JPH01194474A - Semiconductor input protecting device - Google Patents

Semiconductor input protecting device

Info

Publication number
JPH01194474A
JPH01194474A JP63020283A JP2028388A JPH01194474A JP H01194474 A JPH01194474 A JP H01194474A JP 63020283 A JP63020283 A JP 63020283A JP 2028388 A JP2028388 A JP 2028388A JP H01194474 A JPH01194474 A JP H01194474A
Authority
JP
Japan
Prior art keywords
layer
impurity diffusion
type impurity
diffusion layer
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63020283A
Other languages
Japanese (ja)
Other versions
JP2821128B2 (en
Inventor
Kazuhito Misu
三須 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63020283A priority Critical patent/JP2821128B2/en
Publication of JPH01194474A publication Critical patent/JPH01194474A/en
Application granted granted Critical
Publication of JP2821128B2 publication Critical patent/JP2821128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent hot electrons from implanting into a thick field oxide film by facing in parallel at an equal interval a first well layer containing a first impurity diffused layer connected to an input terminal and a second well layer containing a second impurity diffused layer connected to a ground potential under a thick insulating film between the two diffused layers. CONSTITUTION:When an abnormal voltage is applied to a bonding pad 101, an input protecting device has an N-type impurity diffused layer 103A connected to the pad 101, an N-type impurity well layer 115A for enclosing the layer 103A, an N-type impurity diffused layer 103B connected to a ground potential, and an N-type impurity well layer 115B enclosing the layer 103B adjacently at an extremely narrow interval. Since the layers 115A, 115B having deeper impurity regions than those of the layers 103A, 103B are formed, the hot electrons generated by the abnormal voltage applied to the pad 101 flow in a P-type semiconductor substrate 110. Thus, the reduction in the implantation of the hot electrons into a thick field oxide film 107A does not occur, and a semiconductor device having a high strength against abnormal voltage can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は入力端子に加えられる静電気などの外部サージ
から装置を保護するための入力保護回路を備えた半導体
装置に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device equipped with an input protection circuit for protecting the device from external surges such as static electricity applied to input terminals.

[従来の技術] 半導体装置とくに絶縁ゲート型電界効果集積回路装置(
MOSIC)では、ゲート絶縁膜として厚さ200〜3
00Aと非常に薄いシリコン酸化膜が使用されており摩
擦により生ずる静電気やノイズ電圧などにより容易に絶
縁破壊し、入力保護装置を設けないと実使用上支障があ
ることはよく知られている。また今後MO5ICは高集
積化、高性能化がすすみ、ゲート絶縁膜はさらに薄膜化
の方向にあり、問題は重大となりつつある。
[Prior art] Semiconductor devices, especially insulated gate field effect integrated circuit devices (
MOSIC), the gate insulating film has a thickness of 200 to 3
It is well known that since a very thin silicon oxide film of 00A is used, it easily breaks down due to static electricity caused by friction, noise voltage, etc., and that there is a problem in practical use unless an input protection device is provided. Furthermore, as MO5ICs become more highly integrated and performant, gate insulating films tend to become thinner, and the problem is becoming more serious.

第3図は、−船釣に使用されている半導体保護装置の等
価回路である。この等価回路は抵抗R1゜R2と、ゲー
トが入力端子Pと抵抗R1の一端に、ドレインが抵抗R
1の他端と抵抗R2の一端に、ソースが接地に接続され
たトランジスタQ1と。
FIG. 3 is an equivalent circuit of a semiconductor protection device used for boat fishing. This equivalent circuit consists of a resistor R1゜R2, a gate connected to the input terminal P and one end of the resistor R1, and a drain connected to the resistor R1.
1 and one end of the resistor R2, a transistor Q1 whose source is connected to ground.

ゲートとソースが接地にトレインが抵抗R2の他端と、
内部回路であるトランジスタQ3の入カゲ−トに接続さ
れたトランジスタQ2により構成されている。
The gate and source are grounded, and the train is connected to the other end of resistor R2,
It consists of a transistor Q2 connected to the input gate of a transistor Q3 which is an internal circuit.

