JPH01191797A - Zinc-chromium alloy electroplated steel sheet - Google Patents

Zinc-chromium alloy electroplated steel sheet

Info

Publication number
JPH01191797A
JPH01191797A JP63015156A JP1515688A JPH01191797A JP H01191797 A JPH01191797 A JP H01191797A JP 63015156 A JP63015156 A JP 63015156A JP 1515688 A JP1515688 A JP 1515688A JP H01191797 A JPH01191797 A JP H01191797A
Authority
JP
Japan
Prior art keywords
phase
steel sheet
corrosion resistance
electroplating
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63015156A
Other languages
Japanese (ja)
Other versions
JPH0699836B2 (en
Inventor
Shinichi Suzuki
眞一 鈴木
Tatsuya Kanamaru
金丸 辰也
Motohiro Nakayama
元宏 中山
Katsutoshi Arai
新井 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63015156A priority Critical patent/JPH0699836B2/en
Priority to DE88104874T priority patent/DE3882769T2/en
Priority to EP88104874A priority patent/EP0285931B1/en
Priority to US07/174,830 priority patent/US4897317A/en
Priority to CA000562971A priority patent/CA1336698C/en
Priority to AU13897/88A priority patent/AU597163B2/en
Priority to KR1019880003622A priority patent/KR910002186B1/en
Priority to US07/320,071 priority patent/US4877494A/en
Publication of JPH01191797A publication Critical patent/JPH01191797A/en
Priority to CA000616732A priority patent/CA1336700C/en
Priority to CA000616731A priority patent/CA1336699C/en
Priority to CA000616830A priority patent/CA1337054C/en
Publication of JPH0699836B2 publication Critical patent/JPH0699836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To improve corrosion resistance by forming a Zn-Cr alloy layer having a prescribed structure on a steel sheet by electroplating or by further forming an iron-based layer by electroplating. CONSTITUTION:A Zn-Cr alloy layer consisting of 5-40% Cr and the balance Zn and contg. no eta phase is formed on a steel sheet by electroplating. The alloy layer has an alloy phase having 2.15-2.12Angstrom , 2.29-2.19Angstrom and 2.33-2.36Angstrom spacing (d) measured by X-ray diffraction and one or more peaks. An iron-based layer or a layer consisting of 60% Fe and the balance Zn may further be formed on the alloy layer by electroplating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動率、家電、建材等に使用される耐食性およ
び塗装後の耐食性に優れた防錆用の電気めっき鋼板に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rust-preventing electroplated steel sheet with excellent corrosion resistance and corrosion resistance after painting, which is used for automatic machines, home appliances, building materials, etc.

(従来の技術) ZnないしZn系合金めつき中にCrを含有させた電気
めっか鋼板としては、例えば特公昭61−36078号
公報、特公昭58−56039号公報、特開昭61−2
70398号公報等記載のものが公知であるが、Crv
共析率が0.005〜5%までの極めて微量であって、
耐食性にとってCrの効果は付随的でしかあり得ない、
従って、耐食性を改善する目的からは更に高含量のC「
を共析させることが強く望まれるところである。
(Prior Art) Electroplated steel sheets containing Cr in Zn or Zn-based alloy plating include, for example, Japanese Patent Publication No. 61-36078, Japanese Patent Publication No. 58-56039, and Japanese Patent Application Laid-open No. 61-2.
70398, etc. are known, but Crv
The eutectoid rate is an extremely small amount of 0.005 to 5%,
The effect of Cr on corrosion resistance can only be incidental.
Therefore, for the purpose of improving corrosion resistance, a higher content of C'
It is strongly desired to eutectoid the

(発明が解決しようとする課題) しかしながら、従来Cr共析率を高め得るZn−Cr電
気めっき技術がなかった。即ち、単にめつ終浴中の3価
Crイオン濃度を高めても密着性のある正常なめっきが
得られず、電流効率も急減する等の障害があって工業的
にCr共析率を高めることは極めて困難であった。
(Problems to be Solved by the Invention) However, conventionally there has been no Zn-Cr electroplating technology capable of increasing the Cr eutectoid rate. In other words, simply increasing the trivalent Cr ion concentration in the final bath does not result in a normal plating with good adhesion, and there are obstacles such as a sudden decrease in current efficiency, so it is difficult to increase the Cr eutectoid rate industrially. This was extremely difficult.

本発明は上記問題点に鑑み、耐食性および電装後の耐食
性に優れた電気めっき鋼板を提供する。
In view of the above problems, the present invention provides an electroplated steel sheet with excellent corrosion resistance and corrosion resistance after electrical installation.

(課題を解決するための手段) 本発明の要旨は以下の通りである。(Means for solving problems) The gist of the invention is as follows.

■Cr5%超〜40%以下、残部がZnからなり、かつ
り相を含有しない亜鉛−クロム合金電気めっき鋼板。
(2) A zinc-chromium alloy electroplated steel sheet consisting of more than 5% to 40% Cr, the balance being Zn, and containing no sliver phase.

■X線回折による面間隔d=2.15〜2.12人、d
=2.29〜2.19人、d=2.33〜2.36人の
いずれか一つまたは二つ以上のピークを有する合金相か
らなる前記■記載の亜鉛−クロム合金電気めっき鋼板。
■ Plane spacing d = 2.15 to 2.12 people, d by X-ray diffraction
The zinc-chromium alloy electroplated steel sheet according to (1) above, comprising an alloy phase having one or more peaks of d = 2.29 to 2.19 and d = 2.33 to 2.36.

■下層に前記■または■記載の亜鉛−クロム合金電気め
っきを施し、上層に鉄系電気めっきまたはFe60%以
上、残部がZnからなる電気めっきを施した2層電気め
っき鋼板。
(2) A two-layer electroplated steel sheet in which the lower layer is coated with the zinc-chromium alloy electroplating described in (1) or (2) above, and the upper layer is coated with iron-based electroplating or electroplating consisting of 60% or more Fe and the balance Zn.

(作用) 本発明者らはCr含有率の高いZn−Cr系電気めっき
法を開発し、耐食性を画期的に向上させる目途を得た。
(Function) The present inventors developed a Zn-Cr electroplating method with a high Cr content, and obtained the prospect of dramatically improving corrosion resistance.

更に研究を続けるうち、耐食性および塗装後の耐食性は
Cr含有率のみではなく、めっき層の構造によっても性
能差があることが判明した。そして、特定の条件で電気
めっきすることによりめっき層の構造を制御できること
を見出し、本発明に至ったのである。
Further research revealed that corrosion resistance and post-painting corrosion resistance differed not only by the Cr content but also by the structure of the plating layer. They discovered that the structure of the plating layer could be controlled by electroplating under specific conditions, leading to the present invention.

Zn−Crめっ8中のC「含量は耐食性および塗装後の
耐食性に最も効果が大さく、めっき層中のCrの含有量
は5%超とする。5%以下であれば、若干の効果は認め
られるものの赤錆が発生する傾向は残り、耐食性は十分
ではない、5%超になると、例えば塩水噴n試験等では
赤錆発生が抑制され、画期的に効果が現われてくる。こ
のような高耐食性は従来公知のZnめっきあるいはZ 
n−F e。
The C content in Zn-Cr plating 8 has the greatest effect on corrosion resistance and corrosion resistance after painting, and the Cr content in the plating layer should be more than 5%.If it is less than 5%, it has a slight effect. However, the tendency for red rust to occur remains, and the corrosion resistance is not sufficient.If the corrosion resistance exceeds 5%, the occurrence of red rust will be suppressed in salt water spray tests, for example, and an epoch-making effect will appear. High corrosion resistance is achieved by conventionally known Zn plating or Z
n-F e.

Zn−Ni等の合金めっきでは到底達成することはでき
ない。
This cannot be achieved with alloy plating such as Zn-Ni.

CrはZnとの共析下では不働態化せず、Znとともに
犠牲防食作用に加担し、しかもCrの腐食生成物が難溶
性の保護皮膜を腐食部に沈積することにより腐食を抑制
していることが、高耐食性を発揮する理由であろうと考
えられる。
Cr does not become passivated when co-deposited with Zn, but participates in the sacrificial anticorrosion effect together with Zn, and the corrosion products of Cr deposit a poorly soluble protective film on the corroded areas, thereby suppressing corrosion. This is thought to be the reason why it exhibits high corrosion resistance.

Crt有量が40%を越えても高い耐食性は維持できる
が、プレス等の加工時にめっき層が剥離するいわゆるバ
ッグリング性が劣化する傾向が現れる。従って、Cr含
有量は40%以下とする。
Although high corrosion resistance can be maintained even if the Cr content exceeds 40%, there is a tendency for the so-called bagging property, in which the plating layer peels off during processing such as pressing, to deteriorate. Therefore, the Cr content is set to 40% or less.

Zn−Cr2元系においで安定な金属間化合物は知られ
ていない、ところが、電気めっきで得られるめっき層を
X#1回折で分析すると、めっ8条件によって異なるが
、Zn相(り相)ともCr相とも同定できない未知の面
間隔d値をもつ数種のピークが観察される。これらはあ
る種のZn−Cr合金相と推定される。めっき層の代表
的なX線回折図を第1図〜tjS5図に示す。
There are no known intermetallic compounds that are stable in the Zn-Cr binary system.However, when a plating layer obtained by electroplating is analyzed by Several types of peaks with unknown interplanar spacing d values that cannot be identified as either Cr phase or Cr phase are observed. These are presumed to be some kind of Zn-Cr alloy phase. Typical X-ray diffraction patterns of the plating layer are shown in Figs. 1 to tjS5.

第1図はCr 9%含有するZn−Crめっき層のX線
回折図である。ピークA (d=2.1σ人)お上りピ
ークB  (d=2,47人)はり相である。ピークC
(d=2.21人)はZn−Cr合金相の1種と推定さ
れる。なお、d=2.03人のピークは素地鋼板に由来
する0−Feのピークである。
FIG. 1 is an X-ray diffraction diagram of a Zn--Cr plating layer containing 9% Cr. Peak A (d=2.1σ people) rising Peak B (d=2,47 people) It is a beam phase. peak C
(d=2.21 people) is estimated to be one type of Zn-Cr alloy phase. In addition, the peak of d=2.03 is the peak of 0-Fe originating from the base steel plate.

第2図はCr7%含有するZn  Crめっき層のXA
1回折図である。ピークC(d=2.27人)はZn−
Cr合金相の1種と推定される。 d=2.10人お上
りd=2.47人近傍の位置に明瞭なピークは認められ
ず、このめっき層は実質的にり相を含まないと判断でき
る。
Figure 2 shows the XA of the Zn Cr plating layer containing 7% Cr.
It is a first diffraction diagram. Peak C (d=2.27 people) is Zn-
It is estimated to be a type of Cr alloy phase. No clear peaks were observed in the vicinity of d = 2.10 people and d = 2.47 people, and it can be determined that this plating layer does not substantially contain a gold phase.

第3図はCr12%含有するZn−Crめっき層のX線
回折図である。ピークC(d=2.21)およびピーク
D (d=2.14)はZn  Cr合金相のIFIと
推定される。 d=2.10およゾd=2.47人近傍
の位置に明瞭なピークは認められず、このめりト層は実
質的にり相を含まないと判断で終る。
FIG. 3 is an X-ray diffraction diagram of a Zn--Cr plating layer containing 12% Cr. Peak C (d=2.21) and peak D (d=2.14) are estimated to be IFI of the ZnCr alloy phase. No clear peaks were observed in the vicinity of d=2.10 and d=2.47, and it was concluded that this sludge layer did not substantially contain a sludge phase.

第4図はCr15%含有するZn−Crめっき層のX線
回折図である。ピークD  (d=2.13人)および
ピークE  (d=2.35人)はZn−Cr合金相の
1種と推定される。 d=2.10およVd=2.47
A近傍の位置に明瞭なピークは認められず、このめっき
層は実質的にり相を含まないと判断できる。
FIG. 4 is an X-ray diffraction diagram of a Zn--Cr plating layer containing 15% Cr. Peak D (d=2.13 people) and peak E (d=2.35 people) are estimated to be one type of Zn-Cr alloy phase. d=2.10 and Vd=2.47
No clear peak was observed in the vicinity of A, and it can be determined that this plating layer does not substantially contain a gold phase.

第5図はCr27%含有するZn−Crめっき層のX線
回折図である。ピークD (d=2.12人)はZn−
Cr合金相の1種と推定される。 d=2.10および
2.47人近傍の位置に明瞭なピークは認められず、こ
のめっき層は実質的にり相を含まないと判断できる。
FIG. 5 is an X-ray diffraction diagram of a Zn--Cr plating layer containing 27% Cr. Peak D (d=2.12 people) is Zn-
It is estimated to be a type of Cr alloy phase. No clear peaks were observed in the vicinity of d=2.10 and 2.47, and it can be determined that this plating layer does not substantially contain a gold phase.

第1図〜第5図に示したZn−Crめっき層の構造例は
めっき層のCr含有量にも関係するが、めっき条件によ
って本質的に決まるものである。
The structural examples of the Zn--Cr plating layer shown in FIGS. 1 to 5 are related to the Cr content of the plating layer, but are essentially determined by the plating conditions.

X線回折による面間隔dの測定はある程度の誤差を伴う
ものである。更に、合金相の面間隔dは一般に組成によ
って若干変動する要素も含むので、次のように定義した
Measurement of the interplanar spacing d by X-ray diffraction involves a certain degree of error. Furthermore, since the interplanar spacing d of the alloy phase generally includes elements that vary slightly depending on the composition, it was defined as follows.

Dビーク: d=2.15〜2.12ACピーク: d
=2.29〜2.19人Eピーク:d=2.36〜2.
33人 なお、Cピークについては第2図のピークと第3図のピ
ークが同一結晶構造に属するか否かは審らかではないが
、いずれも合金相と推定されるので、ここでは両者とも
にCピークに帰属させた。
D peak: d=2.15-2.12 AC peak: d
= 2.29-2.19 people E peak: d = 2.36-2.
Regarding the C peak, it is unclear whether the peak in Figure 2 and the peak in Figure 3 belong to the same crystal structure, but since both are presumed to be alloy phases, both are considered here. It was assigned to the C peak.

り相の有無はd=2.10人またはd=2.47人近傍
に明瞭にピークが認められるか否かで判断するのが実際
的であり、またこれにより耐食性能と関連づけられる。
It is practical to determine the presence or absence of a corrosion phase by whether or not a clear peak is observed near d=2.10 or d=2.47, and this is associated with corrosion resistance performance.

なお、第1図〜第5図の縦軸はX#1強度(任意スケー
ル)、横軸はCuターデッドでの2θ値を表す、各ピー
クの面間隔d値を計算し、記載した。
In addition, in FIGS. 1 to 5, the vertical axis represents the X#1 intensity (arbitrary scale), and the horizontal axis represents the 2θ value in Cu tarded. The interplanar spacing d value of each peak was calculated and described.

Aビーク:面間隔d=2.10人のl相Bピーク:  
 It  d=2.47人のり相a−Fe  :  #
  d=2.03人の素地鋼板の6−Fe相 以上の各Zn−Crめっき鋼板の製造条件は実施例、注
1)に基づくものである。
A peak: Plane spacing d=2.10 people's l phase B peak:
It d=2.47 people a-Fe: #
The manufacturing conditions for each Zn-Cr plated steel plate with 6-Fe phase or higher of d=2.03 base steel plate are based on Example Note 1).

Cr含有量が5%未満ではり相のないZn−Cr合金め
っきは製造できない、Cr含有量が5%を越えると合金
相が出現するが、めっき条件によってはり相が混在しく
第1図)、Cr含有量が40%に達してちり相が消滅し
ない場合もあり得る。
If the Cr content is less than 5%, Zn-Cr alloy plating without a beam phase cannot be produced; if the Cr content exceeds 5%, an alloy phase appears, but depending on the plating conditions, the beam phase may be mixed (Fig. 1). There may be cases where the Cr content reaches 40% and the dust phase does not disappear.

Cr含有量が5%を越え、40%までの組成をもっZn
−Crめっき鋼板の耐食性および塗装後の耐食性は前述
したように塩水噴霧試験等では極めて優れているが、更
に過酷な腐食環境に長期曝した場合、例えば塩水噴霧、
湿潤環境および乾燥を組合せた複合腐食環境で促進腐食
させた場合、第1図〜第5図に示したようなめっき層の
構造が影響してくる。
Zn with a Cr content exceeding 5% and a composition up to 40%
- As mentioned above, the corrosion resistance of Cr-plated steel sheets and the corrosion resistance after painting are extremely excellent in salt spray tests, etc., but when exposed to even harsher corrosive environments for long periods, for example, salt spray,
When accelerated corrosion is carried out in a complex corrosive environment that combines a wet environment and a dry environment, the structure of the plating layer as shown in FIGS. 1 to 5 has an effect.

即ち、第1図に示すようなり相を含有するZn−Crめ
っか鋼板に比べて、第2図〜#s5図に示すようなり相
を含有せず、合金相のみからなっているZn−Crめっ
き鋼板は耐食性、特に塗装後の耐食性が更に向上する。
That is, compared to a Zn-Cr plated steel sheet that contains a phase as shown in FIG. 1, a Zn-Cr plated steel sheet that does not contain a phase as shown in FIGS. The Cr-plated steel sheet has further improved corrosion resistance, especially corrosion resistance after painting.

前述したCrの腐食下における保護皮膜形成能が塗膜下
肩食においても過度な局部電池作用を抑制することによ
って塗膜の密着性を維持するが、り相が混在すると局部
電池抑制作用が完全ではないためと考えられる。
The above-mentioned ability of Cr to form a protective film under corrosion maintains the adhesion of the paint film by suppressing excessive local battery action even in the case of shoulder corrosion under the paint film, but when the adhesive phase is present, the local battery suppression effect is completely suppressed. This is thought to be because it is not.

なお、Zn−Crめっき層中に少量のF es N 1
zCo、Mn、Sn%Cd、Pb%Cu%C%0.S、
P。
Note that a small amount of FesN1 is contained in the Zn-Cr plating layer.
zCo, Mn, Sn%Cd, Pb%Cu%C%0. S,
P.

B、Na等が含有されても、X線回折図に本質的な変化
を及ぼさない限りにおいて許容できる。
Even if B, Na, etc. are contained, it is permissible as long as the X-ray diffraction pattern is not essentially changed.

次に、り相のないZn−Cr合金めっき鋼板の製造方法
であるが  Z n2+イオン、Cr”イオンおよび0
.01〜20g/ lのポリオキンアルキレン誘導体を
含む酸性めっき浴を用いて、電流密度50A/dm”以
上でめっきする。ポリオキシフル坪レン誘導体を添加す
ることによって有利な電流効率でZn−Crめっきが達
成できると同時に、ワ相を含まず実質上合金相からなる
めっき層が得られる。
Next, there is a method for manufacturing a Zn-Cr alloy plated steel sheet without a phase.
.. Plating is carried out at a current density of 50 A/dm or higher using an acidic plating bath containing 01 to 20 g/l of a polyoxene alkylene derivative. By adding a polyoxyfluorene derivative, Zn-Cr plating can be performed with an advantageous current efficiency. At the same time, it is possible to obtain a plating layer that does not contain a wax phase and consists essentially of an alloy phase.

ポリオキンアルキレン誘導体は一般的にRm−0−(R
+   O)n−H および、あるいは R*−(R+  0)n−H で示される化合物を指す。
Polyoquine alkylene derivatives are generally Rm-0-(R
+O)n-H and or R*-(R+ 0)n-H.

ここで、 R1:アルキレン基 R*: H,フル今ル基、フェニル基、ナフチル基およ
びあるいはその誘導 体 n=1 〜2000 なお、本発明のめっき層としては、均一単層とする場合
だけでなく、上記めっき層組成または相構造を有するI
l囲において、めっき層内に分散または層状的に構成し
たものや、深さ方向に濃度勾配を有するものなども単層
と同様に良好な性能を発揮するので、本発明の範囲に含
むこととする。
Here, R1: Alkylene group R*: H, fluorinated group, phenyl group, naphthyl group and or their derivatives n = 1 to 2000 The plating layer of the present invention is not limited to the case where it is a uniform single layer. , I having the above plating layer composition or phase structure
In the plating layer, those that are dispersed or structured in a layered manner within the plating layer, or those that have a concentration gradient in the depth direction, exhibit good performance as well as a single layer, and therefore are included in the scope of the present invention. do.

以上のり相を持たないZn−Crめっき層の上層に鉄扇
電気めっきまたはFe80%以上、残部Znからなるめ
っき層を施した2層めっき鋼板は、カチオン電着塗装時
のクレータ−状の塗膜欠陥発生を防止し、かつ塗装密着
性の優れたリン酸亜鉛皮膜を形成できるので、特にカチ
オン電着塗装用途に好適である。
Two-layer plated steel sheets, in which iron fan electroplating or a plating layer consisting of 80% or more Fe and the balance Zn, are applied on top of the Zn-Cr plating layer that does not have a glue phase. It is particularly suitable for cationic electrodeposition coating applications because it can prevent the formation of zinc phosphate coatings and form a zinc phosphate film with excellent coating adhesion.

このように、Zn−Crめっ8Mに上記の上層を施した
場合も、その塗装後の耐食性は先に述べた上層めっきを
施していない場合の塗装後の耐食性と同様にZn−Cr
めっき層に負うところが太き(、り相がないので更に良
好となる。
In this way, even when the above upper layer is applied to Zn-Cr plating 8M, the corrosion resistance after painting is the same as the corrosion resistance after painting when no upper layer plating is applied.
It is thicker due to the plating layer (and is even better because there is no adhesion phase).

上層めっき量としては1〜10Fi/m”が適当である
。また前記下層めっき量としては10〜50[1/−2
で十分耐食性等を確保することができる。
The appropriate amount of upper layer plating is 1 to 10 Fi/m". The amount of lower layer plating is 10 to 50 [1/-2
It is possible to ensure sufficient corrosion resistance etc.

(実施例) 本発明の実施例を比較例とともに表1に示す。(Example) Examples of the present invention are shown in Table 1 along with comparative examples.

注1)実施例および比較例のZn−Crめっきについて
は冷延鋼板に表2の条件でめっきを施した。なお、Zn
めっきおよび上層のFe−Znめっきは周知の方法で行
った。得られためっき層のX線回折図は第1図〜第5図
にそれぞれ対応する。
Note 1) For Zn-Cr plating in Examples and Comparative Examples, cold-rolled steel sheets were plated under the conditions shown in Table 2. In addition, Zn
Plating and upper layer Fe-Zn plating were performed by well-known methods. The X-ray diffraction patterns of the obtained plating layer correspond to FIGS. 1 to 5, respectively.

注2)X#1回折:C’uターデッドを用い、めっき板
を試料回転法で測定した。測定条件は電圧45kV、電
流150mÅ、スキャン速度2deg/sin。
Note 2) X#1 diffraction: Measured using C'u tarded using a sample rotation method on a plated plate. The measurement conditions were a voltage of 45 kV, a current of 150 mÅ, and a scan speed of 2 deg/sin.

主ピーク:最も強度の高いピーク 存  在:その他のピーク な  し:明瞭に認められない 注3)Iめっ訃鋼板の耐食性 ■塩水噴霧試験(JIS  Z  2371に準拠)7
20時間後の赤錆発生面積% ■複合サイクル試験 湿潤(50℃、85%相対湿度)16時間→乾燥(70
℃)3時開→塩水浸漬(SOで、5%NaC1)2時間
→室内放置2時間→塩水噴霧(50℃、他はJIS  
Z  2371に準拠)1時間→ からなるサイクル腐食環境に672時間曝露した後の最
大浸食深さ(−一) 注4)I!i板の耐食性 浸漬型リン酸亜鉛処理後、カチオン電着塗装20μ偕施
した試験片にクロスカットを入れて腐食試験に供した。
Main peak: The peak with the highest intensity Presence: No other peaks: Not clearly recognized Note 3) Corrosion resistance of I-plated steel sheet ■ Salt spray test (based on JIS Z 2371) 7
% area of red rust after 20 hours ■ Combined cycle test Wet (50℃, 85% relative humidity) 16 hours → Dry (70
°C) Open at 3 o'clock → Soak in salt water (SO, 5% NaC1) for 2 hours → Leave indoors for 2 hours → Salt water spray (50 °C, others are JIS)
Z 2371) Maximum erosion depth (-1) after 672 hours of exposure to a cyclic corrosive environment consisting of 1 hour → Note 4) I! Corrosion resistance of i-plate After immersion type zinc phosphate treatment, a cross-cut was made in a test piece which was coated with 20 μm of cationic electrodeposition coating and subjected to a corrosion test.

■塩水噴霧Ka(JIS  Z  23711:準拠)
600時間後の片側塗膜ふくれ+!l!(ms)■複合
サイクル試験 塩水噴霧(50℃、他はJIS  Z  2371に準
拠)17時間→乾燥(70℃)3時間→塩水浸漬(50
℃、5%N aCl)2時間→室内放置2時間 からなるサイクル腐食環境に2016時間曝露した後の
最大浸食深さ(簡曽) 注5)カチオン電着塗装m膜外観 浸漬型リン酸亜鉛処理を施したサンプルを300■でカ
チオン電着塗装し、その外観を観察した。
■Salt spray Ka (JIS Z 23711: compliant)
One side paint film blisters after 600 hours! l! (ms) ■Combined cycle test Salt water spray (50℃, others comply with JIS Z 2371) 17 hours → Drying (70℃) 3 hours → Salt water immersion (50℃)
Maximum erosion depth after 2,016 hours of exposure to a cyclic corrosive environment consisting of 2 hours → 2 hours of standing indoors (Sinzeng) Note 5) Cation electrodeposition coating m membrane exterior immersion type zinc phosphate treatment The sample was subjected to cationic electrodeposition coating at 300 μm, and its appearance was observed.

○:クレーターの発生なし Δ:クレーター10個/d−2未満あり×:クレーター
10個/d−2以上あり(発明の効果) 以上述べたように、裸板の耐食性、!!!装後の耐食性
ともに極めて優れた防錆鋼板が得られ、特に腐食環境の
酷しい塩害地内自動車用防錆鋼板、海浜地方用の建材等
に好適である。
○: No craters occurred Δ: Less than 10 craters/d-2 ×: 10 craters/d-2 or more (effects of the invention) As described above, the corrosion resistance of the bare plate! ! ! A rust-proof steel plate with extremely excellent corrosion resistance after mounting is obtained, and is particularly suitable for rust-proof steel plates for automobiles in salt-damaged areas with severe corrosive environments, building materials for coastal areas, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例1のXi回折図、 第2図は実施例1のX線回折図、 第3図は実施例2のX線回折図、 第4図は実施例3のX線回折図、 第5図は実施例4のXIIA回折図である。 Figure 1 is the Xi diffraction diagram of Comparative Example 1; Figure 2 is an X-ray diffraction diagram of Example 1; Figure 3 is an X-ray diffraction diagram of Example 2; FIG. 4 is an X-ray diffraction diagram of Example 3, FIG. 5 is an XIIA diffraction diagram of Example 4.

Claims (3)

【特許請求の範囲】[Claims] (1)Cr5%超〜40%以下、残部がZnからなり、
かつη相を含有しない亜鉛−クロム合金電気めっき鋼板
(1) More than 5% to 40% Cr, the balance being Zn,
A zinc-chromium alloy electroplated steel sheet containing no η phase.
(2)X線回折による面間隔d=2.15〜2.12Å
、d=2.29〜2.19Å、d=2.33〜2.36
Åのいずれか一つまたは二つ以上のピークを有する合金
相からなる請求項1記載の亜鉛−クロム合金電気めっき
鋼板。
(2) Interplanar spacing d = 2.15-2.12 Å by X-ray diffraction
, d=2.29-2.19 Å, d=2.33-2.36
The zinc-chromium alloy electroplated steel sheet according to claim 1, comprising an alloy phase having one or more peaks of Å.
(3)下層に請求項1または2記載の亜鉛−クロム合金
電気めっきを施し、上層に鉄系電気めっきまたはFe6
0%以上、残部がZnからなる電気めっきを施した2層
電気めっき鋼板。
(3) The lower layer is coated with the zinc-chromium alloy electroplating according to claim 1 or 2, and the upper layer is coated with iron-based electroplating or Fe6.
Two-layer electroplated steel sheet with electroplating consisting of 0% or more and the balance being Zn.
JP63015156A 1987-03-31 1988-01-26 Zinc-chromium alloy electroplated steel sheet Expired - Fee Related JPH0699836B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP63015156A JPH0699836B2 (en) 1988-01-26 1988-01-26 Zinc-chromium alloy electroplated steel sheet
DE88104874T DE3882769T2 (en) 1987-03-31 1988-03-25 Corrosion-resistant plated steel strip and process for its manufacture.
EP88104874A EP0285931B1 (en) 1987-03-31 1988-03-25 Corrosion resistant plated steel strip and method for producing same
US07/174,830 US4897317A (en) 1987-03-31 1988-03-29 Corrosion resistant Zn-Cr plated steel strip
CA000562971A CA1336698C (en) 1987-03-31 1988-03-30 Corrosion resistant plated steel strip and method for producing same
AU13897/88A AU597163B2 (en) 1987-03-31 1988-03-30 Corrosion resistant plated steel strip and method for producing same
KR1019880003622A KR910002186B1 (en) 1987-03-31 1988-03-31 Corrosion resistant zn-cr plated steel strip
US07/320,071 US4877494A (en) 1987-03-31 1989-03-07 Corrosion resistant plated steel strip and method for producing same
CA000616732A CA1336700C (en) 1987-03-31 1993-09-21 Corrosion resistant plated steel strip and method for producing same
CA000616731A CA1336699C (en) 1987-03-31 1993-09-21 Corrosion resistant plated steel strip and method for producing same
CA000616830A CA1337054C (en) 1987-03-31 1994-03-07 Corrosion resistant plated steel strip and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015156A JPH0699836B2 (en) 1988-01-26 1988-01-26 Zinc-chromium alloy electroplated steel sheet

Publications (2)

Publication Number Publication Date
JPH01191797A true JPH01191797A (en) 1989-08-01
JPH0699836B2 JPH0699836B2 (en) 1994-12-07

Family

ID=11880936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015156A Expired - Fee Related JPH0699836B2 (en) 1987-03-31 1988-01-26 Zinc-chromium alloy electroplated steel sheet

Country Status (1)

Country Link
JP (1) JPH0699836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510196A (en) * 1992-07-10 1996-04-23 Kawasaki Steel Corporation Corrosion resistant steel sheets improved in corrosion resistance and other characteristics
US5616232A (en) * 1994-09-28 1997-04-01 Nippon Steel Corporation Process for producing zinc-chromium alloy-electroplated steel plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204193A (en) * 1982-01-14 1983-11-28 Kobe Steel Ltd Surface treated steel plate
JPS591694A (en) * 1982-06-29 1984-01-07 Kobe Steel Ltd Rust preventive steel sheet
JPS5974290A (en) * 1982-10-19 1984-04-26 Toyota Motor Corp Surface treated steel sheet
JPS59170288A (en) * 1983-03-15 1984-09-26 Nippon Steel Corp Zinc alloy plated steel sheet having superior corrosion resistance and coatability
JPS6039195A (en) * 1983-08-12 1985-02-28 Toyota Motor Corp Iron-zinc alloy plated steel sheet and its manufacture
JPS6213590A (en) * 1985-07-11 1987-01-22 Kawasaki Steel Corp Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPS6455397A (en) * 1987-08-26 1989-03-02 Nippon Steel Corp Zinc-chromium based electroplated steel sheet having excellent surface grade and corrosion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204193A (en) * 1982-01-14 1983-11-28 Kobe Steel Ltd Surface treated steel plate
JPS591694A (en) * 1982-06-29 1984-01-07 Kobe Steel Ltd Rust preventive steel sheet
JPS5974290A (en) * 1982-10-19 1984-04-26 Toyota Motor Corp Surface treated steel sheet
JPS59170288A (en) * 1983-03-15 1984-09-26 Nippon Steel Corp Zinc alloy plated steel sheet having superior corrosion resistance and coatability
JPS6039195A (en) * 1983-08-12 1985-02-28 Toyota Motor Corp Iron-zinc alloy plated steel sheet and its manufacture
JPS6213590A (en) * 1985-07-11 1987-01-22 Kawasaki Steel Corp Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPS6455397A (en) * 1987-08-26 1989-03-02 Nippon Steel Corp Zinc-chromium based electroplated steel sheet having excellent surface grade and corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510196A (en) * 1992-07-10 1996-04-23 Kawasaki Steel Corporation Corrosion resistant steel sheets improved in corrosion resistance and other characteristics
US5616232A (en) * 1994-09-28 1997-04-01 Nippon Steel Corporation Process for producing zinc-chromium alloy-electroplated steel plate

Also Published As

Publication number Publication date
JPH0699836B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
EP1405934B1 (en) Zinc-diffused alloy coating for corrosion/heat protection
CA1334018C (en) High corrosion resistant plated composite steel strip and method of producing same
EP0125658A1 (en) Corrosion resistant surface-treated steel strip and process for making
US4439283A (en) Zinc cobalt alloy plating
US3838024A (en) Method of improving the corrosion resistance of substrates
JPS6057518B2 (en) Surface-treated steel with excellent corrosion resistance and water-resistant adhesion
JPH01191797A (en) Zinc-chromium alloy electroplated steel sheet
JPS598354B2 (en) Composite coated steel plate
JPS6343479B2 (en)
JP2002285346A (en) Zinc phosphate treated galvanized steel sheet having excellent corrosion resistance and color tone
JPH0525679A (en) High corrosion resistance surface treated steel sheet excellent in impact adhesion resistance
JPH01191798A (en) Production of zinc-chromium alloy electroplated steel sheet
US4666791A (en) Ni-Zn electroplated product resistant to paint delamination
JPS61207597A (en) Alloyed hot dip galvanized steel sheet having superior workability
JPH01290797A (en) Composite electroplated steel sheet having superior corrosion resistance
JPH11200070A (en) Hot dip zn alloy coated steel wire
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
Johnson et al. Corrosion Resistance and Paintability of Zinc and Zinc-Alloy Coatings for Automotive Sheet
JPH01162795A (en) Zinc-chromium double-electroplated steel sheet
JPS6240398A (en) Double-plated steel sheet having high corrosion resistance
GB2160223A (en) Zinc cobalt alloy plating
JPS6018752B2 (en) Chemical conversion pretreatment method
JPS60131991A (en) Fe-p alloy plated steel sheet
JPS58144496A (en) Alloyed zinc plated steel plate excellent in paintability
KR100509183B1 (en) Zinc phosphate-treated galvanized steel sheet excellent in corrosion resistance and color tone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees