JPH0119249B2 - - Google Patents

Info

Publication number
JPH0119249B2
JPH0119249B2 JP792283A JP792283A JPH0119249B2 JP H0119249 B2 JPH0119249 B2 JP H0119249B2 JP 792283 A JP792283 A JP 792283A JP 792283 A JP792283 A JP 792283A JP H0119249 B2 JPH0119249 B2 JP H0119249B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
multilayer solid
comb
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP792283A
Other languages
Japanese (ja)
Other versions
JPS59132614A (en
Inventor
Matsuo Hirozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP792283A priority Critical patent/JPS59132614A/en
Publication of JPS59132614A publication Critical patent/JPS59132614A/en
Publication of JPH0119249B2 publication Critical patent/JPH0119249B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はアルミニウム箔、タンタル箔などの弁
作用金属箔を積層した積層形固体電解コンデンサ
およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laminated solid electrolytic capacitor in which valve metal foils such as aluminum foil and tantalum foil are laminated, and a method for manufacturing the same.

従来の固体電解コンデンサはたとえば表面を粗
面化したAl棒に陽極端子となるリード線端子を
接続したのち化成を行つて化成皮膜を生成し、さ
らに硝酸マンガン溶液に浸漬−焼成して二酸化マ
ンガン層を生成していた。該二酸化マンガン層を
生成した素子をカーボンブラツクまたはカーボン
グラフアイト懸濁液に浸漬したのち乾燥してカー
ボン層を形成したら、該カーボン層上に導電ペー
ストを塗布し、さらに導電ペーストに陰極リード
線端子を接続する。このようにして陽極および陰
極リード線端子を接続した素子をケースに収容し
密閉したりまたは絶縁樹脂で外装したりしてコン
デンサを形成していた。また素子のAl棒の代わ
りに箔または板を前記と同様の手段でコンデンサ
とした固体コンデンサもある。しかしながら前記
のようにして作られる固体電解コンデンサは、単
一の素子毎に切断して製造するために量産性に難
があり素子に丸棒や角棒を使用した場合には電極
として作用するのは主として粗面化された表面積
であるので芯部が有効に利用できない問題点があ
る。また素子として箔や板を使用した場合にはこ
れを積層する作業性が劣り、かつ1枚ずつ取扱う
ため電極箔上に形成した被膜や二酸化マンガン
層、カーボン層などが破壊し易いので歩留が悪
く、該破壊によつて特性的にも欠陥を生じて短寿
命となる欠点もあつた。
In conventional solid electrolytic capacitors, for example, a lead wire terminal serving as an anode terminal is connected to an Al rod with a roughened surface, and then chemical conversion is performed to form a chemical conversion film, which is then immersed in a manganese nitrate solution and fired to form a manganese dioxide layer. was being generated. The element with the manganese dioxide layer formed thereon is immersed in carbon black or carbon graphite suspension and dried to form a carbon layer. A conductive paste is applied onto the carbon layer, and a cathode lead wire terminal is further applied to the conductive paste. Connect. A capacitor is formed by housing the element with the anode and cathode lead wire terminals connected in this way in a case and sealing it or covering it with an insulating resin. There is also a solid capacitor in which a foil or plate is used instead of the Al rod of the element as a capacitor using the same method as described above. However, solid electrolytic capacitors made in the above manner have difficulty in mass production because they are manufactured by cutting into individual elements, and when round or square rods are used for the elements, they cannot function as electrodes. Since this is mainly a roughened surface area, there is a problem that the core cannot be used effectively. Furthermore, when foils or plates are used as elements, the workability of laminating them is poor, and since the electrode foils are handled one by one, the coating, manganese dioxide layer, carbon layer, etc. formed on the electrode foils are easily destroyed, resulting in lower yields. Unfortunately, the breakage also caused defects in characteristics, resulting in a short lifespan.