入力端子Pは通常、ボンディング用のアルミバットに接
続されている。またトランジスタQ3は保護されるべき
トランジスタを表しており、そのゲート絶縁膜は前述の
ように厚さ200〜300Aのシリコン酸化膜が使用さ
れる。トランジスタQには、パンチスルートランジスタ
でソース・ドレイン間に20V前後の異常電圧が印加さ
れると導通し、入力端子をクランプする働きがある。ト
ランジスタQ2のゲート絶縁膜としては、トランジスタ
Q3と同様のものを用いることが普通である。トランジ
スタQ1はしきい値電圧が20V程度のトランジスタ6
000A程度の厚いシリコン酸化膜がゲート絶縁膜とし
て用いられており、通常いわゆるチャンネルストッパ領
域と同時に形成される。抵抗R1,R2は時定数を設け
て入カバルス波形をなまらせ、またトランジスタQ1あ
るいはQ2が導通状態になった際に電流を制限する目的
があり、通常半導体基板と反対導電型の不純物拡散層あ
るいはリンなどの不純物を含んだ多結晶シリコン層で形
成することが多い。
The input terminal P is normally connected to an aluminum butt for bonding. Further, the transistor Q3 represents a transistor to be protected, and its gate insulating film is a silicon oxide film having a thickness of 200 to 300 Å as described above. Transistor Q is a punch-through transistor, and when an abnormal voltage of around 20V is applied between the source and drain, it becomes conductive and has the function of clamping the input terminal. As the gate insulating film of the transistor Q2, the same one as that of the transistor Q3 is usually used. Transistor Q1 is transistor 6 with a threshold voltage of about 20V.
A silicon oxide film as thick as approximately 0.000A is used as a gate insulating film, and is usually formed at the same time as a so-called channel stopper region. The resistors R1 and R2 have the purpose of providing a time constant to blunt the input cavitation waveform and to limit the current when the transistor Q1 or Q2 becomes conductive. It is often formed from a polycrystalline silicon layer containing impurities such as phosphorus.

第4図は第3図の等何回路を半導体上に具体化した場合
の平面図て抵抗素子R1,R2として不純物拡散層を用
いている。
FIG. 4 is a plan view of the circuit shown in FIG. 3 implemented on a semiconductor, in which impurity diffusion layers are used as resistance elements R1 and R2.

能動領域である不純物拡散層103,104A。Impurity diffusion layers 103 and 104A are active regions.

104B、リンを含む多結晶シリコン層105、コンタ
クト開口部113A、  113B、  113C1お
よびボンディングバット101とアルミ配線層111、
ボンディング用のパッドスルーホールパターン102を
それぞれ示す。ボンディング用パッド101はアルミパ
ターンで形成され半導体チップ表面全体を覆っているパ
ッシベーション膜(図示せず)でパッケージのり−ト電
極(図示せず)と接続できるようになっており、これが
第3図の入力端子Pに相当する。そしてポンディングパ
ッド101(入力端子P)はコンタクト開口部113A
を通して不純物拡散層103(第3図の抵抗R1に相当
)と接続され、さらにこの不純物拡散層103(抵抗R
1)を経てトランジスタQ1のトレイン領域に至る。ま
たトランジスタQ1のソースを形成する不純物拡散層1
04Aはコンタクト開口部113Bを通して接地電位の
アルミ配線N111に接続され、さらに抵抗R2を形成
する不純物拡散層103の領域を経てトランジスタQ2
のトレイン領域(図示せず)に至る。また接地電位に保
たれた多結晶シリコン層105によりトランジスタQ2
のゲート電極(図示せず)が形成され、一方トランジス
タQ2のソース(図示せず)を形成する不純物拡散層1
04Bの領域はコンタクト開口部113Cを通して接地
電位のアルミ配線層111に接続されている。
104B, polycrystalline silicon layer 105 containing phosphorus, contact openings 113A, 113B, 113C1, bonding bat 101 and aluminum wiring layer 111,
Pad through-hole patterns 102 for bonding are shown. The bonding pad 101 is formed of an aluminum pattern and can be connected to a package glue electrode (not shown) through a passivation film (not shown) covering the entire surface of the semiconductor chip, as shown in FIG. Corresponds to input terminal P. The bonding pad 101 (input terminal P) is connected to the contact opening 113A.
is connected to the impurity diffusion layer 103 (corresponding to the resistor R1 in FIG. 3) through the impurity diffusion layer 103 (corresponding to the resistor R1 in FIG.
1) and reaches the train region of transistor Q1. Also, the impurity diffusion layer 1 forming the source of the transistor Q1
04A is connected to the aluminum wiring N111 at ground potential through the contact opening 113B, and further connected to the transistor Q2 through the region of the impurity diffusion layer 103 forming the resistor R2.
to the train region (not shown). In addition, the polycrystalline silicon layer 105 kept at the ground potential causes the transistor Q2 to
A gate electrode (not shown) is formed, and an impurity diffusion layer 1 forms a source (not shown) of the transistor Q2.
The region 04B is connected to the aluminum wiring layer 111 at the ground potential through the contact opening 113C.

[発明が解決しようとする問題点コ 上述した従来の入力保護回路の1素子であるMOS)ラ
ンジスタ(第3図のQl)は、トレイン不純物拡散層(
第4図の103)とMOS)ランジスタQ1のゲートw
化膜であるフィールド酸化膜107Aとが接しているた
め、入力端子(ボンディングバット’)101に異常電
圧が印加されるとソース不純物拡散層104Aとトレイ
ン不純物拡散層103との間の高電界によってソース不
純物拡散層104Aからトレイン不純物拡散層103へ
電子が流れ込み、大部分の電子はトレイン不純物拡散層
103へ抜けるが第6図に示すようここ一部十分に高い
エネルギーを持った電子(ホットエレクトロン)がM 
OS )ランジスタQ1のトしイン不純物拡散N103
に接するフィールド酸化膜107への障壁を越えて入り
込み、注入されたホットエレクトロンは、フィールトド
酸化■莫107A中のトラップに捕獲され、その結果負
電荷を発生し、その負電荷によって誘導された正電荷か
トレイン不純物拡散層103近傍の半導体基板110中
に発生してしまい、そのために第7図に示すようにトレ
イン不純物拡散層103とフィールド酸化膜107Aと
が接する領域で形成される空乏層112幅が極めて小さ
くなりトレイン不純物拡散層103−半導体基板110
間の耐圧か下かってしまうという欠点がある。
[Problems to be Solved by the Invention] The MOS transistor (Ql in FIG. 3), which is one element of the conventional input protection circuit described above, has a train impurity diffusion layer (
103) and MOS) gate w of transistor Q1 in Fig. 4
Since the field oxide film 107A is in contact with the field oxide film 107A, when an abnormal voltage is applied to the input terminal (bonding butt') 101, a high electric field between the source impurity diffusion layer 104A and the train impurity diffusion layer 103 Electrons flow from the impurity diffusion layer 104A to the train impurity diffusion layer 103, and most of the electrons escape to the train impurity diffusion layer 103, but as shown in FIG. 6, some electrons with sufficiently high energy (hot electrons) M
OS) Input impurity diffusion N103 of transistor Q1
The injected hot electrons enter across the barrier into the field oxide film 107 that is in contact with the field oxide film 107A, and are captured by the traps in the field oxide film 107A, thereby generating negative charges, and the positive charges induced by the negative charges. Therefore, as shown in FIG. 7, the width of the depletion layer 112 formed in the region where the train impurity diffusion layer 103 and the field oxide film 107A are in contact with each other increases. The train impurity diffusion layer 103-semiconductor substrate 110 becomes extremely small.
The disadvantage is that the withstand pressure between the two ends is reduced.

したがって、この状態で通常動作時に入力端子(ポンデ
ィングパッド)101に正電圧が印加されると前述のよ
うにトレイン不純物拡散層103−半導体基板110間
耐圧が低下しているため半導体基板110へ漏れ電流(
it)が流れ、半導体デバイスの信頼性低下を引き起こ
す。
Therefore, in this state, if a positive voltage is applied to the input terminal (ponding pad) 101 during normal operation, the withstand voltage between the train impurity diffusion layer 103 and the semiconductor substrate 110 has decreased as described above, so that it leaks to the semiconductor substrate 110. Current (
(it) flows, causing a decrease in the reliability of semiconductor devices.

[発明の従来技術に対する相違点コ。[Differences between the invention and the prior art]

上述した従来の半導体入力保護装置に対し、本発明は入
力端子に接続された第1の不純物拡散層を包含する第1
のウェル層と接地電位に接続された第2の不純物拡散層
を包含する第2のウェル層とが前記第1.第2の不純物
拡散層間の分離領域に形成された厚い絶縁膜下で等間隔
に平行に相対向する独創的内容を有する。
In contrast to the conventional semiconductor input protection device described above, the present invention provides a first impurity diffusion layer connected to an input terminal.
A second well layer including a well layer and a second impurity diffusion layer connected to the ground potential is connected to the first well layer. It has an original content in which they face each other in parallel at equal intervals under a thick insulating film formed in the isolation region between the second impurity diffusion layers.

E問題点を解決するための手段] 本発明の半導体入力保護装置は、入力端子に接続された
一導電型の半導体基板に対して逆導電型の第1の不純物
拡散層を包含する前記第1の不純物拡散層と同導電型の
第1のウェル層と、接地電位に接続された前記第1の不
純物拡散層と同導電型の第2の不純物拡散層を包含する
前記第1のウェル層と同導電型の第2のウェル層とが、
前記第1、第2の不純物拡散層間の分離領域に形成され
た厚い絶縁膜下て等間隔に平行に相対向することを有し
ている。
Means for Solving Problem E] The semiconductor input protection device of the present invention includes a first impurity diffusion layer of an opposite conductivity type to a semiconductor substrate of one conductivity type connected to an input terminal. a first well layer having the same conductivity type as the impurity diffusion layer; and a second impurity diffusion layer connected to a ground potential and having the same conductivity type as the first impurity diffusion layer; a second well layer of the same conductivity type,
The first and second impurity diffusion layers are arranged to face each other in parallel at regular intervals under a thick insulating film formed in a separation region between the first and second impurity diffusion layers.

[実施例] 次に本発明について図面を参照して説明する。[Example] Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例の平面図で、第1図(
b)は第1図(a)のX−Y線断面図を示し、第2図は
第1図(b)の(1)の拡大図を示す。
FIG. 1(a) is a plan view of one embodiment of the present invention.
b) shows a sectional view taken along the line X-Y in FIG. 1(a), and FIG. 2 shows an enlarged view of (1) in FIG. 1(b).

本実施例ではボンディングバラ)”101. ボンディ
ング用スルーホール102は、従来例と同様であるが、
ボンディングバット101はコンタクト開口部106A
を介してN型不純物であるリンを含んだ低抵抗多結晶シ
リコン層105Aに接続され、さらに他のコンタクト開
口部104Aを介してP型半導体基板110上に形成さ
れたN型不純物拡散N103Aに接続され、さらにN型
不純物拡散層103Aを包囲してN型不純物拡散N10
3Aより深いN型不純物のウェルJ’ii!115Aが
形成されている。全く同様にN型不純物ウェル層115
AおよびN型不純物拡散F’103Aと平行に隣接する
N型不純物拡散層103BおよびN型不純物拡散層10
3Bを包囲するN型不純物ウェル層115Bが形感され
、N型不純物拡散N103Bと接地電位の金属(アルミ
)、配線111との接続もコンタクト開口部104B、
リンを含んだ多結晶シリコンF!105B、  コンタ
クト開口部106Bを介して形成されている。また、こ
の装置はバットスルーホール102の領域を除いて厚い
シリコン酸化膜116が被着されている。
In this embodiment, the bonding rose) 101. The bonding through hole 102 is the same as the conventional example, but
The bonding butt 101 has a contact opening 106A.
is connected to a low resistance polycrystalline silicon layer 105A containing phosphorus, which is an N-type impurity, and further connected to an N-type impurity diffusion N103A formed on a P-type semiconductor substrate 110 via another contact opening 104A. Further, N-type impurity diffusion N10 surrounds the N-type impurity diffusion layer 103A.
N-type impurity well J'ii deeper than 3A! 115A is formed. In exactly the same way, the N-type impurity well layer 115
N-type impurity diffusion layer 103B and N-type impurity diffusion layer 10 adjacent in parallel to A and N-type impurity diffusion F'103A
The N-type impurity well layer 115B surrounding the N-type impurity well layer 115B is clearly visible, and the connection between the N-type impurity diffusion N103B and the ground potential metal (aluminum) and the wiring 111 is also formed through the contact opening 104B.
Polycrystalline silicon F containing phosphorus! 105B, formed through contact opening 106B. Further, in this device, a thick silicon oxide film 116 is deposited except for the area of the butt through hole 102.

