^3/min/t−ste
el以上を流速50Nm/sec以上で供給し局部高温
域を形成させることにより、Cu、Snを除去すること
を特徴とする高Cu、Sn含有溶鉄の精錬方法。
Cu content 0.10% by weight or more, Sn content 0.02
The molten iron containing high Cu and Sn content of more than % by weight is subjected to depressurization treatment, the atmospheric pressure is reduced to 3 torr or less, and oxygen blowing is performed to produce 0.05 Nm^3/min/t-ste of oxygen.
A method for refining molten iron containing high Cu and Sn, characterized in that Cu and Sn are removed by supplying el or more at a flow rate of 50 Nm/sec or more to form a localized high temperature region.
JP63018203A 1988-01-28 1988-01-28 Method for refining high cu, sn-containing molten iron Pending JPH01195241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63018203A JPH01195241A (en) 1988-01-28 1988-01-28 Method for refining high cu, sn-containing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018203A JPH01195241A (en) 1988-01-28 1988-01-28 Method for refining high cu, sn-containing molten iron

Publications (1)

Publication Number Publication Date
JPH01195241A true JPH01195241A (en) 1989-08-07

Family

ID=11965081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018203A Pending JPH01195241A (en) 1988-01-28 1988-01-28 Method for refining high cu, sn-containing molten iron

Country Status (1)

Country Link
JP (1) JPH01195241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776226A (en) * 1994-10-10 1998-07-07 "Holderbank" Financiere Glarus Ag Method for working up refuse or metal-oxide-containing refuse incineration residues

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776226A (en) * 1994-10-10 1998-07-07 "Holderbank" Financiere Glarus Ag Method for working up refuse or metal-oxide-containing refuse incineration residues

Similar Documents

Publication Publication Date Title
WO1996017093A1 (en) Method of refining molten metal
CN111455138A (en) Smelting method of medium-high carbon sulfur-lead composite free-cutting structural steel
JPH01195241A (en) Method for refining high cu, sn-containing molten iron
JP7126103B2 (en) Melting method of high manganese steel
JP2709554B2 (en) Ladle electrode heating and refining method for molten steel
CN111518991B (en) Argon flow control method and system and ladle refining furnace smelting method
KR100368239B1 (en) A process of refining molten steel for high clean steel
JPH0375603B2 (en)
CN114703338B (en) Refining slag for smelting rare earth steel and rare earth loss control method thereof
CN113564376B (en) Method for preparing H13 steel through electroslag remelting
US4131451A (en) Method for removing zinc from zinc-containing slags
SU910818A1 (en) Method of reduction shaft melting of lead agglomerate
US2706152A (en) Method of sulphur removing from pig iron
JPS61149414A (en) Method for removing copper and tin from molten iron
RU2278169C2 (en) Method for production of chromium-manganese stainless steel
JP3671000B2 (en) Dephosphorization method for hot metal
JP2653263B2 (en) Detinning from molten iron
JPH05125459A (en) Method for dezincificating scrap galvanized steel sheet
JPH05271744A (en) Method for deoxidizing molten steel
CN117587318A (en) Method for modifying inclusions in heavy rail steel by tellurium or calcium-tellurium composite treatment
JP2023017650A (en) Method for treating zinc-containing substance
JP2614915B2 (en) Melting method of clean steel using droplet degassing method
CN116516159A (en) Magnesium treatment method in vacuum refining process
JPS63134623A (en) Denitrification method utilizing iron oxide
JPS62230908A (en) Melt reducing method for iron ore