このような状況において近年は特に小形化、薄
形化、低価格が要望されているが、これらの要求
を満足させることができず、たとえば混成集積回
路に電解コンデンサを取付ける場合などは電解コ
ンデンサを外付けするか、または高価格なタンタ
ルコンデンサを使用するなどの手段を用いてい
た。
Under these circumstances, in recent years, there has been a particular demand for smaller size, thinner profile, and lower price, but these demands cannot be met, and for example, when installing electrolytic capacitors in hybrid integrated circuits, electrolytic capacitors have to be used. Methods such as attaching an external capacitor or using an expensive tantalum capacitor were used.

本発明は上記の点に鑑みてなされたものでAl、
Ta、Nb、Tiなどの弁作用金属箔または金属板を
櫛状に打ち抜いて電極箔とし、これを積層してな
る積層形固体電解コンデンサおよびその製造方法
に関するもので以下実施例により説明する。第1
図に側断面図、第2図に平面図で示すように0.1
mm厚のAl電極箔1を公知の手段によつてエツチ
ングして表面を粗面化したのち化成処理を行つて
酸化皮膜2を生成し、該電極箔を第2図に示すよ
うな櫛形に打ち抜いて基部3および複数の歯4を
設けた櫛形電極箔とする。または粗面化後櫛形に
打ち抜いて化成処理を行い酸化皮膜2を生成し櫛
形電極箔としてもよい。この櫛形電極箔の基部3
から歯4の根元に若干わたるようにシリコーン、
ポリアミド、弗素系樹脂などの耐熱性絶縁塗料を
塗布して絶縁塗膜5を形成し、これを硝酸マンガ
ン溶液に浸漬したのち引上げて250℃中で7時間
焼成して二酸化マンガン層6を生成するが、焼成
によつて破壊された前記酸化皮膜2を修復するた
めに再化成を行う。この硝酸マンガン溶液への浸
漬−焼成−再化成を数回繰り返して所望の二酸化
マンガン層6を得る。このようにして二酸化マン
ガン層6を生成した櫛形電極箔の所要枚数を前記
絶縁塗膜5が重ね合うように積層し、前記の各絶
縁塗膜5を加熱して接着することにより第3図の
ようにAl電極箔1は箔間に間隙をもつて積層さ
れ積層電極となる。または前記絶縁塗膜5上にあ
らたに接着材を塗布したりして櫛形電極箔を接着
してもよい。この絶縁塗膜5の接着により後工程
のカーボン懸濁液への浸漬においてカーボン懸濁
液が毛細管現象などにより陽極側に浸入するのを
防止する。積層したAl電極箔1をカーボンブラ
ツクまたはカーボングラフアイト懸濁液に浸漬し
て積層電極のAl電極箔1間や表面にカーボンを
付着させこれを引上げて乾燥一焼付して第4図に
示すようなカーボン層7を形成する。以上述べた
ようにして積層された櫛形のAl電極箔1は前記
第4図のような構成からなるが、この積層電極に
陽極となるAl電極箔1の端面に導電塗料を塗布
し乾燥−焼付して陽極端子部8および前記カーボ
ン層7上に導電塗料を塗布し乾燥−焼付して陰極
端子部9を構成する。この状態を第5図に示すが
B−B′線に沿つて歯4の幅に切断することによ
り第6図に示すような積層形固体電解コンデンサ
10を得ることができる。
The present invention has been made in view of the above points, and includes Al,
This invention relates to a laminated solid electrolytic capacitor formed by punching a valve metal foil or metal plate made of Ta, Nb, Ti, etc. into a comb shape to form an electrode foil, and laminating the same, and a method for manufacturing the same, and will be described below using examples. 1st
0.1 as shown in the side sectional view in Figure 2 and the plan view in Figure 2.
A mm-thick Al electrode foil 1 is etched by known means to roughen the surface, then chemically treated to form an oxide film 2, and the electrode foil is punched into a comb shape as shown in Figure 2. A comb-shaped electrode foil is provided with a base 3 and a plurality of teeth 4. Alternatively, after roughening the surface, it may be punched into a comb shape and subjected to a chemical conversion treatment to form an oxide film 2 to form a comb-shaped electrode foil. The base 3 of this comb-shaped electrode foil
Silicone, slightly extending from the root of tooth 4,
A heat-resistant insulation coating such as polyamide or fluorine-based resin is applied to form an insulation coating 5, which is immersed in a manganese nitrate solution, then pulled up and baked at 250°C for 7 hours to form a manganese dioxide layer 6. However, reconversion is performed to repair the oxide film 2 destroyed by firing. The desired manganese dioxide layer 6 is obtained by repeating this immersion in a manganese nitrate solution, firing, and reconversion several times. The required number of comb-shaped electrode foils with manganese dioxide layers 6 formed in this way are laminated so that the insulating coatings 5 overlap, and each of the insulating coatings 5 is heated and bonded, as shown in FIG. The Al electrode foils 1 are laminated with gaps between the foils to form a laminated electrode. Alternatively, the comb-shaped electrode foil may be bonded by newly applying an adhesive onto the insulating coating film 5. This adhesion of the insulating coating 5 prevents the carbon suspension from penetrating into the anode side due to capillary action during immersion into the carbon suspension in the subsequent step. The laminated Al electrode foil 1 is immersed in carbon black or carbon graphite suspension to deposit carbon between the gaps and on the surface of the Al electrode foil 1 of the laminated electrode, and then pulled up and dried and baked, as shown in Fig. 4. A carbon layer 7 is formed. The comb-shaped Al electrode foil 1 laminated as described above has the structure shown in FIG. Then, a conductive paint is applied onto the anode terminal portion 8 and the carbon layer 7, and dried and baked to form the cathode terminal portion 9. This state is shown in FIG. 5, and by cutting along the line B-B' to the width of the tooth 4, a multilayer solid electrolytic capacitor 10 as shown in FIG. 6 can be obtained.

また前記実施例ではカーボン懸濁液に浸漬して
カーボン層7を形成したのち導電塗料を塗布して
陽極端子部8と陰極端子部9を構成し、切断して
積層形固体電解コンデンサ10を得たものについ
て述べたが、カーボン層7を形成したのち第7図
に示すように歯4部の先端を残して前記カーボン
層7上から樹脂などの絶縁材料を注入−成形など
して固定帯11を構成したのち前記歯4の先端に
残したカーボン層7上に導電塗料を塗布して陰極
端子部19を、また同じく導電塗料を基部3端面
に塗布して陽極端子部18を形成したのちに切断
して積層形固体電解コンデンサとすることもでき
る。いずれの場合も陽極端子部および陰極端子部
の全部または一部を除いて樹脂外装を行つて密閉
したものはこの積層形固体電解コンデンサを印刷
基板の導体上にセツトしハンダリフローすること
によつて基板に直接接続可能となり、従来例の電
解コンデンサの外付けあるいは高価なタンタルコ
ンデンサを使用する必要もなくコスト低減ができ
る。そして上述の実施例ではAl電極箔1の形状
が第2図に示す櫛形電極箔を用いたものについて
述べたが、第8図に示すように両側に歯24を設
けたAl電極箔21を使用してもよい。なお上記
実施例は電極箔としてAlを用いた場合について
述べたがTa、Nb、Tiなどの弁作用金属を用いて
もよく、また前記絶縁塗膜5は硝酸マンガン溶液
の基部3側への浸入および積層した場合の絶縁塗
膜5の接着はカーボンブラツクまたはカーボング
ラフアイト懸濁液の基部3側、すなわち陽極端子
側への浸入による短絡を防止するために設けたも
のである。さらに二酸化マンガン層に代えて有機
半導体たとえばN−ノルマルプロピールキノリン
−TCNQ塩やN−イソプロピールキノリン−
TCNQ塩、メチルキノリン−TCNQ塩、エチル
キノリン−TCNQ塩、T.T.F.−TCNQ塩などを
用いてもよい。
In the above embodiment, the carbon layer 7 is formed by immersion in a carbon suspension, and then a conductive paint is applied to form the anode terminal part 8 and the cathode terminal part 9, and the multilayer solid electrolytic capacitor 10 is obtained by cutting. As described above, after forming the carbon layer 7, as shown in FIG. 7, an insulating material such as resin is injected and molded onto the carbon layer 7, leaving the tips of the teeth 4, to form the fixing band 11. After forming the carbon layer 7 left on the tip of the tooth 4, a conductive paint is applied to form the cathode terminal part 19, and the same conductive paint is applied to the end face of the base part 3 to form the anode terminal part 18. It can also be cut into a multilayer solid electrolytic capacitor. In either case, if all or part of the anode and cathode terminals are covered with resin and hermetically sealed, this multilayer solid electrolytic capacitor can be set on the conductor of a printed circuit board and solder reflowed. It can be directly connected to the board, and costs can be reduced without the need for external electrolytic capacitors or the use of expensive tantalum capacitors, which are conventional. In the above embodiment, a comb-shaped electrode foil having the shape of the Al electrode foil 1 as shown in FIG. 2 was used, but as shown in FIG. 8, an Al electrode foil 21 having teeth 24 on both sides was used. You may. In the above embodiment, Al was used as the electrode foil, but valve metals such as Ta, Nb, and Ti may also be used. The adhesion of the insulating coating 5 in the case of lamination is provided to prevent short circuits due to penetration of carbon black or carbon graphite suspension into the base 3 side, that is, the anode terminal side. Furthermore, in place of the manganese dioxide layer, an organic semiconductor such as N-normalpropylquinoline-TCNQ salt or N-isopropylquinoline-
TCNQ salt, methylquinoline-TCNQ salt, ethylquinoline-TCNQ salt, TTF-TCNQ salt, etc. may be used.

本発明は以上のように構成してなるものである
からAl電極箔の形状を第2図または第8図に示
す形状で歯4,24と各歯4,24の間を同寸法
にすることによつて材料を有効に使用することが
でき、さらに多数個を容易に、かつ同時に得るこ
とができるから積層形固体電解コンデンサを安価
に提供できるとともに接着により積層した状態で
カーボン層を形成するのでカーボン層の破壊など
がなくしたがつて漏れ電流、tanδ特性の優れた積
層形固体電解コンデンサを得ることができる。
Since the present invention is constructed as described above, the shape of the Al electrode foil should be the same as shown in FIG. This makes it possible to use the material effectively, and it is also possible to produce a large number of capacitors easily and at the same time, making it possible to provide multilayer solid electrolytic capacitors at low cost. Since destruction of the carbon layer is eliminated, a multilayer solid electrolytic capacitor with excellent leakage current and tanδ characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明の実施例を示し、第1図
はAl電極箔の側断面図、第2図はAl電極箔の平
面図、第3図はAl電極箔を積層した状態を示す
側面図、第4図は積層したAl電極箔にカーボン
層を形成した状態を示す側断面図、第5図は積層
したAl電極箔に陽極および陰極端子部を形成し
た状態を示す平面図、第6図は積層形固体電解コ
ンデンサの斜視図、第7図は他の実施例による陽
極および陰極端子部を形成した状態を示す一部断
面斜視図、第8図は櫛形電極箔の他の実施例を示
す平面図である。 1……Al電極箔、2……酸化皮膜、3……基
部、4……歯、5……絶縁塗膜、6……二酸化マ
ンガン層、7……カーボン層、8……陽極端子
部、9……陰極端子部、10……積層形固体電解
コンデンサ、11……固定帯。
The drawings all show examples of the present invention, and FIG. 1 is a side sectional view of an Al electrode foil, FIG. 2 is a plan view of the Al electrode foil, and FIG. 3 is a side view showing a state in which the Al electrode foils are laminated. , Fig. 4 is a side sectional view showing a state in which a carbon layer is formed on the laminated Al electrode foil, Fig. 5 is a plan view showing a state in which an anode and cathode terminal portion are formed in the laminated Al electrode foil, and Fig. 6 7 is a perspective view of a multilayer solid electrolytic capacitor, FIG. 7 is a partial cross-sectional perspective view showing a state in which anode and cathode terminals are formed according to another embodiment, and FIG. 8 is a perspective view of another embodiment of a comb-shaped electrode foil. FIG. DESCRIPTION OF SYMBOLS 1... Al electrode foil, 2... Oxide film, 3... Base, 4... Teeth, 5... Insulating coating film, 6... Manganese dioxide layer, 7... Carbon layer, 8... Anode terminal part, 9... Cathode terminal portion, 10... Multilayer solid electrolytic capacitor, 11... Fixing band.

Claims (1)

【特許請求の範囲】 1 酸化皮膜を生成した複数枚の電極箔と、該電
極箔の両面に塗布した絶縁塗膜と、該絶縁塗膜同
志の接着で電極箔間に間隙を有するよう積層した
電極と、前記絶縁塗膜により区分された積層電極
の一端に設けた陽極端子部および他端の半導体
層、カーボン層上に設けた陰極端子部とを具備し
た積層形固体電解コンデンサ。 2 カーボン層上に固定帯を設けたことを特徴と
する特許請求の範囲第1項に記載の積層形固体電
解コンデンサ。 3 陽極端子部および陰極端子部の一部または全
部を除き外装したことを特徴とする特許請求の範
囲第1項または第2項に記載の積層形固体電解コ
ンデンサ。 4 電極箔がAl、Ta、Nb、Tiであることを特
徴とする特許請求の範囲第1項〜第3項のいずれ
かに記載の積層形固体電解コンデンサ。 5 半導体層が二酸化マンガン、二酸化鉛、N−
ノルマルプロピールキノリン−TCNQ塩、N−
イソプロピールキノリン−TCNQ塩、メチルキ
ノリン−TCNQ塩、エチルキノリン−TCNQ塩、
T.T.F−TCNQ塩の中の1種または2種以上から
なることを特徴とする特許請求の範囲第1項〜第
4項のいずれかに記載の積層形固体電解コンデン
サ。 6 複数枚の櫛形電極箔の基部および歯の根元の
両面に絶縁塗膜を形成する工程と、前記櫛形電極
箔の歯に半導体層を形成する工程と、櫛形電極箔
を重ね合せ前記絶縁塗膜を互いに接着して積層電
極を形成する工程と、接着した櫛形電極箔をカー
ボンブラツクまたはカーボングラフアイト懸濁液
に浸漬してカーボン層を形成する工程と、カーボ
ン層上および前記絶縁塗膜により区分された他端
に導電塗料を塗布して陰極端子部および陽極端子
部を形成する工程と、前記歯の幅に沿つて切断し
個々の素子を得る工程とを具備した積層形固体電
解コンデンサの製造方法。 7 カーボン層形成後、電極箔の歯の先端を残し
て固定帯を形成する工程を挿入することを特徴と
する特許請求の範囲第6項に記載の積層形固体電
解コンデンサの製造方法。 8 各素子の陽極端子部および陰極端子部の一部
または全部を除いて絶縁物を被覆し外装する工程
を具備したことを特徴とする特許請求の範囲第6
項または第7項に記載の積層形固体電解コンデン
サの製造方法。
[Scope of Claims] 1 A plurality of electrode foils with oxide films formed thereon, an insulating coating film applied to both sides of the electrode foils, and laminated with gaps between the electrode foils due to adhesion between the insulating coating films. A multilayer solid electrolytic capacitor comprising an electrode, an anode terminal section provided at one end of the multilayer electrode separated by the insulating coating film, a semiconductor layer at the other end, and a cathode terminal section provided on a carbon layer. 2. The multilayer solid electrolytic capacitor according to claim 1, characterized in that a fixing band is provided on the carbon layer. 3. The multilayer solid electrolytic capacitor according to claim 1 or 2, wherein a part or all of the anode terminal portion and the cathode terminal portion are externally packaged. 4. The multilayer solid electrolytic capacitor according to any one of claims 1 to 3, wherein the electrode foil is made of Al, Ta, Nb, or Ti. 5 The semiconductor layer is manganese dioxide, lead dioxide, N-
Normal propylquinoline-TCNQ salt, N-
Isopropylquinoline-TCNQ salt, methylquinoline-TCNQ salt, ethylquinoline-TCNQ salt,
The multilayer solid electrolytic capacitor according to any one of claims 1 to 4, characterized in that the multilayer solid electrolytic capacitor is composed of one or more types of TTF-TCNQ salts. 6. A step of forming an insulating coating film on both sides of the bases and the roots of the teeth of a plurality of comb-shaped electrode foils, a step of forming a semiconductor layer on the teeth of the comb-shaped electrode foils, and a step of overlapping the comb-shaped electrode foils to form the insulating coating film. a step of adhering the bonded comb-shaped electrode foils to each other to form a laminated electrode; a step of immersing the bonded comb-shaped electrode foil in carbon black or carbon graphite suspension to form a carbon layer; manufacturing a multilayer solid electrolytic capacitor comprising the steps of: applying a conductive paint to the other end of the tooth to form a cathode terminal and an anode terminal; and cutting along the width of the tooth to obtain individual elements. Method. 7. The method for manufacturing a multilayer solid electrolytic capacitor according to claim 6, which comprises inserting a step of forming a fixing band while leaving the tips of the teeth of the electrode foil after forming the carbon layer. 8. Claim 6, characterized by comprising a step of covering and encasing part or all of the anode terminal and cathode terminal of each element with an insulator.
8. The method for manufacturing a multilayer solid electrolytic capacitor according to item 7.
JP792283A 1983-01-19 1983-01-19 Laminated solid electrolytic condenser and method of producing same Granted JPS59132614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP792283A JPS59132614A (en) 1983-01-19 1983-01-19 Laminated solid electrolytic condenser and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP792283A JPS59132614A (en) 1983-01-19 1983-01-19 Laminated solid electrolytic condenser and method of producing same