N型不純物拡散層103A及びN型不純物つェルj!1
15AとN型不純物拡散層103B及びN型不純物つェ
ル#115Bとは、互いに平行に隣接しており、この隣
接したN型不純物拡散層】03A、103Bに常に−様
な電界が加わるようにコンタクト開口部106A、10
4A、104B。
N-type impurity diffusion layer 103A and N-type impurity layer j! 1
15A, N-type impurity diffusion layer 103B, and N-type impurity well #115B are adjacent to each other in parallel, and a --like electric field is always applied to these adjacent N-type impurity diffusion layers 03A and 103B Contact openings 106A, 10
4A, 104B.

106Bの形状や、ボンデインクパッド101および金
属(アルミ)配線層111の端も前記隣接不純物拡散層
103A、103Bと平行に配置されている。
The shape of the bonding ink pad 101 and the ends of the metal (aluminum) wiring layer 111 are also arranged parallel to the adjacent impurity diffusion layers 103A and 103B.

この入力保護装置は、ポンディングパッド101に異常
電圧が印加されると、ボンディングバット101に接続
されたN型不純物拡散層103A及びこれを包囲するN
型不純物つェルJil15Aと接地電位に接続されてい
るN型不純物拡散層103Bおよびこれを包囲するN型
不純物ウェル層115Bとが極めて狭い間隙で隣接して
いるためパンチスルーを起こし短絡し、ボンディングパ
ラ1” 101に印加された異常電圧を直ちに接地電位
に流し保護機能を果たす。
In this input protection device, when an abnormal voltage is applied to the bonding pad 101, the N-type impurity diffusion layer 103A connected to the bonding pad 101 and the N-type impurity diffusion layer 103A surrounding this
Since the type impurity well layer 15A and the N-type impurity diffusion layer 103B connected to the ground potential and the N-type impurity well layer 115B surrounding it are adjacent to each other with an extremely narrow gap, punch-through occurs, causing a short circuit and bonding. The abnormal voltage applied to Para 1'' 101 is immediately passed to the ground potential to fulfill the protection function.

また本実施例においてはN型不純物拡散層103A、1
03Bより不純物領域の深いN型不純物つェルJ”11
5A、115Bが設けられているためポンディングパッ
ド101に印加された異常電圧によって発生するホット
エレクトロンはP型半導体基板110内部を流れるため
ホットエレクトロンの厚いフィールド酸化膜107A中
への注入減少は起こらず異常電圧耐圧に強い半導体デバ
イスを実現できる。
Furthermore, in this embodiment, the N-type impurity diffusion layers 103A, 1
N-type impurity well J”11 with a deeper impurity region than 03B
5A and 115B are provided, the hot electrons generated by the abnormal voltage applied to the bonding pad 101 flow inside the P-type semiconductor substrate 110, so the injection of hot electrons into the thick field oxide film 107A does not decrease. It is possible to realize semiconductor devices that are resistant to abnormal voltages.

さらにポンディングパッド101の金属(アルミ)配線
とN型不純物拡散層103Aとの間にリンを含んだ多結
晶シリコン1105Aを挿入することにより異常電圧印
加による瞬時的に発生する異常電流で発熱し金属(アル
ミ)が溶融し、接合破壊を防止するためである。本実施
例の場合、多結晶シリコン層105A、105Bが活性
化領域(N型不純物拡散1103A、103B領域)上
に設ける際多結晶シリコン層を形成する前に不純物拡散
領域を形成しておく必要がある。
Furthermore, by inserting polycrystalline silicon 1105A containing phosphorus between the metal (aluminum) wiring of the bonding pad 101 and the N-type impurity diffusion layer 103A, the abnormal current generated instantaneously due to the application of an abnormal voltage causes the metal to generate heat. This is to prevent the (aluminum) from melting and breaking the bond. In the case of this embodiment, when the polycrystalline silicon layers 105A and 105B are provided on the active regions (N-type impurity diffusion regions 1103A and 103B), it is necessary to form the impurity diffusion regions before forming the polycrystalline silicon layers. be.

[発明の効果コ 以上説明したように本発明は、入力端子に接続された第
1の不純物拡散層を包含する第1のウェル層と接地電位
に接続された第2の不純物拡散層を包含する第2のウェ
ル層とが第1.第2の不純物拡散層間の分離領域に形成
された厚い絶縁膜下て等間隔に平行に相対向することに
より、入力端子への異常電圧によって発生するホットエ
レクトロンが第1.第2のウェル層間で流れ、すなわち
半導体基板内部を流れるため、ホットエレクトロンの厚
いフィールド酸化膜中への注入現象を防止できる効果が
ある。
[Effects of the Invention] As explained above, the present invention includes a first well layer including a first impurity diffusion layer connected to an input terminal and a second impurity diffusion layer connected to a ground potential. the second well layer; Hot electrons generated by an abnormal voltage applied to the input terminal are transferred to the first impurity diffusion layer by facing each other in parallel at regular intervals under the thick insulating film formed in the isolation region between the second impurity diffusion layers. Since it flows between the second well layers, that is, it flows inside the semiconductor substrate, it has the effect of preventing hot electron injection into the thick field oxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の半導体入力保護装置の一実施例
の平面図、第1図(b)は第1図(a)のX−Y線断面
図、第2図は第1図(b)の(I)の拡大図、第3図は
従来の半導体入力保護装置の等価回路図、第4図は第3
図の従来例の平面図、第5図は第4図のX’−Y’線断
面図、第6図。 第7図はそれぞれ第5図の拡大図であり、それぞれ入力
端子に異常電圧印加時、印加後の状態を示す。 101・・・入力端子(ホンディングバット)、102
・・・パッドスルーホール、 103A・・・入力端子に接続されたN型不純物拡散層
、 103B・・・接地電位に接続されたN型不純物拡散層
、 104A、104B・・・N型不純物拡散層と多結晶シ
リコン層とを接 続するコンタクト、 105A、105B・・・N型不純物のリンを含む多結
晶シリコン層、 106A、106B・・・多結晶シリコン層と金属(ア
ルミ)配線層と を接続するコンタクト、 107、 107A・・・・フィールド酸化膜、108
・・・・・・・MOSゲート酸化膜、109・・・・・
・・層間絶縁膜、 110・・・・・・・P型半導体基板、111・・・・
・・・接地電位に接続された金属(アルミ)配線層、 112・・・・・・・空乏層、 113A、113B、113C・・・・・・・・・・・
金属(アルミ)配線層とN型不純物拡散層を接続するコ
ンタクト、 114・・・・チャンネルストッパ用不純物領域、11
5、A、115B・・・・N型不純物ウェル層、P・・
・・・・入力端子(ボンデインクバット)、R1,R2
・・・・・N型不純物拡散層の抵抗、Ql、Q2.Q3
・・・・MOS)ランジスタ。 特許出願人  日本電気株式会社 代理人 弁理士  桑 井 清 − 第2図 第5図 第6図 第7図
FIG. 1(a) is a plan view of an embodiment of the semiconductor input protection device of the present invention, FIG. 1(b) is a sectional view taken along the X-Y line of FIG. 1(a), and FIG. An enlarged view of (I) in (b), Figure 3 is an equivalent circuit diagram of a conventional semiconductor input protection device, and Figure 4 is an equivalent circuit diagram of a conventional semiconductor input protection device.
FIG. 5 is a plan view of the conventional example shown in the figure, and FIG. 6 is a sectional view taken along the line X'-Y' of FIG. 4. FIG. 7 is an enlarged view of FIG. 5, and shows the state when and after the abnormal voltage is applied to the input terminal, respectively. 101... Input terminal (honding bat), 102
...Pad through hole, 103A...N type impurity diffusion layer connected to the input terminal, 103B...N type impurity diffusion layer connected to ground potential, 104A, 104B...N type impurity diffusion layer 105A, 105B...Polycrystalline silicon layer containing phosphorous as an N-type impurity; 106A, 106B...Contacts that connect the polycrystalline silicon layer and the metal (aluminum) wiring layer. Contact, 107, 107A...Field oxide film, 108
・・・・・・MOS gate oxide film, 109・・・・・・
...Interlayer insulating film, 110...P-type semiconductor substrate, 111...
...Metal (aluminum) wiring layer connected to ground potential, 112... Depletion layer, 113A, 113B, 113C...
Contact for connecting metal (aluminum) wiring layer and N-type impurity diffusion layer, 114... Impurity region for channel stopper, 11
5, A, 115B...N-type impurity well layer, P...
...Input terminal (bond ink butt), R1, R2
...Resistance of N-type impurity diffusion layer, Ql, Q2. Q3
...MOS) transistor. Patent applicant Kiyoshi Kuwai, agent for NEC Corporation, patent attorney - Figure 2 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】  半導体装置に設けられた入力保護装置において、入力
端子に接続された一導電型の半導体基板に対して逆導電
型の第1の不純物拡散層を包含する前記第1の不純物拡
散層と同導電型の第1のウェル層と、 接地電位に接続された前記第1の不純物拡散層と同導電
型の第2の不純物拡散層を包含する前記第1のウェル層
と同導電型の第2のウェル層とが前記第1、第2の不純
物拡散層間の分離領域に形成された厚い絶縁膜直下で等
間隔に平行に相対向することを特徴とする半導体入力保
護装置。
[Claims] In an input protection device provided in a semiconductor device, the first impurity layer includes a first impurity diffusion layer of an opposite conductivity type to a semiconductor substrate of one conductivity type connected to an input terminal. a first well layer having the same conductivity type as the diffusion layer; and a second impurity diffusion layer connected to the ground potential and having the same conductivity type as the first well layer. A semiconductor input protection device characterized in that the second well layer of the mold faces in parallel at regular intervals directly under a thick insulating film formed in a separation region between the first and second impurity diffusion layers.
JP63020283A 1988-01-29 1988-01-29 Semiconductor input protection device Expired - Fee Related JP2821128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020283A JP2821128B2 (en) 1988-01-29 1988-01-29 Semiconductor input protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020283A JP2821128B2 (en) 1988-01-29 1988-01-29 Semiconductor input protection device

Publications (2)

Publication Number Publication Date
JPH01194474A true JPH01194474A (en) 1989-08-04
JP2821128B2 JP2821128B2 (en) 1998-11-05

Family

ID=12022842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020283A Expired - Fee Related JP2821128B2 (en) 1988-01-29 1988-01-29 Semiconductor input protection device

Country Status (1)

Country Link
JP (1) JP2821128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422676A2 (en) * 1989-10-12 1991-04-17 Nec Corporation Semiconductor input protection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153473A (en) * 1981-03-17 1982-09-22 Toshiba Corp Semiconductor device with input and output protective circuit and its manufacturing method
JPS61144857A (en) * 1984-12-19 1986-07-02 Nec Ic Microcomput Syst Ltd Mos type integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153473A (en) * 1981-03-17 1982-09-22 Toshiba Corp Semiconductor device with input and output protective circuit and its manufacturing method
JPS61144857A (en) * 1984-12-19 1986-07-02 Nec Ic Microcomput Syst Ltd Mos type integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422676A2 (en) * 1989-10-12 1991-04-17 Nec Corporation Semiconductor input protection device
EP0422676A3 (en) * 1989-10-12 1991-08-07 Nec Corporation Semiconductor input protection device

Also Published As

Publication number Publication date
JP2821128B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JP2626229B2 (en) Semiconductor input protection device
JPH01140757A (en) Semiconductor input-protective device
JPH08274267A (en) Semiconductor device
EP0202646B1 (en) Input protection device
JPH01194474A (en) Semiconductor input protecting device
JPH02238668A (en) Semiconductor device
US5521413A (en) Semiconductor device having a solid metal wiring with a contact portion for improved protection
JPH02146773A (en) Semiconductor device
EP0356039A1 (en) MOS semiconductor integrated circuit
JP2990736B2 (en) Semiconductor input / output protection circuit
JP2949769B2 (en) Semiconductor input protection device
JPS62126663A (en) Input protecting circuit
JP4006023B2 (en) Integrated circuit
JPH04162681A (en) Semiconductor device
JP2549679B2 (en) Pad structure of semiconductor device
JP3017083B2 (en) I / O protection circuit
JPH01140756A (en) Semiconductor input-protective circuit
KR920004367B1 (en) Semiconductor device protected from static charge breakdown
KR920700477A (en) Overvoltage Protection Circuit for MOS Devices
JPH01140758A (en) Semiconductor input-protective device
JPH025478A (en) Semiconductor device
JPH01238064A (en) Semiconductor input protective device
JPH0775261B2 (en) Semiconductor input protection device
JPH0329361A (en) Semiconductor device
JPH0493064A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees