JPH01194487A - Optical system of phase synchronous semiconductor laser array - Google Patents

Optical system of phase synchronous semiconductor laser array

Info

Publication number
JPH01194487A
JPH01194487A JP63019866A JP1986688A JPH01194487A JP H01194487 A JPH01194487 A JP H01194487A JP 63019866 A JP63019866 A JP 63019866A JP 1986688 A JP1986688 A JP 1986688A JP H01194487 A JPH01194487 A JP H01194487A
Authority
JP
Japan
Prior art keywords
phase
laser array
semiconductor laser
diffraction grating
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019866A
Other languages
Japanese (ja)
Inventor
Tomohiko Yoshida
智彦 吉田
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63019866A priority Critical patent/JPH01194487A/en
Publication of JPH01194487A publication Critical patent/JPH01194487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters

Abstract

PURPOSE:To effectively utilize an output of a phase synchronous semiconductor laser array and to make a visible radiation having a single humped FFP due to a secondary higher harmonic to be generated efficiently, by providing both the phase synchronous semiconductor laser array which is oscillated by two wave surfaces which are 180 deg. out-of-phase, and a diffraction grating coupler which has a period substantially equal to the wavelength of a pair of lights which are half a period out-of-period. CONSTITUTION:The lights emitted from a laser array are converted into parallel rays by a collimator lens 2, and the parallel rays 2 are then applied to a diffraction grating optical coupler 4. In this connection, the laser beams 11, which are made the parallel rays by the collimator lens 2, becomes a double-humped far field pattern(FFP) 12. Two humped FFP components constituting the FFP 12 are applied to diffraction grating couplers 4a and 4b, respectively, which are half a period out-of-period. The light applied from the diffraction grating coupler 4a to an optical waveguide 5a is 180 deg. out of phase with the light applied from the diffraction grating coupler 4b which is half a period out of period with the coupler 4a to an optical waveguide 5b. Therefore, all the lights emitted from the semiconductor laser array 1 are applied to an optical waveguide 5 with being in phase. Thus, secondary higher harmonic lights 13 emitted from the two optical waveguides 5a, 5b are in phase each other, and therefore the FFP becomes a single-humped pattern as indicated by sign 14.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は2本以上の互いにコヒーレントに結合した光共
撮器を具備してなる180°位相同期半導体レーザアレ
ーの出力を等位相の1つの波面に変換し、光導波路内へ
入射させるために用いる光学系に関する。
[Detailed Description of the Invention] <Technical Field of the Invention> The present invention converts the output of a 180° phase-locked semiconductor laser array comprising two or more mutually coherently coupled optical co-imagers into one wavefront of equal phase. It relates to an optical system used for converting and inputting light into an optical waveguide.

〈従来技術〉 複数のレーザ共撮器を互いにコヒーレントに結合した位
相同期半導体レーザアレーは端面部の光密度が低く、高
い出力まで動作させることができるため、高い励起強変
を必要とする光励起レーザや高調波発生用の励起光源と
して重要である。特に高調波を発生させるには励起光を
できるだけ効率よく利用するため、光導波路がよく用い
られる。
<Prior art> A phase-locked semiconductor laser array in which multiple laser co-imagers are coherently coupled to each other has a low optical density at the end face and can be operated up to high output, making it suitable for use with optically pumped lasers that require high excitation intensity, etc. It is important as an excitation light source for harmonic generation. In particular, optical waveguides are often used to generate harmonics in order to utilize excitation light as efficiently as possible.

しかるに、このような半導体レーザアレーの出力には位
相が180°異なる2つの波面が同時に存在するモード
が主として発振する。該モードはその遠視野像で、位相
の異なる各波面に対応した2つの光束に分かれる。これ
らの光を通常の回折格子やプリズムを用いた結合器を用
いて光導波路内に導いても、位相の180°異なる2つ
の波面を同位相とする手段としては半波長板を用いる方
法が既に提唱されている(特開昭62−98320)。
However, the output of such a semiconductor laser array mainly oscillates in a mode in which two wavefronts with a phase difference of 180° exist simultaneously. The far-field image of this mode is divided into two light beams corresponding to wavefronts with different phases. Even if these lights are guided into an optical waveguide using a coupler using a normal diffraction grating or prism, there is already a method using a half-wave plate as a means to bring two wavefronts with a phase difference of 180° into the same phase. It has been proposed (Japanese Patent Application Laid-Open No. 62-98320).

〈発明が解決しようとする間頂点〉 しかしながら、上記半波長板を用いる方式では装置を小
型化することが困難であり、特に光導波路との集積化は
不可能であった。
<The culmination of the problem to be solved by the invention> However, in the method using the half-wave plate described above, it is difficult to miniaturize the device, and in particular, integration with an optical waveguide is impossible.

〈発明の目的〉 本発明は上記問題点に鑑みてなされたものであり、位相
の180°ずれた位相同期半導体レーザアレーの出力を
、位相の等しい1つの波面に変換して光導波路内に導く
ことのできる光学系を提供することを目的と干るもので
ある。
<Purpose of the Invention> The present invention has been made in view of the above-mentioned problems, and aims to convert the output of a phase-locked semiconductor laser array whose phase is shifted by 180° into a single wavefront having an equal phase and guide it into an optical waveguide. The purpose is to provide an optical system that can perform

〈発明の概要〉 本発明は、複数の互いにコヒーレントに結合したレーザ
共振器を有し、互いに180°位相のずれた2つの波面
で発振する、位相同期半導体レーザアレーと、光導波路
上に設けられた、互いに半周期ずれた1組の光の波長と
同程度の周期を有する回折格子結合器とからなる。
<Summary of the Invention> The present invention provides a phase-locked semiconductor laser array that has a plurality of laser resonators that are coherently coupled to each other and oscillates with two wavefronts that are 180° out of phase with each other, and a phase-locked semiconductor laser array that is provided on an optical waveguide. , and a diffraction grating coupler having a period comparable to the wavelength of a pair of light beams shifted by a half period from each other.

〈実施例〉 以下、本発明の実施例について図面を参照しながら詳細
に説明する。第1図は本発明の1実施例の光学系を示す
構成図である。1ば10本の共振器をコヒーレントに結
合させた、位相同期半導体レーザアレーであり、該レー
ザアレーを出だ光はコリメーターレンズ2によって平行
光に変換され、回折格子光結合器3に入射する。コリメ
ーターレンズによって平行光とされたレーザ光束11は
図中に示すような双峰の遠視野像(FFP)12となり
、各光束は互いに半周期だけ周期のずれだ回折格子光結
合器4a、4bにそれぞれ入射する。回折格子光結合器
4aから光導波路5aに入射した光と、半周期ずれた回
折格子光結合器4bから光導波路5hに入射した光とは
位相が180°ずれるため、半導体レーザアレー1を出
た光はすべて同位相となって光導波路5に入射する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an optical system according to an embodiment of the present invention. It is a phase-locked semiconductor laser array in which 10 resonators are coherently coupled.The light emitted from the laser array is converted into parallel light by a collimator lens 2, and then enters a diffraction grating optical coupler 3. The laser beam 11 made into parallel light by the collimator lens becomes a double-peaked far-field pattern (FFP) 12 as shown in the figure, and each beam is shifted by a half period from each other. are incident on each. The light incident on the optical waveguide 5a from the diffraction grating optical coupler 4a and the light incident on the optical waveguide 5h from the diffraction grating optical coupler 4b, which is shifted by half a period, are out of phase by 180°, so the light exiting the semiconductor laser array 1 all enter the optical waveguide 5 with the same phase.

本実施例ではニオブ酸リチウム(LiNbO3)基板3
の一方の面にアルミニウム(図示せず)を蒸着した後、
通常のホトリソグラフィー法によりホトレジストをマス
ク、温リン酸(〜60℃)をエッチャントとし幅1.5
ミクロンのストライプ状にエツチングし、これをマスク
として安息香酸リチウム溶液に浸し、プロント交換によ
って@2μm、深さ0.5μmの2本の平行なストライ
プ状の光導波路5を作製した。フォトレジストを除去し
た後、真空蒸着法等でSi3N4膜を蒸着した後、電子
ビームレジスト(図示せず)を塗布し、電子ビーム描画
により回折格子光結合器のパターンを作製し、HF:N
H4F=1 : 20の混合液によりエツチングし回折
格子光結合器4を作製した。回折格子光結合器4の周期
は例えば「光集積回路」(西原他。
In this embodiment, a lithium niobate (LiNbO3) substrate 3
After depositing aluminum (not shown) on one side of
Using a photoresist mask and warm phosphoric acid (~60°C) as an etchant, a width of 1.5
The optical waveguide 5 was etched into micron stripes and immersed in a lithium benzoate solution as a mask to produce two parallel stripe-shaped optical waveguides 5 @2 μm and 0.5 μm deep by pronto exchange. After removing the photoresist, a Si3N4 film was deposited using a vacuum evaporation method, an electron beam resist (not shown) was applied, a diffraction grating optical coupler pattern was created by electron beam writing, and HF:N
A diffraction grating optical coupler 4 was fabricated by etching with a mixed solution of H4F=1:20. The period of the diffraction grating optical coupler 4 is determined by, for example, "optical integrated circuit" (Nishihara et al.).

オーム社刊)等に詳述されているように半導体レーザの
発振波長、入射角、導波路の伝搬定数よりレーザアレー
の出力が導波路5内に入射するよう決めだ位相同期半導
体レーザアレーとして発振波長850nm、最大出力2
00 mWのものを用い、該レーザ光をコリメーターレ
ンズで平行光とし回折格子光結合器を通して上記光導波
路中に導くことにより波長425 nmの2次高調波1
3が得られた。
The output of the laser array is determined to be incident on the waveguide 5 based on the oscillation wavelength of the semiconductor laser, the incident angle, and the propagation constant of the waveguide, as detailed in Ohmsha Publishing).As a phase-locked semiconductor laser array, the oscillation wavelength is 850 nm. , maximum output 2
00 mW, the laser beam is made into parallel light by a collimator lens and guided into the above optical waveguide through a diffraction grating optical coupler, thereby producing a second harmonic of 425 nm in wavelength.
3 was obtained.

2つの光導波路5a、5bから放射される2次高調波光
13は互いに同位相であり、FFPは14のような単峰
となった。
The second harmonic lights 13 emitted from the two optical waveguides 5a and 5b were in phase with each other, and the FFP became a single peak like 14.

第2図は本発明の別の実施例であり、本発明を子板光導
波路゛に適用した場合の構成図である。回折格子光結合
器により、半導体レーザアレーから出た光はすべて等位
相となっているため光導波路内では干渉は生ぜず上記実
施例と同様に単峰の2次高調波出力が得られた。
FIG. 2 is another embodiment of the present invention, and is a block diagram when the present invention is applied to a slave plate optical waveguide. Due to the diffraction grating optical coupler, all the lights emitted from the semiconductor laser array had the same phase, so no interference occurred in the optical waveguide, and a single peak second harmonic output was obtained as in the above embodiment.

第3図は本発明の更に他の実施例を示す構成図であり、
(a)は平面図、(b)は側面図である。本実施例では
回折格子光結合器には例えば裏地:光・量子エレクトロ
ニクス研究会報告書0QE84−109等に記載されて
いるように、集光性を有するような形状に形成した。こ
の場合も回折格子光結合器3aと3bは互いに半周期ず
れている。本実施例においては上記2つの実施例で示し
たようなコリメーターレンズは不要であり、装置を更に
小型化することが可能となっている。
FIG. 3 is a configuration diagram showing still another embodiment of the present invention,
(a) is a plan view, and (b) is a side view. In this example, the diffraction grating optical coupler was formed into a shape having light condensing properties, for example, as described in the Optical and Quantum Electronics Study Group Report 0QE84-109. Also in this case, the diffraction grating optical couplers 3a and 3b are shifted by half a period from each other. In this embodiment, a collimator lens as shown in the above two embodiments is unnecessary, and the apparatus can be further miniaturized.

〈発明の効果〉 本発明によれば、高い出力で安定に動作するが、FFP
が双峰と々りやすい位相同期半導体レーザアレーの出力
を有効に利用し、2次高調波による単峰のFFPを有す
る可視光の発生を効率よく行なうことができる。また、
半導体レーザと光導波路とを効率よく結合することによ
り装置の大幅な小型化を図ることができ、高密度光ディ
スク用光ピツクアップ等の光源等に用いることができ妾
業上多大な効果を与えることができる。
<Effects of the Invention> According to the present invention, although stable operation is possible with high output, FFP
It is possible to efficiently generate visible light having a single peak FFP due to second harmonics by effectively utilizing the output of a phase-locked semiconductor laser array, which tends to have double peaks. Also,
By efficiently coupling a semiconductor laser and an optical waveguide, it is possible to significantly reduce the size of the device, and it can be used as a light source for optical pickups for high-density optical disks, etc., and has a great effect on business. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の光学系を表わす構成図で、
(a)は平面図、(b)は側面図である。第2図及び第
3図はそれぞれ本発明の別の実施例を表わ一1*つ系。 ゆ成、f21〜ヨ3.4四、4鵡−毒運萌酢図51・・
・位相同期半導体レーザアレー、2・・・コリメーター
レンズ、3・・・集光型回折格子光結合器。 4・・・回折格子光結合器 5・・・プロトン交換光導波路 11・・・位相同期半導体レーザアレー光束12・・・
位相同期半導体レーザアレー光束の遠視野像13・・・
2次高調波出力 14・・・2次高調波出力の遠視野像 代理人 弁理士 杉 山 毅 至(他1名)//   
      4b F、 2゛−3
FIG. 1 is a configuration diagram showing an optical system of one embodiment of the present invention.
(a) is a plan view, and (b) is a side view. FIGS. 2 and 3 each represent another embodiment of the invention. Yusei, f21 ~ Yo 3.44, 4 - Poison Luck Moe Vinegar Figure 51...
- Phase-locked semiconductor laser array, 2... collimator lens, 3... condensing diffraction grating optical coupler. 4... Diffraction grating optical coupler 5... Proton exchange optical waveguide 11... Phase-locked semiconductor laser array light beam 12...
Far-field image of phase-locked semiconductor laser array beam 13...
2nd harmonic output 14... Far-field image of 2nd harmonic output Agent Patent attorney Takeshi Sugiyama (1 other person) //
4b F, 2゛-3

Claims (1)

【特許請求の範囲】[Claims] 1、位相同期型の半導体レーザアレーと、該半導体レー
ザアレーからの互いに位相が180°ずれた光束を受け
る回折格子光結合器と、光導波路とからなる位相同期半
導体レーザアレーの光学系において、前記回折格子光結
合器は、互いに半周期だけ周期のずれた同一格子パター
ンを有する回折格子からなり、前記互いに位相が180
°ずれた光束は同じ位相に変換されて前記光導波路へ入
射されることを特徴とする位相同期半導体レーザアレー
の光学系。
1. In an optical system of a phase-locked semiconductor laser array comprising a phase-locked semiconductor laser array, a diffraction grating optical coupler that receives light beams whose phases are shifted by 180° from the semiconductor laser array, and an optical waveguide, the diffraction grating light The coupler is composed of diffraction gratings having identical grating patterns whose periods are shifted from each other by half a period, and whose phases are 180 degrees with respect to each other.
An optical system for a phase-locked semiconductor laser array, characterized in that the optical fluxes shifted by degrees are converted into the same phase and input into the optical waveguide.
JP63019866A 1988-01-29 1988-01-29 Optical system of phase synchronous semiconductor laser array Pending JPH01194487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019866A JPH01194487A (en) 1988-01-29 1988-01-29 Optical system of phase synchronous semiconductor laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019866A JPH01194487A (en) 1988-01-29 1988-01-29 Optical system of phase synchronous semiconductor laser array

Publications (1)

Publication Number Publication Date
JPH01194487A true JPH01194487A (en) 1989-08-04

Family

ID=12011144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019866A Pending JPH01194487A (en) 1988-01-29 1988-01-29 Optical system of phase synchronous semiconductor laser array

Country Status (1)

Country Link
JP (1) JPH01194487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046802A (en) * 1989-03-28 1991-09-10 Sharp Kabushiki Kaisha Light wavelength converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046802A (en) * 1989-03-28 1991-09-10 Sharp Kabushiki Kaisha Light wavelength converter

Similar Documents

Publication Publication Date Title
JPH0669582A (en) Short wavelength light source
JPH05333395A (en) Optical wavelength conversion device
JP3036255B2 (en) Optical wavelength conversion element, short wavelength laser light source using the same, optical information processing apparatus using the short wavelength laser light source, and method of manufacturing optical wavelength conversion element
JPH04107536A (en) Second harmonic generation device
US5144636A (en) Laser beam oscillating apparatus
JPS6290618A (en) Light modulator
KR0174775B1 (en) Lasing system with wavelength=conversion waveguide
JPH077135B2 (en) Optical waveguide, optical wavelength conversion element, and method for manufacturing short wavelength laser light source
JPH02254427A (en) Optical wavelength converter
JPH01194487A (en) Optical system of phase synchronous semiconductor laser array
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH09179155A (en) Optical wavelength converting device
JP3884402B2 (en) Laser equipment
JP2693842B2 (en) Optical wavelength converter
JPH03287140A (en) Laser beam wavelength converting device
JPH01172934A (en) Non-linear optical element
JP4156644B2 (en) Laser equipment
JP3884401B2 (en) Laser light source and optical disk apparatus
JP2790536B2 (en) Ultrashort light pulse generator
JP2688102B2 (en) Optical wavelength converter
JPS60112024A (en) Light wavelength converter
JPH03132628A (en) Wavelength converting element
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH035733A (en) Optical secondary higher harmonic generating element
JPH05297428A (en) Wavelength conversion method