JPH01195223A - Molten iron gutter type smelting reduction iron manufacture method - Google Patents

Molten iron gutter type smelting reduction iron manufacture method

Info

Publication number
JPH01195223A
JPH01195223A JP2016588A JP2016588A JPH01195223A JP H01195223 A JPH01195223 A JP H01195223A JP 2016588 A JP2016588 A JP 2016588A JP 2016588 A JP2016588 A JP 2016588A JP H01195223 A JPH01195223 A JP H01195223A
Authority
JP
Japan
Prior art keywords
slag
iron
hot metal
viscosity
smelting reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016588A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Fukuda
光弘 福田
Ryuichi Hori
隆一 堀
Yoshiyuki Matsui
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016588A priority Critical patent/JPH01195223A/en
Publication of JPH01195223A publication Critical patent/JPH01195223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To make an operation smooth and to enhance efficiency by controlling the viscosity of by-produced slag in a process for feeding an iron manufacturing raw material to the molten iron on the molten iron gutter of a pig iron producer to reduce it. CONSTITUTION:An iron manufacturing raw material is fed to molten iron M on the molten iron gutter of a pig iron manufacturing facility through an iron manufacturing raw material blowing pipe 6. Further carbon material is blown through a carbon material blowing pipe 8 and oxygen is blown through an oxygen blowing pipe 7. Iron oxide component incorporated in the iron manufacturing raw material is melted and reduced. Dischargeability of slag S is made good by controlling the viscosity of slag S by-produced in this reducing process and the so-called iron flow wherein molten iron M is discharged together with slag S is inhibited.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、銑鉄製造装置から溶銑樋を通して流出される
溶銑の保有熱を熱源として利用し、且つ該溶銑中の炭素
を還元剤として活用し、更に炭材を添加することによっ
て鉄鉱石、予備還元鉄鉱石、スクラップ等の製鉄原料を
溶融還元して製鉄を行なう方法の改良に関し、殊に溶融
還元製鉄工程で副生ずるスラグ(溶滓)の粘性を適正に
コントロールすることにより、スラグ排滓性を調整し、
また単位排滓量当たりの流銑量(スラグ中に取り込まれ
て排出される溶銑の量、即ち鉄分ロス)を抑制すること
により、生産性および操業安定性を高め得る様にした溶
銑樋式溶融還元製鉄法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes the retained heat of hot metal flowing out from a pig iron manufacturing equipment through a hot metal trough as a heat source, and utilizes carbon in the hot metal as a reducing agent. Furthermore, regarding the improvement of the method of making iron by melting and reducing iron ore, pre-reduced iron ore, scrap, and other raw materials for steelmaking by adding carbonaceous materials, in particular, it is possible to improve the method of making steel by melting and reducing iron ore, pre-reduced iron ore, scrap, etc. By appropriately controlling the viscosity, the slag removal performance can be adjusted,
In addition, by suppressing the amount of flow pig iron per unit amount of slag discharged (the amount of hot metal taken into slag and discharged, i.e. iron loss), productivity and operational stability can be increased. It concerns the reduction iron manufacturing method.

[従来の技術] 製鉄手段は、高炉法に代表される間接製鉄法と溶融還元
法に代表される直接製鉄法に大別され、現在は連続操業
が可能で大量生産に適した高炉法が主流となっている。
[Conventional technology] Steel manufacturing methods are broadly divided into indirect iron manufacturing methods, represented by the blast furnace method, and direct iron manufacturing methods, represented by the smelting reduction method.Currently, the blast furnace method, which allows continuous operation and is suitable for mass production, is the mainstream. It becomes.

ところが高炉法は、厖大な建設費と維持管理費を要する
という問題に加えて、竪型移動床反応を利用する方式で
あるから、操業効率や操業安定性を高めるためには、還
元剤として作用するコークス及び鉄源たる鉄鉱石を適当
な大きさと圧潰強度を持ったものに調整しなければなら
ず、装入原料の調整に多大な手数と費用がかかる。
However, the blast furnace method requires enormous construction and maintenance costs, and since it uses a vertical moving bed reaction, it is necessary to use a method that acts as a reducing agent in order to improve operational efficiency and stability. The coke to be used and iron ore, which is the iron source, must be adjusted to have appropriate size and crushing strength, and it takes a great deal of effort and cost to adjust the charging raw materials.

これに対し溶融還元製鉄法では高炉はど大きな設備が必
要とされず、また鉄鉱石等の製鉄原料を溶融状態で還元
する方法であるから、比較的低品位の石炭でも、また粉
状の鉄鉱石等でも支障なく使用することができ、更には
固体−気体間の還元反応を主体とする高炉法に比べて反
応速度および反応効率が高いといった利点を有している
ところから、最近各社で検討されている。
On the other hand, the smelting reduction method does not require large blast furnace equipment, and since it is a method that reduces iron ore and other raw materials for iron making in a molten state, it can be used even with relatively low-grade coal or powdered iron ore. It can be used with stones, etc. without any problems, and it has the advantage of higher reaction rate and reaction efficiency than the blast furnace method, which mainly involves a reduction reaction between solids and gases. has been done.

[発明が解決しようとする課題] 溶融還元製鉄法は、使用する炉の形式によって分類され
、代表的なものとしては、回転炉を用いる方法、転炉型
鉄浴炉を用いる方法およびコークス充填型竪型炉を用い
る方法の3種が挙げられるが、これらの方法における共
通の問題は、出湯・出滓の連続化ができず生産性が低い
ということである。即ちこれらの方法はいずれもバッチ
式で溶融還元を行ない、出銑・出滓はたとえば1〜2時
間周期で間欠的に行なわれるので、高炉を用いる連続法
に比べると出銑・出滓作業やそれらの後処理作業が面倒
であるばかりでなく、後処理炉はその都度冷却されるの
で熱効率も低く、また生産性を高めるにはある程度の量
の溶銑および溶滓を炉内に貯留しておかなければならな
いので、高炉設備はどではないにしてもかなり大型の設
備が必要となる。
[Problems to be Solved by the Invention] Smelting reduction ironmaking methods are classified according to the type of furnace used, and typical methods include methods using a rotary furnace, methods using a converter type iron bath furnace, and coke-filled method. There are three methods using a vertical furnace, but the common problem with these methods is that they cannot continuously tap the hot water and tap the slag, resulting in low productivity. In other words, in all of these methods, melting and reduction is carried out in a batch manner, and tapping and slaging are performed intermittently, for example, every 1 to 2 hours, so compared to continuous methods using a blast furnace, the tapping and slag operations are shorter. Not only are these post-processing operations troublesome, but the thermal efficiency of the post-processing furnace is low as it is cooled each time, and in order to increase productivity, it is necessary to store a certain amount of hot metal and slag in the furnace. Therefore, rather large blast furnace equipment is required.

本発明者らはこの様な状況のもとで、設備費および運転
経費のいずれの面からしても経済的であり、しかも連続
化が可能で生産性の高い製鉄法の開発を期して研究を行
なっているが、その成果の1つとして、高炉やキエボラ
或は溶融還元製鉄装置等の銑鉄製造装置(以下単に銑鉄
製造装置という)における溶銑樋を流れる溶銑を熱源と
し、且つ該溶銑中の炭素を還元剤として製鉄原料の溶融
還元を行なう溶銑届式の溶融還元製鉄法を開発し、先に
特許出願を済ませた(特願昭62−186400号二未
公開)。
Under these circumstances, the present inventors conducted research with the aim of developing a steel manufacturing method that is economical in terms of both equipment costs and operating costs, and that is continuous and highly productive. One of the results of this research is that the heat source is the hot metal flowing through the hot metal gutter in the pig iron manufacturing equipment (hereinafter simply referred to as pig iron manufacturing equipment) such as blast furnaces, Chievola or smelting reduction iron making equipment, and the We developed a molten reduction method for making iron by melting and reducing raw materials for iron making using carbon as a reducing agent, and filed a patent application earlier (Japanese Patent Application No. 186,400/1986, unpublished).

即ちこの方法は、溶銑樋を流れる溶銑中に製鉄原料を吹
込み、溶銑の保有熱を熱源として利用すると共に溶銑中
に含まれる炭素を主たる還元剤として活用し、更に還元
剤及び熱の不足分を補うために炭材と燃焼用酸素を供給
しつつ、溶銑中に製鉄原料を吹込んで溶融還元を行なう
方法であり、従来の溶融還元製鉄法に比べると、 ■連続操業が可能で生産性が高い、 ■設備を著しく小規模化できる、 ■溶銑中に含まれる珪素やマンガンも還元剤として活用
されるので還元剤の消費量が少なく、且つ溶銑の保有熱
も有効に活用されるから熱効率が高い、 ■溶融還元により生成した溶銑および副生ずる溶滓は下
流側で効率良く分離・排出されるので、後処理性が良い
、 といった多くの特徴を有している。
In other words, this method injects ironmaking raw materials into hot metal flowing through hot metal sluices, uses the retained heat of the hot metal as a heat source, uses carbon contained in the hot metal as the main reducing agent, and further reduces the amount of reducing agent and heat that is insufficient. This method involves injecting ironmaking raw materials into hot metal to perform smelting reduction while supplying carbonaceous materials and combustion oxygen to compensate for the ■Equipment can be significantly downsized; ■Silicon and manganese contained in the hot metal are also used as reducing agents, so the consumption of reducing agents is small, and the heat retained in the hot metal is also effectively used, increasing thermal efficiency. It has many features such as: (1) hot metal produced by melt reduction and by-product slag are efficiently separated and discharged on the downstream side, so post-processing is good.

たとえば第1図は前記先願発明の実施例を示す概略縦断
面説明図であり、図中1は高炉等の製銑設備における溶
銑樋の途中に設けられた溶融還元製鉄装置、2は該製鉄
装置1の上方を覆い熱放散を防止するための蓋体、3は
排滓樋、4は潜り堰、5は越流堰、6は製鉄原料吹込み
管、7は酸素吹込み管、8は炭材吹込み管、9は排ガス
ダクト、10は溶銑鍋、Mは溶銑、Sは溶滓(スラグ)
、Cは炭材を夫々示している。
For example, FIG. 1 is a schematic vertical cross-sectional explanatory diagram showing an embodiment of the invention of the prior application, in which 1 is a smelting reduction iron making device installed in the middle of a hot metal gutter in iron making equipment such as a blast furnace, and 2 is a smelting reduction iron making device installed in the middle of a hot metal gutter in iron making equipment such as a blast furnace. A lid for covering the upper part of the apparatus 1 to prevent heat dissipation, 3 a slag drain, 4 a submerged weir, 5 an overflow weir, 6 a steelmaking raw material blowing pipe, 7 an oxygen blowing pipe, and 8 a Carbon material injection pipe, 9 is exhaust gas duct, 10 is hot metal pot, M is hot metal, S is slag
, C indicate carbon materials, respectively.

高炉等の製銑設備から排出される溶銑および溶滓のうち
比重の小さい溶滓は、図示する溶融還元製鉄装置1に至
るまでの上流適所で分離除去される。そしてその下流側
適所の溶銑樋にやや深めの滞留部を設けて図示する様な
製鉄装置1を形成する。即ちこの製鉄装置1は、放熱防
止用として設けた蓋体2に、製鉄原料吹込み管6、酸素
吹込み管フ、炭材吹込み管8および排ガスダクト9が取
付けられてなり、製鉄原料吹込み管6からは鉄鉱石、予
備還元鉱石、スクラップ等の鉄分含有原料と生石灰等の
副原料を適当な比率で溶銑Mの深部へ吹込むと共に、炭
材吹込み管8からは粉粒状の炭材Cを吹込み、同時に酸
素吹込み管フから酸素(または空気)を吹込む。そうす
ると、溶銑M内へ吹込まれた製鉄原料は溶銑Mの保有熱
および炭材の燃焼熱によって溶融し、且つ製鉄原料中の
酸化鉄成分は、溶銑M内を浮上する間に該溶銑M中に多
量含まれている旦とのトランジトリ−反応により大部分
が還元され、更に、吹込まれる炭材あるいはその燃焼に
よって生成する一酸化炭素と反応して還元され、生成し
た還元鉄は溶銑M中に取り込まれた後、潜り堰4の下部
を通り越流堰5を乗り越えて下流側へ流れる。一方製鉄
原料中に含まれるシリカ、アルミナ、チタニア等の脈石
成分は、同時に吹込まれる生石灰等の造滓剤と共にス゛
ラグ化するが、これらは溶銑Mよりも比重が小さいので
溶銑Mの表面に浮上し、排滓樋3から順次分離・排出さ
れる。この間に生成する排ガスは排ガスダクト9から抜
き出される。
Among the hot metal and slag discharged from iron making equipment such as a blast furnace, slag with a low specific gravity is separated and removed at an appropriate location upstream upstream to the illustrated smelting reduction iron making apparatus 1. Then, a slightly deeper retention portion is provided in the hot metal trough at a suitable location on the downstream side, thereby forming the iron making apparatus 1 as shown in the figure. That is, this iron making apparatus 1 has a lid body 2 provided for preventing heat radiation, and a steel making raw material blowing pipe 6, an oxygen blowing pipe, a carbon material blowing pipe 8, and an exhaust gas duct 9 are attached to the lid body 2 provided for preventing heat radiation. From the injection pipe 6, iron-containing raw materials such as iron ore, pre-reduced ore, scrap, etc. and auxiliary materials such as quicklime are injected deep into the hot metal M at appropriate ratios, and from the carbon material injection pipe 8, powdered charcoal is injected. Material C is blown in, and at the same time oxygen (or air) is blown in from the oxygen blowing pipe. Then, the ironmaking raw material injected into the hot metal M is melted by the retained heat of the hot metal M and the combustion heat of the carbon material, and the iron oxide components in the ironmaking raw material are dissolved in the hot metal M while floating in the hot metal M. Most of the iron is reduced through a transitory reaction with the iron, which is contained in a large amount, and is further reduced by reacting with the injected carbonaceous material or carbon monoxide generated by its combustion, and the generated reduced iron is added to the hot metal M. After being taken in, the water passes through the lower part of the submerged weir 4, overcomes the overflow weir 5, and flows downstream. On the other hand, gangue components such as silica, alumina, and titania contained in raw materials for steelmaking form a slag together with slag-forming agents such as quicklime that are injected at the same time, but since these have a smaller specific gravity than hot metal M, they do not form on the surface of hot metal M. The slag floats to the surface and is sequentially separated and discharged from the slag 3. The exhaust gas generated during this time is extracted from the exhaust gas duct 9.

先願発明の方法はたとえば上記の様に構成されているが
、こうした製鉄操業を円滑に進めていくためには、副生
ずるスラグを如何にうまく溶銑から分離して排滓樋3方
向へ流出させていくかということが極めて重要となる。
For example, the method of the prior invention is configured as described above, but in order to smoothly proceed with such ironmaking operations, it is important to know how to effectively separate the by-product slag from the hot metal and make it flow out into the 3 directions of the slag drain. It is extremely important to decide what to do.

ところがこの溶融還元工程で生成するスラグSの粘度は
溶銑Mの約50〜150倍であって流動性が悪く、しか
もその流動性はスラグの温度やスラグ組成によって著し
く変わってくるため、操業状況のわずかな変動によって
スラグSが増粘して流動性が悪化し、排滓樋3方向への
流れが悪くなったり、最悪の場合はスラグが停滞して操
業不能に至ることもある。
However, the viscosity of slag S produced in this melt reduction process is about 50 to 150 times that of hot metal M, and its fluidity is poor.Furthermore, the fluidity varies markedly depending on the slag temperature and slag composition, so it is difficult to control the operating conditions. A slight fluctuation may increase the slag S's viscosity and deteriorate its fluidity, resulting in poor flow in the three directions of the slag drainage gutter, or in the worst case scenario, the slag may stagnate, resulting in the inability to operate.

しかもスラグSの粘度が高くなると、スラグS表面に付
着してスラグ塊内に混入してくる溶銑Mが分離されにく
くなってスラグSと共に排滓され(この現象を本明細書
では流銑と称している)、鉄分の歩留りを下げる大きな
原因となってくる。
Moreover, as the viscosity of the slag S increases, the hot metal M that adheres to the surface of the slag S and mixes into the slag mass becomes difficult to separate and is ejected together with the slag S (this phenomenon is referred to as flow iron in this specification). ), which is a major cause of lower iron yield.

しかもスラグ粘度が上昇して排滓性が悪くなったときは
手作業で掻き出さなければならないが、このときは高粘
度のスラグを湯面から強引に排滓することになるため、
溶銑が直接掻き寄せられて排出されることもあり、流銑
量は更に増大してくる。
Moreover, when the slag viscosity increases and the slag removal performance deteriorates, it must be scraped out manually, but in this case, the highly viscous slag must be forcibly removed from the hot water surface.
Hot metal may be directly scraped up and discharged, further increasing the amount of flowing pig iron.

本発明はこの様な事情に着目してなされたものであって
、その目的は、上記の様な溶銑樋式溶融還元製鉄法を実
施するに当たり、スラグの分離・排滓を円滑にすると共
に、流銑による鉄分ロスを最小限に抑制し、製鉄操業を
優れた生産性および作業性のもとでスムーズに遂行し得
る様な方法を提供しようとするものである。
The present invention has been made in view of these circumstances, and its purpose is to facilitate the separation and discharge of slag when carrying out the hot metal gutter type smelting reduction ironmaking method as described above, and to The purpose of this invention is to provide a method that minimizes iron loss due to flow pig iron and allows iron manufacturing operations to be carried out smoothly with excellent productivity and workability.

[課題を解決するための手段] 上記の課題を解決することのできた本発明製鉄法の構成
は、銑鉄製造装置における溶銑樋上の溶銑に、製鉄原料
、炭材および酸素を供給して当該製鉄原料中の酸化鉄成
分を溶融還元すると共に、溶融還元工程で副生ずるスラ
グの粘度を調節してスラグ排滓性を調整するところに要
旨を有するものである。この場合、生成スラグの粘度を
10ポイズ以下に維持してやればスラグ排滓時の流銑が
抑制され、鉄分の還元歩留りを高位に保つことができる
[Means for Solving the Problems] The configuration of the iron-making method of the present invention that can solve the above-mentioned problems is such that the iron-making raw material, carbon material, and oxygen are supplied to the hot metal on the hot metal gutter in the pig iron manufacturing equipment. The gist of this method is to melt and reduce the iron oxide component therein, and to adjust the slag removal properties by adjusting the viscosity of the slag that is produced as a by-product in the melting and reduction process. In this case, if the viscosity of the produced slag is maintained at 10 poise or less, flow iron flow during slag discharge can be suppressed, and the iron reduction yield can be maintained at a high level.

[作用] 本発明の特徴は、たとえば前記第1図に示した様な溶銑
樋式の溶融還元製鉄法を実施する際において、溶融還元
工程で副生ずるスラグの粘度を調節することによってス
ラグ排滓性を調整し、あるいはスラグ排滓時の流銑を抑
制して鉄分ロスを低減し得る様にしたところにある。即
ち溶銑樋式溶融還元製鉄においては、前述の如く銑鉄製
造装置から流出されてくる溶銑に製鉄原料、炭材および
酸素を゛供給して製鉄原料中に含まれる酸化鉄成分を連
続的に溶融還元するものであり、系内には同時に多量の
スラグが副生じてくる。従ってこの製鉄操業を円滑に遂
行していくためには該副生スラグをその都度溶銑から分
離して系外へ排出していかなければならないが、スラグ
の分離・排出は第1図にも示した様に排滓樋を通して行
なうのが一般的であり、排滓を円滑に行なうためには副
生スラグの粘度を適正に調節して流動性をコントロール
するのが最も効果的である。この場合、副生スラグの粘
度が10ポイズ以下、より好ましくは5ボイズ以下とな
る様に操業条件を制御してやれば、溶銑とスラグの分離
もスムーズに行なわれ、流銑が抑制されて鉄分ロスを最
小限に抑制し得ることが確認された。
[Function] A feature of the present invention is that, when carrying out the hot metal sluice-type smelting reduction ironmaking process as shown in FIG. The iron content loss can be reduced by adjusting the properties or by suppressing flow iron during slag discharge. In other words, in the hot metal trough type smelting reduction ironmaking process, iron oxide components contained in the ironmaking raw materials are continuously smelted and reduced by supplying ironmaking raw materials, carbonaceous materials, and oxygen to the hot metal flowing out from the pig iron manufacturing equipment as described above. At the same time, a large amount of slag is produced in the system. Therefore, in order to carry out this ironmaking operation smoothly, the by-product slag must be separated from the hot metal and discharged from the system each time, but the separation and discharge of slag is also shown in Figure 1. Generally, the slag is drained through a slag drain, and in order to smoothly drain the slag, it is most effective to appropriately adjust the viscosity of the by-product slag to control its fluidity. In this case, if the operating conditions are controlled so that the viscosity of the by-product slag is 10 poise or less, more preferably 5 poise or less, the separation of hot metal and slag will be performed smoothly, flow pig iron will be suppressed, and iron loss will be reduced. It was confirmed that this could be suppressed to a minimum.

ちなみに第2図は、製鉄原料として鉄鉱石と生石灰を使
用し、第1図に示した方法に準拠して溶銑樋式溶融還元
製鉄法を実施した場合における、副生スラグの粘度とス
ラグ排滓速度並びにその変動量の関係を示し、また第3
図は副生スラグの粘度と単位排滓全光たりの流説量の関
係を示した実験グラフである。第2図からも明らかであ
る様に、スラグの粘度が10ボイズ以下、より好ましく
は5ボイズ以下である場合は、排滓速度の変動量は小さ
く且つ排滓速度自体も大きく、排滓は円滑に行なわれる
。しかしながらスラグ粘度が1゜ボイズを超えると排滓
速度が極端に遅くなり、しかもスラグが粘性を帯びた団
塊状となって間欠的且つ不規則に排滓される状態が生じ
、排滓速度の変動量も急増してくる。そしてこの状態が
更に進行するとスラグ自身の流動による自然排滓ができ
なくなり、手作業による強制掻き出しが必要となる。
Incidentally, Figure 2 shows the viscosity of by-product slag and slag waste when iron ore and quicklime are used as raw materials for iron making, and the hot metal gutter type smelting reduction ironmaking method is carried out in accordance with the method shown in Figure 1. The relationship between speed and its variation is shown, and the third
The figure is an experimental graph showing the relationship between the viscosity of by-product slag and the amount of flow per unit of slag discharged. As is clear from Fig. 2, when the slag viscosity is 10 voids or less, more preferably 5 voids or less, the amount of fluctuation in the slag removal speed is small and the sludge removal speed itself is large, and the slag removal is smooth. It will be held in However, when the slag viscosity exceeds 1° void, the slag removal speed becomes extremely slow, and the slag becomes viscous and lump-like and is intermittently and irregularly removed, causing fluctuations in the slag removal speed. The amount will also increase rapidly. If this condition progresses further, natural drainage by the flow of the slag itself becomes impossible, and manual forced scraping becomes necessary.

また第3図からは、スラグ粘度を10ボイズ以下、より
好ましくは5ボイズ以下に抑えることによって流説量を
低レベルに抑制することができ、10ボイズを超えると
流説による鉄分ロスが著しく増大することが分かる。
Furthermore, from Fig. 3, it is possible to suppress the flow rate to a low level by suppressing the slag viscosity to 10 voids or less, more preferably 5 voids or less, and if it exceeds 10 voids, the iron loss due to flow increases significantly. I understand.

この様にスラグの粘度は排滓性および流説による鉄分ロ
スと密接な関連を有しているが、該スラグの粘度はスラ
グの温度や成分組成(塩基度や酸化鉄濃度等)によって
変わってくるので、実操業に当たってはたとえば次の様
な方法で操業条件を制御し、適正なスラグ粘度に調節す
ることが推奨される。
In this way, the viscosity of slag is closely related to its drainage properties and iron loss due to flow theory, but the viscosity of slag changes depending on the temperature and composition of the slag (basicity, iron oxide concentration, etc.) Therefore, in actual operation, it is recommended to control the operating conditions by the following method and adjust the slag viscosity to an appropriate level.

(i)スラグ温度の上昇ニスラグの温度を高めると粘度
は低下し流動性が高まってくるので、たとえば炭材およ
び酸素の吹込み量を増大して発熱量を増大したり、ある
いは製鉄原料等の予熱温度を高め、更には酸素吹込み量
を増大して還元性ガスの2次燃焼率を高める等の手段で
スラグ温度を高めてスラ“ グ流動性を改善する。
(i) Increase in slag temperature Increasing the temperature of varnish slag lowers its viscosity and increases its fluidity. The slag fluidity is improved by increasing the slag temperature by increasing the preheating temperature and by increasing the amount of oxygen blown to increase the secondary combustion rate of the reducing gas.

(i i)スラグ中の酸化鉄含量の調整ニスラグ中にお
ける酸化鉄の含有量が多くなると粘度が低下し流動性が
良くなるので、たとえば製鉄原料中の酸化鉄成分の還元
歩留りを抑えて、スラグ中の酸化鉄濃度を高める。もっ
ともこの方法は「還元歩留りの向上」という観点からす
ればマイナス要因となるので、できるだけ前記(i)ま
たは後記(i i i)の方法を採用することが望まれ
る。
(ii) Adjustment of iron oxide content in slag As the content of iron oxide in slag increases, the viscosity decreases and fluidity improves. Increases the concentration of iron oxide inside. However, since this method is a negative factor from the viewpoint of "improving the reduction yield," it is desirable to employ the method (i) or the method (i ii) described below as much as possible.

(iii)副原料として供給される造滓材の種類や量の
調整ニスラグの粘度は、スラグの成分組成や塩基度等に
よっても著しく変わり、たとえば、生成スラグの塩基度
(Cab/5in2)が1.0以下であるため、 MgOやA120ffの増大によって粘度は低下し、ま
た蛍石等の塩化物量を増やすと粘度が低下する。従って
酸化鉄含有原料中、  に含まれる脈石成分に応じて、
副原料として供給される造滓材の種類や量を調整しスラ
グの塩基度や成分組成を適正にコントロールすることに
より粘度調節を行なう。
(iii) Adjustment of the type and amount of slag material supplied as an auxiliary raw material The viscosity of varnish slag varies significantly depending on the component composition and basicity of the slag. For example, if the basicity (Cab/5in2) of the produced slag is 1 0 or less, the viscosity decreases as MgO and A120ff increase, and as the amount of chloride such as fluorite increases, the viscosity decreases. Therefore, depending on the gangue components contained in iron oxide-containing raw materials,
The viscosity is adjusted by adjusting the type and amount of slag material supplied as an auxiliary raw material and appropriately controlling the basicity and component composition of the slag.

尚上記(i)〜(i i i)のスラグ粘度調整法は、
相互に密接な関連を有しているので、実操業に当たって
は、満足のいく排滓性と流説抑制効果を確保する為の目
標スラグ粘度を予め定めておき、連続的あるいは間欠的
にスラグ粘度を実測しながら、目標スラグ粘度に近づく
様に上記(i)〜(i i i)の制御法を適宜組合せ
て実施すればよい。
The slag viscosity adjustment method of (i) to (i ii) above is as follows:
Since they are closely related to each other, in actual operation, a target slag viscosity is determined in advance to ensure satisfactory sludge removal performance and flow prevention effect, and the slag viscosity is adjusted continuously or intermittently. The control methods (i) to (ii) may be appropriately combined and implemented while actually measuring the slag viscosity so as to approach the target slag viscosity.

あるいは(製鉄原料の化学成分および装入量)、(製鉄
原料の装入方式)、(溶融還元操業時における2次燃焼
率)、(銑鉄製造装置から送られてくる溶銑の成分、温
度および愈)等を常時確認しつつ、操業実績の解析結果
を基にしてスラグ粘度を推定し、その粘度が前記目標ス
ラグ粘度に近づく様に、炭材吹込み量、造滓材の種類や
装入量等の可変要素を制御することもできる。
Alternatively, (chemical composition and charging amount of steelmaking raw materials), (charging method of steelmaking raw materials), (secondary combustion rate during smelting reduction operation), (composition, temperature, and temperature of hot metal sent from pig iron manufacturing equipment) ), etc., estimate the slag viscosity based on the analysis results of operational results, and adjust the amount of carbon material injected, the type of slag material, and the charging amount so that the viscosity approaches the target slag viscosity. It is also possible to control variable elements such as.

[実施例] 実施例1 第1図に示した様な溶銑樋式溶融還元製鉄装置を使用し
、第4図のフロー図に準拠してスラグ粘度の調整を行な
った。
[Example] Example 1 Using a hot metal gutter type smelting reduction iron making apparatus as shown in FIG. 1, the slag viscosity was adjusted according to the flow chart shown in FIG.

即ちヘマタイト鉱石を酸化鉄成分とする溶融還元製鉄操
業実績の解析結果より、(鉄鉱石の装入量と化学成分並
びに装入方式)、(溶融還元排ガスの2次燃焼率)、(
銑鉄製造装置から送られてくる溶銑の化学成分と量)を
従属変数として原料鉱石の還元歩留りを求め、次に該(
鉄鉱石の還元歩留り)と、前記解析結果のうち(溶融還
元排ガスの2次燃焼率)および(銑鉄製造装置から送ら
れてくる溶銑の温度と量)を従属変数として(炭材およ
び酸素の吹込み量)を求め、更に上記(還元歩留り)と
(炭材吹込み量)を従属変数としてスラグ組成を求める
That is, from the analysis results of smelting reduction iron manufacturing operations using hematite ore as the iron oxide component, (charging amount of iron ore, chemical composition, and charging method), (secondary combustion rate of smelting reduction exhaust gas), (
The reduction yield of the raw ore is calculated using the chemical composition and amount of hot metal sent from the pig iron manufacturing equipment as dependent variables, and then
(reduction yield of iron ore), and among the above analysis results, (secondary combustion rate of smelting reduction exhaust gas) and (temperature and amount of hot metal sent from pig iron manufacturing equipment) are used as dependent variables (blowout of carbonaceous material and oxygen). Furthermore, the slag composition is determined using the above (reduction yield) and (charcoal material injection amount) as dependent variables.

一方、排滓性を円滑に保ち且つ流説を抑制することので
きる目標スラグ粘度を予め求めておき、生成スラグが目
標スラグ粘度以下となる様に副原料の装入量を調整し、
副生スラグの粘度を4ボイズ前後に維持する。
On the other hand, a target slag viscosity that can maintain smooth slag drainage and suppress flow is determined in advance, and the amount of auxiliary raw materials charged is adjusted so that the generated slag is equal to or less than the target slag viscosity.
The viscosity of the by-product slag is maintained at around 4 voids.

第5図は、上記のスラグ粘度調整法を実施した場合にお
けるスラグ粘度のばらつき(A)と、この粘度調整法を
実施せず一定の操業条件で溶融還元製鉄操業を進めた場
合におけるスラグ粘度のばらつき(B)を併記したもの
であり、前者の場合のスラグ粘度は2〜6ボイズの非常
に狭い範囲に収まっており、粘度のばらつきが小さいの
に対し、後者の場合のスラグ粘度は゛1〜13ポイズの
広い範囲で変動することが分かる。
Figure 5 shows the variation in slag viscosity (A) when the above-mentioned slag viscosity adjustment method is implemented, and the variation in slag viscosity when the smelting reduction ironmaking operation is carried out under constant operating conditions without implementing this viscosity adjustment method. The slag viscosity in the former case falls within a very narrow range of 2 to 6 voids, and the variation in viscosity is small, whereas the slag viscosity in the latter case falls within a very narrow range of 2 to 6 voids. It can be seen that it fluctuates over a wide range of 13 poise.

実施例2 日産8000トンの高炉の溶銑樋に第1図に示した様な
溶融還元製鉄装置を設け、ヘマタイト鉱石を酸化鉄成分
として溶銑増産操業を行なった。尚操業に当たっては、
溶銑増産量が約20%(総日産溶銑量96001−ン)
となる様に、ヘマタイト鉱石(予熱温度500℃)装入
量を約t570Kg/分と定めると共に、炭材装入量は
965に87分、加熱酸素の吹込み量は764Nm’/
分に設定し、副原料としてヘマタイト鉱石と共に吹込む
生石灰の量を変えることにより生成スラグの粘度を色々
変化させたときの排滓性と流説量を調べた。
Example 2 A smelting reduction ironmaking apparatus as shown in FIG. 1 was installed in the hot metal trough of a blast furnace with a daily production capacity of 8,000 tons, and operations were carried out to increase the production of hot metal using hematite ore as the iron oxide component. In addition, in operation,
Hot metal production increased by approximately 20% (Total Nissan hot metal production: 96,001 tons)
As such, the charging amount of hematite ore (preheating temperature 500°C) is determined to be approximately 570 kg/min, the carbon material charging amount is 965 to 87 min, and the heating oxygen injection amount is 764 Nm'/min.
The sludge discharge performance and flow rate were investigated when the viscosity of the produced slag was varied by changing the amount of quicklime injected with hematite ore as an auxiliary raw material.

結果を第1表に一括して示す。The results are summarized in Table 1.

尚この溶融還元工程では、ヘマタイト鉱石中の脈石成分
および副原料として装入される生石灰に由来して、生成
するスラグはFed、Cab。
In this melt reduction process, the slag produced is Fed, Cab, etc., derived from the gangue component in the hematite ore and the quicklime charged as an auxiliary raw material.

5i02.A120s 、MgO,MnO,TiOなど
を含むものとなるが、第1表ではこれらのスラグ成分を
中性成分、酸性成分、塩基性成分に分け、(FeO+M
n0)−(S i Ox +Ti02)−(Cab)の
環3元系で整理して示した。
5i02. It contains A120s, MgO, MnO, TiO, etc., but in Table 1, these slag components are divided into neutral components, acidic components, and basic components.
It is organized and shown as a ring ternary system of n0)-(S i Ox +Ti02)-(Cab).

(以 下 余−9、) 第1表からも明らかである様に、生石灰の装入量を増加
するにつれて生成スラグの粘度は低下し、それに伴なっ
て流説量が減少すると共に、スラグの排滓性は良好とな
って強制掻き出し回数は減少してくる。殊にスラグ粘度
が3,0ボイズに下がるまで石灰石装入量を増加すると
、流説量は殆んど無視し得る程度にまで抑えられ、且つ
スラグの強制掻き出しも全く不要となる。
(See Table 1 below.) As is clear from Table 1, as the amount of quicklime charged increases, the viscosity of the produced slag decreases, and the amount of slag flowing decreases accordingly. The sludge properties become better and the number of forced scrapings decreases. In particular, when the amount of limestone charged is increased until the slag viscosity is reduced to 3.0 voids, the amount of limestone is suppressed to an almost negligible level, and forced scraping of the slag becomes completely unnecessary.

[発明の効果] 本発明は以上の様に構成されており、溶銑樋を用いた溶
融還元工程で副生ずるスラグの粘度を調節してスラグ排
滓性を調整し、あるいはスラグ排滓時の流説を抑制する
ことによって、溶銑樋式溶融還元製鉄を極めて円滑にし
かも効率良く遂行し得ることになった。
[Effects of the Invention] The present invention is configured as described above, and it is possible to adjust the viscosity of slag produced as a by-product in the melting reduction process using a hot metal sluice to adjust the slag drainage performance, or to improve the flow rate during slag drainage. By suppressing this, hot metal trough type smelting reduction ironmaking can be carried out extremely smoothly and efficiently.

【図面の簡単な説明】 第1図は本発明が採用される溶銑樋式溶融還元装置を例
示する概略縦断面図、第2図はスラグの粘度と排滓速度
およびその変動量の関係を示すグラフ、第3図はスラグ
粘度と流説量の関係を示すグラフ、第4図は本発明を実
施する際のスラグ粘度制御例を示すフロー図、第5図は
本発明法を採用したときのスラグ粘度のばらつきを比較
法と対比して示すグラフである。 1:溶融還元製鉄装置 2:蓋体 3:排滓樋      4:潜り堰 5:越流堰      6:製鉄原料吹込み管7:酸素
吹込み管   8:炭材吹込み管9:排ガスダクト  
 10:溶銑鍋 ;−@)信′踵・≧・眞−1;p厚 −ノ 第4図 第5図 ス ラ り”!6洟(・ム°イλプ
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a schematic vertical cross-sectional view illustrating a hot metal gutter type smelting reduction apparatus to which the present invention is adopted, and Fig. 2 shows the relationship between slag viscosity, slag discharge rate, and its fluctuation amount. Graph, Figure 3 is a graph showing the relationship between slag viscosity and flow rate, Figure 4 is a flow diagram showing an example of slag viscosity control when implementing the present invention, Figure 5 is slag when the method of the present invention is adopted. It is a graph showing the variation in viscosity in comparison with a comparative method. 1: Smelting reduction iron manufacturing equipment 2: Lid body 3: Slag culvert 4: Submerged weir 5: Overflow weir 6: Steel manufacturing raw material injection pipe 7: Oxygen injection pipe 8: Carbon material injection pipe 9: Exhaust gas duct
10: Hot metal pot; - @) Shin'heel ≧ Shin - 1; p thickness - Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)銑鉄製造設備における溶銑樋上の溶銑に、製鉄原
料、炭材および酸素を供給して当該製鉄原料中の酸化鉄
成分を溶融還元すると共に、溶融還元工程で副生するス
ラグの粘度を調節してスラグ排滓性を調整することを特
徴とする溶銑樋式溶融還元製鉄法。
(1) Feed ironmaking raw materials, carbonaceous materials, and oxygen to the hot metal on the hot metal gutter in pig iron manufacturing equipment to melt and reduce the iron oxide components in the ironmaking raw materials, and adjust the viscosity of slag produced as a by-product in the melting and reduction process. A hot metal trough-type smelting reduction ironmaking method characterized by adjusting the slag drainage performance.
(2)銑鉄製造設備における溶銑樋上の溶銑に、製鉄原
料、炭材および酸素を供給して当該製鉄原料中の酸化鉄
成分を溶融還元すると共に、溶融還元工程で副生するス
ラグの粘度を10ポイズ以下に維持することによって、
スラグ排滓時の流銑を抑制することを特徴とする溶銑樋
式溶融還元製鉄法。
(2) Feed ironmaking raw materials, carbonaceous materials, and oxygen to the hot metal on the hot metal gutter in pig iron manufacturing equipment to melt and reduce the iron oxide components in the ironmaking raw materials, and reduce the viscosity of slag by-produced in the melting and reduction process to 10 By keeping it below poise,
A hot metal trough type smelting reduction ironmaking method characterized by suppressing flow pig iron during slag discharge.
JP2016588A 1988-01-29 1988-01-29 Molten iron gutter type smelting reduction iron manufacture method Pending JPH01195223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016588A JPH01195223A (en) 1988-01-29 1988-01-29 Molten iron gutter type smelting reduction iron manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016588A JPH01195223A (en) 1988-01-29 1988-01-29 Molten iron gutter type smelting reduction iron manufacture method

Publications (1)

Publication Number Publication Date
JPH01195223A true JPH01195223A (en) 1989-08-07

Family

ID=12019545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016588A Pending JPH01195223A (en) 1988-01-29 1988-01-29 Molten iron gutter type smelting reduction iron manufacture method

Country Status (1)

Country Link
JP (1) JPH01195223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270193A (en) * 2008-04-09 2009-11-19 Kobe Steel Ltd Method for producing granular metallic iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270193A (en) * 2008-04-09 2009-11-19 Kobe Steel Ltd Method for producing granular metallic iron

Similar Documents

Publication Publication Date Title
KR0131266B1 (en) Process for the production of iron using converter
EP0074270B1 (en) Process and apparatus for continuous steel-making
SK2952000A3 (en) Method of making iron and steel
CA2636155C (en) Use of an induction furnace for the production of iron from ore
EP0302111A1 (en) Method and furnace for making iron-carbon intermediate products for steel production
US3912501A (en) Method for the production of iron and steel
AU747093B2 (en) Method for reducing iron oxides and smelting iron and installations therefor
US5060913A (en) Integrated metallurgical reactor
US9499872B2 (en) Iron reduction process and equipment
WO1997020954A1 (en) Simplified duplex processing of nickel ores and/or concentrates for the production of ferronickels, nickel irons and stainless steels
MX2009001285A (en) Lead slag reduction.
SU1473716A3 (en) Method of producing cast iron melt or steel semiproducts
US3666440A (en) Method of recovering copper from slag
US1357781A (en) Blast treatment of metals
JP5625654B2 (en) Hot metal production method
KR102628195B1 (en) Molten steel manufacturing method
JPH01195223A (en) Molten iron gutter type smelting reduction iron manufacture method
US1300410A (en) Steel-making process.
JP7364899B2 (en) Melting method of cold iron source with slag reduction
UA77936C2 (en) Method of producing granular metallic iron, method of producing of liquid steel (variants), device for charging subsidiary raw material on hearth of reduction furnace with moving hearth
US693062A (en) Manufacture of pig-iron.
US1888312A (en) Metallurgical process for the making of ferrous metals
RU2618030C1 (en) Control method of the romelt liquid phase recovery process for processing iron bearing materials of high oxidation degree
JP2007204825A (en) Method for producing molten iron
JPH01188612A (en) Molten iron runner-type smelting reduction iron manufacturing method