Publications (2)

Publication Number Publication Date
JPS59132614A JPS59132614A (en) 1984-07-30
JPH0119249B2 true JPH0119249B2 (en) 1989-04-11

Family

ID=11679015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP792283A Granted JPS59132614A (en) 1983-01-19 1983-01-19 Laminated solid electrolytic condenser and method of producing same

Country Status (1)

Country Link
JP (1) JPS59132614A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239917A (en) * 1987-03-27 1988-10-05 日通工株式会社 Laminated solid electrolytic capacitor and manufacture of the same
JPH0821515B2 (en) * 1987-04-21 1996-03-04 日通工株式会社 Method for manufacturing laminated solid electrolytic capacitor
JPH0327036U (en) * 1989-07-27 1991-03-19
JPH07105317B2 (en) * 1992-11-30 1995-11-13 日本電気株式会社 Multilayer solid electrolytic capacitor and manufacturing method thereof
JP4793938B2 (en) * 2007-11-29 2011-10-12 Necトーキン株式会社 Manufacturing method of multilayer capacitor
JP5176697B2 (en) * 2008-06-02 2013-04-03 パナソニック株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS59132614A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
JP4010447B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPS5845171B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0119249B2 (en)
JPH0122975B2 (en)
JPS6041847B2 (en) Manufacturing method for chip-type electronic components
JP2832651B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2001126958A (en) Chip-type solid electrolytic capacitor
JPH05234829A (en) Solid electrolytic capacitor
JPH0936003A (en) Laminated solid condenser and manufacture thereof
JPS6032348B2 (en) Manufacturing method for electronic components
JP3624993B2 (en) Chip-type electronic components
JP3433478B2 (en) Solid electrolytic capacitors
JPH04348512A (en) Chip type solid electrolytic capacitor
JPS6057692B2 (en) Chip type solid electrolytic capacitor and its manufacturing method
JPS61163630A (en) Manufacture of solid electrolytic capacitor
JPH0693421B2 (en) Method for manufacturing solid electrolytic capacitor
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09102442A (en) Manufacture of nonpolar solid-state electrolytic capacitor
JP3444362B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06232011A (en) Chip type solid electrolytic capacitor
JP3185275B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPS6116684Y2 (en)
JP2005039043A (en) Chip electrolytic capacitor
JPH0345524B2 (en)