JPH01191759A - Aluminum alloy composite material - Google Patents

Aluminum alloy composite material

Info

Publication number
JPH01191759A
JPH01191759A JP1562888A JP1562888A JPH01191759A JP H01191759 A JPH01191759 A JP H01191759A JP 1562888 A JP1562888 A JP 1562888A JP 1562888 A JP1562888 A JP 1562888A JP H01191759 A JPH01191759 A JP H01191759A
Authority
JP
Japan
Prior art keywords
aluminum alloy
composite material
strength
weight
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1562888A
Other languages
Japanese (ja)
Inventor
Shuntaro Sudo
俊太郎 須藤
Akira Manabe
明 真鍋
Satoru Murakami
哲 村上
Akinari Ishikawa
石川 明成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Keikinzoku Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Keikinzoku Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP1562888A priority Critical patent/JPH01191759A/en
Publication of JPH01191759A publication Critical patent/JPH01191759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the title material for a piston of an internal combustion engine having excellent various characteristics by dispersing and incorporating at least one kind of ceramic powder among SiC, Al2O3, SiO2 and Al2SiO3 to the matrix an Al alloy contg. specific amounts of Si, Cu and Mg. CONSTITUTION:As the material for an internal combustion engine to which light weight, high strength and wear resistance are required, the Al alloy com posite material in which the Al alloy contg., by weight, 3-12% Si, 0.5-20% Cu and 3-7% Mg is regulated to the matrix and in which at least one kind of ceramic powder among SiC, Al2O3, SiO2 and Al2SiO3 (mullite) is present by dispersion in the range of 5-20%, by volume ratio, is used. The composite material having high strength and having no lowering of strength even at the high temp. of 250-300 deg.C can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属複合材料に関し、特に軽量、高強度で対摩
耗性が要求される部品、例えば内燃機関用のピストンを
製造するのに適したアルミニウム合金複合材料に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a metal composite material, and is particularly suitable for manufacturing parts that require light weight, high strength, and wear resistance, such as pistons for internal combustion engines. This invention relates to aluminum alloy composite materials.

(従来の技術) 内燃機関のピストンは、軽く、しかも強度が優れている
ことが要求される。このためピストン用アルミニウム合
金としてはローエックス合金(例えば JIS  AC
8A)が汎用されている。また合金組成を変えることに
よって、より以上に強度を高める試みもなされており、
そのようなピストン用アルミニウム合金は例えば特開昭
57−126944号や特開昭57−79140号に開
示されている。
(Prior Art) Pistons for internal combustion engines are required to be lightweight and have excellent strength. Therefore, as aluminum alloys for pistons, Roex alloys (for example, JIS AC
8A) is widely used. Attempts have also been made to further increase the strength by changing the alloy composition.
Such aluminum alloys for pistons are disclosed, for example, in JP-A-57-126944 and JP-A-57-79140.

ところで近年、内燃機関の高出力化に伴なってピストン
にかかる負荷が増大してきたため、従来のアルミニウム
合金では強度及び耐摩耗性が不足してきている。
However, in recent years, as the output of internal combustion engines has increased, the load on pistons has increased, so conventional aluminum alloys have become insufficient in strength and wear resistance.

その対策として、例えば特開昭61− 272301号に示されているように、アルミニウム合
金中にセラミックス粒子を混入した複合材料が提案され
ている。
As a countermeasure to this problem, a composite material in which ceramic particles are mixed into an aluminum alloy has been proposed, for example, as shown in Japanese Patent Application Laid-Open No. 61-272301.

(発明が解決しようとする問題点) この特開昭61−272301号に示されている材料は
、マトリ−2クス(アルミニウム合金の細い短繊維と、
セラミ−2クスの繊維あるいは粉末からなる補強材を振
動ボールミルによって混合粉砕し、得られた混合粉末を
加圧加熱して成形するものであるが、常温で高強度を示
しても、高温1例えばピストンが使用される温度である
 250〜300℃では強度が低下するという問題があ
った。
(Problems to be Solved by the Invention) The material disclosed in JP-A No. 61-272301 consists of matrix 2x (aluminum alloy thin short fibers,
Ceramic 2x reinforcing material made of fibers or powder is mixed and pulverized using a vibrating ball mill, and the resulting mixed powder is heated under pressure and molded. Although it exhibits high strength at room temperature, it cannot be used at high temperatures, for example. There was a problem that the strength decreased at 250 to 300°C, which is the temperature at which the piston is used.

この原因は、該複合材料のマトリックスのアルミニウム
合金の機械的特性が高温では低下するからである。最近
になって、高温での強度を向上させたピストン用アルミ
ニウム合金が特願昭62−229291号及び特願昭6
2−265882号として提案されている。これらは1
50〜250℃における強度は向上しているが、それ以
上の温度では未だ強度不足である。
This is because the mechanical properties of the aluminum alloy of the matrix of the composite material deteriorate at high temperatures. Recently, aluminum alloys for pistons with improved strength at high temperatures have been developed in Japanese Patent Application No. 62-229291 and Japanese Patent Application No. 6
It has been proposed as No. 2-265882. These are 1
Although the strength at 50 to 250°C has improved, the strength is still insufficient at higher temperatures.

本発明は上記問題点を解決するために為されたものであ
り、その目的とするところは、強度、耐魔耗性が一段と
向上した、しかも高温になってもそのような機械的特性
の定価を来たさないアルミニウム合金複合材料を提供す
ることである。
The present invention was made to solve the above problems, and its purpose is to further improve strength and wear resistance, and to maintain the same mechanical properties even at high temperatures. It is an object of the present invention to provide an aluminum alloy composite material that does not cause

(問題点を解決するための手段) 上記目的を達成できる本発明のアルミニウム合金複合材
料は、珪素(Si) 3〜12重量%、銅CCu) 0
.5〜20 重1%、マグネシウム(Mg)3〜7重贋
%及び残部アルミニウム (At)からなる組成のアル
ミニウム合金がマトリックスであり、その中に炭化珪素
(SiC)、アルミナ(A1203)シリカ(SiO+
)ムライト (Al20s Si 02)の少なくとも
一種のセラミックス粉末が体積比で5〜20%分散して
いることを特徴とする。
(Means for Solving the Problems) The aluminum alloy composite material of the present invention that can achieve the above objects contains 3 to 12% by weight of silicon (Si) and copper (CCu) 0.
.. The matrix is an aluminum alloy with a composition of 1% by weight, 3 to 7% by weight of magnesium (Mg), and the balance aluminum (At), and silicon carbide (SiC), alumina (A1203), silica (SiO+
) Mullite (Al20s Si02) is characterized in that at least one type of ceramic powder is dispersed in a volume ratio of 5 to 20%.

上記マトリックス(アルミニウム合金)のAl中に添加
される合金元素Si  Cu及びMg量の限定理由につ
いて説明する。
The reasons for limiting the amounts of alloying elements Si, Cu, and Mg added to Al of the matrix (aluminum alloy) will be explained.

Siが3重量%未満、Cuが0.5重量%未満。Si is less than 3% by weight, Cu is less than 0.5% by weight.

及びMgが7重量%未満の添加量ではいずれの場合にも
高強度なマトリックスが得られず。
If the amount of Mg added is less than 7% by weight, a high-strength matrix cannot be obtained in either case.

Si、 Mgの添加量不足は高温での、またCuの添加
量不足は常温でのマトリックス強化硬化を低下させる。
Insufficient amounts of Si and Mg added will reduce matrix reinforcement hardening at high temperatures, and insufficient amounts of Cu will reduce matrix reinforcement hardening at room temperature.

一方、Si量が12重量%、Cu量が20重量%、及び
Mgが7重量%を超えて添加された場合には、それぞれ
Si、 Al−Cu  化合物が多く析出し、いずれの
場合もアルミニウム合金の脆化が起り、鍛造性が悪化す
る。それゆえAl中への合金元素添加量はSi 3〜1
2重量%、Cu0.5〜20重量%及びMg3〜7重量
%とすることが重要である。
On the other hand, when the Si content exceeds 12% by weight, the Cu content exceeds 20% by weight, and Mg exceeds 7% by weight, a large amount of Si and Al-Cu compounds precipitate, and in either case, the aluminum alloy embrittlement occurs and forgeability deteriorates. Therefore, the amount of alloying elements added to Al is Si 3-1
It is important to set the content to 2% by weight, 0.5 to 20% by weight of Cu, and 3 to 7% by weight of Mg.

上記マトリックスに分散させるセラミックスの量が、5
体積%未満では複合化による強度向上の効果が得られず
、また20体積%を超えるとアルミニウム合金粉末どう
しの結合がセラミックスにより抑制されるためマトリッ
クスの強度が低下し、さらに鍛造性も悪化して、ひどい
場合には亀裂等が発生する。従ってセラミックスの分散
量は5〜20体積%であることが必要である。セラミッ
クスは熱的に安定であり、互に反応することもないため
、2種以上分散させても悪影響はない、従ってSin、
  AlaOa 5in2A1□03S+02のいずれ
かを単独で使用しようと、或いはいかなる組合せで併用
しようと自由である。  またアルミニウム合金に分散
しているセラミックス粉末の粒子径がloILmを超え
ると、更に強度を高めることtjもはや期待できず径が
大きくなるにつれてむしろ複合材料の強度は低下する。
The amount of ceramics dispersed in the matrix is 5
If it is less than 20% by volume, the effect of improving strength by compounding cannot be obtained, and if it exceeds 20% by volume, the bonding between aluminum alloy powders is suppressed by the ceramics, resulting in a decrease in matrix strength and further deterioration of forgeability. In severe cases, cracks may occur. Therefore, it is necessary that the amount of ceramic dispersed is 5 to 20% by volume. Ceramics are thermally stable and do not react with each other, so there is no negative effect even if two or more types are dispersed.
You are free to use any one of AlaOa 5in2A1□03S+02 alone or in any combination. Furthermore, when the particle size of the ceramic powder dispersed in the aluminum alloy exceeds loILm, further enhancement of the strength cannot be expected, and the strength of the composite material decreases as the particle size increases.

また粒子径が1μm未満であるとセラミックス粉末どう
しが凝集してしまい不均質な分散状態となり強度が低下
する。従ってセラミ−2クス粉末の粒子径は0.01−
104mであるのが好ましい。
Moreover, if the particle size is less than 1 μm, the ceramic powders will aggregate with each other, resulting in a non-uniformly dispersed state and a decrease in strength. Therefore, the particle size of ceramic 2x powder is 0.01-
Preferably it is 104 m.

(作用) Siは Al中に固溶し、熱的に比較適安定であるため
、複合材料のマトリックスの高温での強度を向上させる
。またSiの添加は熱膨張を小さくし、シリンダポア(
#4鉄)との熱膨張差が小さいことが要求されているピ
ストンの製造に適した材料にする。
(Function) Since Si is dissolved in Al and is relatively thermally stable, it improves the strength of the matrix of the composite material at high temperatures. In addition, the addition of Si reduces thermal expansion and improves the cylinder pore (
The material is suitable for manufacturing pistons, which requires a small difference in thermal expansion with #4 iron.

Cuは熱処理によってA l−Cu化合物を生じ、常温
での強度を向上させる0Mgは熱処理により、熱的に安
定なAl−Mg化合物となって、複合材料のマトリック
スの高温での強度を高める。
Cu produces an Al-Cu compound by heat treatment, which improves the strength at room temperature.0Mg becomes a thermally stable Al-Mg compound by heat treatment, increasing the strength of the matrix of the composite material at high temperatures.

Sic  Al 203 5i02  Ah03−Si
Chの各セラミックスは、ビッカース硬さHv1000
〜2000という硬さとし、優れた耐高熱性とで複合効
果を示し、アルミニウム合金材料の強度を向上する。
Sic Al 203 5i02 Ah03-Si
Each ceramic of Ch has a Vickers hardness of Hv1000.
It has a hardness of ~2000 and exhibits a combined effect with excellent high heat resistance and improves the strength of aluminum alloy materials.

(実施例) 以下に本発明のアルミニウム合金複合材料の実施例につ
いて比較例、試験例とともに説明するが、これにより本
発明は何ら限定されるものではない。
(Example) Examples of the aluminum alloy composite material of the present invention will be described below along with comparative examples and test examples, but the present invention is not limited thereby.

実施例1 重量比でSiが7重量%、Cuが1重量%、Mgが5%
、残部が実質的にA1となるように調製された溶湯から
ビレットを作成した0次いでこのビレットをビビリ振動
切削法で太さ60終mで長さ3mmの短繊維を作成した
。この短繊維を乾燥機にて100℃に加熱し、24時間
保持して乾燥した。この短繊維に、純度99゜5%のS
iC粉末(粒子径0.5〜6gmのものが98%、平均
粒子径2gm)を体積比で15%となるように加え、そ
の混合物を振動ミルにて粉砕混合した。このときの混合
条件は、振動数120Orpm、振幅9mm、振動時間
40分である。得られた混合粉末をホットプレスにて予
備成形しプリフォームを得た。この予備成形の条件はダ
イス温度200℃、加圧力3トン/ c m 2加圧時
間lO秒にて行った。このプリフォームを、ダイスを変
更してさらに本成形を行った。この時の本成形の条件は
ダイス温度540℃、加圧力3トン/ Cm2 加圧時
間10秒にて行った0本成形により得られた粗形材の寸
法は30X60X5mmのブロック形状である。この粗
形材を強度向上のため熱処理(T6)を行った。この時
の処理条件は、溶体化処理条件が温度520℃にて10
時間保持後の水冷で、時効処理が温度160℃で10時
間保持後の放冷である。こうして得られたセラミックス
入りアルミニウム合金複合材料を機械加工して引張試験
片6木を作成し、後記の試験に供した。
Example 1 Si is 7% by weight, Cu is 1% by weight, and Mg is 5% by weight
A billet was prepared from the molten metal prepared so that the remaining portion was substantially A1.The billet was then subjected to a chatter vibration cutting method to form short fibers having a thickness of 60 m and a length of 3 mm. The short fibers were heated to 100° C. in a dryer and kept for 24 hours to dry. This short fiber contains S with a purity of 99.5%.
iC powder (98% with a particle size of 0.5 to 6 gm, average particle size of 2 gm) was added at a volume ratio of 15%, and the mixture was pulverized and mixed using a vibrating mill. The mixing conditions at this time were a frequency of 120 rpm, an amplitude of 9 mm, and a vibration time of 40 minutes. The obtained mixed powder was preformed using a hot press to obtain a preform. The conditions for this preforming were a die temperature of 200° C., a pressing force of 3 tons/cm 2 and a pressing time of 10 seconds. This preform was further subjected to main molding by changing the die. The main molding conditions at this time were a die temperature of 540° C., a pressurizing force of 3 tons/cm2, and a pressurizing time of 10 seconds. This rough shaped material was heat treated (T6) to improve its strength. The treatment conditions at this time are solution treatment conditions at a temperature of 520 ° C.
The aging treatment is carried out by water cooling after holding for a period of time, and the aging treatment is carried out by holding at a temperature of 160° C. for 10 hours and then allowing it to cool. The thus obtained ceramic-containing aluminum alloy composite material was machined to prepare 6 tensile test pieces, which were subjected to the tests described below.

実施例2 重量比でSiが6%、 Cuが2%、Kgが4%、残部
が実質的にA1となるように調製されたアルミニウム合
金溶湯からビレットを作成した0次いでこのビレットを
ビビリ振動切削法で太さ60pmで長さ3mmの短繊維
を作成し た。
Example 2 A billet was made from a molten aluminum alloy prepared so that the weight ratio was 6% Si, 2% Cu, 4% Kg, and the balance was substantially A1.The billet was then subjected to chatter vibration cutting. Short fibers with a thickness of 60 pm and a length of 3 mm were created using the method.

この短繊維を乾燥機にて100℃に加熱し、24時間保
持して乾燥した。この短繊維に、純度99.2%のAl
2O3粉末(粒子径0.8〜8gmのものが99%、平
均粒子径4uLm)を体積比で10%となるように加え
、その混合物を振動ミルにて粉砕混合した。このときの
混合条件は、振動数120Orpm、振幅9mm、振動
時間40分である。得られた混合粉末をホットプレスに
て予備成形しプリフォームを得た。この予備成形はダイ
ス温度200℃、加圧力3トン/cm″、加圧時間10
秒という条件にて行った。このプリフォームを、ダイス
を変更してさらに本成形を行った。この時の本成形の条
件はダイス温度520℃、加圧力3トン/cm”加圧時
間10秒である0本成形により得られた粗形材の寸法は
30 X 60 X 5 m mのブロック形状である
。この粗形材を強度向上のため熱処理(T6)を行った
。この時の処理条件は、溶体化処理が温度500℃にて
6時間保持後の水冷で、時効処理が温度160℃で10
時間保持後の放冷である。こうして得られたセラミック
ス入りアルミニウム合金複合材料を機械加工して、後記
の引張試験に供する試験片を作成した。
The short fibers were heated to 100° C. in a dryer and kept for 24 hours to dry. This short fiber contains Al with a purity of 99.2%.
2O3 powder (99% with a particle size of 0.8 to 8 gm, average particle size of 4 uLm) was added at a volume ratio of 10%, and the mixture was pulverized and mixed using a vibrating mill. The mixing conditions at this time were a frequency of 120 rpm, an amplitude of 9 mm, and a vibration time of 40 minutes. The obtained mixed powder was preformed using a hot press to obtain a preform. This preforming was performed at a die temperature of 200°C, a pressing force of 3 tons/cm'', and a pressing time of 10
I went on the condition that it was seconds. This preform was further subjected to main molding by changing the die. The main forming conditions at this time were a die temperature of 520°C, a pressurizing force of 3 tons/cm'' and a pressurizing time of 10 seconds.The dimensions of the rough material obtained by 0-piece forming were a block shape of 30 x 60 x 5 mm. This rough shaped material was heat treated (T6) to improve its strength.The treatment conditions at this time were: solution treatment at a temperature of 500°C followed by water cooling after holding for 6 hours, and aging treatment at a temperature of 160°C. So 10
It is left to cool after being held for a certain period of time. The thus obtained ceramic-containing aluminum alloy composite material was machined to create a test piece for the tensile test described below.

実施例3 添加するセラミックス粉末としてSiC粉末の代わりに
、純度94.5%の5in2粉末(粒子径0.03〜0
.31Lmのものが99%、平均粒子径0.05ルm)
を体積比で6%となるように加える以外は実施例1と同
様の方法により引っ張り試験片を作成した。
Example 3 5in2 powder with a purity of 94.5% (particle size 0.03-0
.. 31Lm (99%), average particle size 0.05Lm)
A tensile test piece was prepared in the same manner as in Example 1, except that 6% by volume was added.

比較例1 特開昭81−272301号に示されている複合材料で
なる試験片を作成した。即ち、アルミニウム合金 JI
S  6061のビレットを作成し、このビレットから
太さ0.2mm、長さ1.0mmの短繊維をビビリ振動
切削法により作成し、この短繊維を実施例1と同様にし
て乾燥した。この短繊維に、純度99%のSiC粉末(
粒子径1.0−10gmのものが98%、平均粒子径4
gm)を体積比で20%となるように加えた。その混合
物を実施例1と同様にして振動ミルにて粉砕混合し、予
備成形によりプリフォームを作成した。このプリフォー
ムを、ダイス温度590℃、加圧力3トン/CrrI′
、加圧時間10秒という条件で本成形を行い、得られた
粗形材(30X60X5mm)に熱処理(T6)を行っ
た。この時の処理条件は、溶体化処理が温度530℃に
て2時間保持後の水冷で、時効処理条件が温度180℃
で4時間保持後の放冷である。こうして得られた複合材
料を機械加工して引張試験片を作成し、後記の試験に供
した。
Comparative Example 1 A test piece made of the composite material disclosed in JP-A No. 81-272301 was prepared. That is, aluminum alloy JI
A billet of S6061 was prepared, and short fibers with a thickness of 0.2 mm and a length of 1.0 mm were formed from the billet by the chatter vibration cutting method, and the short fibers were dried in the same manner as in Example 1. This short fiber is combined with 99% pure SiC powder (
98% have a particle size of 1.0-10gm, average particle size 4
gm) was added at a volume ratio of 20%. The mixture was pulverized and mixed in a vibrating mill in the same manner as in Example 1, and a preform was prepared by preliminary molding. This preform was processed at a die temperature of 590°C and a pressing force of 3 tons/CrrI'.
The main molding was carried out under the conditions of pressurization time of 10 seconds, and the obtained rough shaped material (30 x 60 x 5 mm) was subjected to heat treatment (T6). The treatment conditions at this time were solution treatment at a temperature of 530°C and water cooling after holding for 2 hours, and aging treatment at a temperature of 180°C.
It is left to cool after being held for 4 hours. The composite material thus obtained was machined to create a tensile test piece, which was subjected to the test described below.

比較例2 アルミニウム合金 JIS  7075のビレットから
ビビリ振動切削法により作成された厚さ0.2mm、長
さ1.0mmの短繊維を用い、SiC粉末の混合割合を
体積比で15%とする以外は実施例1と同様にしてプリ
フォームを作成した。このプリフォームを、ダイス温度
500℃、加圧力3トン/Cm2加圧時間10秒という
条件で本成形を行い、得られた粗形材(30X60X5
mm)に熱処理(T6)を行った。この時の処理条件は
、溶体化処理が温度470℃にて2時間保持後の水冷で
、時効処理が温度120℃で24時間保持後の放冷であ
る。こうして得られた複合材料を機械加工して引張試験
片を作成し、後記の試験に供した。
Comparative Example 2 Short fibers with a thickness of 0.2 mm and a length of 1.0 mm were prepared from a billet of aluminum alloy JIS 7075 by the chatter vibration cutting method, except that the mixing ratio of SiC powder was 15% by volume. A preform was created in the same manner as in Example 1. This preform was subjected to main molding under the conditions of a die temperature of 500°C and a pressurizing force of 3 tons/cm2 for pressurizing time of 10 seconds.
mm) was subjected to heat treatment (T6). The treatment conditions at this time were that the solution treatment was held at a temperature of 470° C. for 2 hours followed by water cooling, and the aging treatment was held at a temperature of 120° C. for 24 hours and then allowed to cool. The composite material thus obtained was machined to create a tensile test piece, which was subjected to the test described below.

試験例 実施例1〜3及び比較例1.2で製造された各例6本ず
つの引張試験片(いずれも平行部の幅6mm、平行部の
長さ20mm、 板厚3mm、平行部とチャック部の間
は曲率6mmのR形状)を、常温での引張り試験と高温
(250℃)での引張り試験にそれぞれ3木ずつ供試し
、引張強さ及び伸びを測定した。いずれの試験とも試験
装置として2トンオートグラフを使用し、引張スピード
は2 m m / 分、そして標点間距離は15mmと
した。高温での引張試験においては試験片を加熱炉にて
250℃×24時間の予備加熱を行い、試験保持時間は
15分とした。測定結果を下記衣に示す、なお結果の数
値は3本の試験片の平均値である。
Test Examples Six tensile test specimens were prepared in Examples 1 to 3 and Comparative Examples 1.2 for each example (each with a parallel part width of 6 mm, a parallel part length of 20 mm, a plate thickness of 3 mm, a parallel part and a chuck). (R shape with curvature of 6 mm between the parts) was subjected to a tensile test at room temperature and a tensile test at high temperature (250° C.) using three pieces each, and the tensile strength and elongation were measured. In both tests, a 2-ton autograph was used as the testing device, the tensile speed was 2 mm/min, and the gauge distance was 15 mm. In the tensile test at high temperature, the test piece was preheated in a heating furnace at 250° C. for 24 hours, and the test holding time was 15 minutes. The measurement results are shown below, and the resulting values are the average values of three test pieces.

引張試験終了後の実施例1の試験片を研磨し、NaOH
水溶液で30秒間腐食させた後の表面組織は、図(SE
Hにより倍率7800倍の写f↓)に示すように、アル
ミニウム合金2中に。
After the tensile test, the test piece of Example 1 was polished and treated with NaOH.
The surface structure after corrosion in an aqueous solution for 30 seconds is shown in Figure (SE
In aluminum alloy 2, as shown in photo f↓) at a magnification of 7,800 times.

大きさの異なる角状のSiC1が比較的均一に分散して
いる。
Angular SiC1 having different sizes are dispersed relatively uniformly.

(9,明の効果) 本発明のアルミニウム合金複合材料は、AI中に、Si
CuMgを所定の割合で含有する機械的特性に優れたア
ルミニウム合金をマトリックスとし、その中に硬質セラ
ミックス粒子を分散させたものであるため、高強度でし
かも250〜300℃の高温条件化においても強度低下
を来たさない複合材料となる。また該材料は靭性、鍛造
性にも優れている。
(9. Effect of light) The aluminum alloy composite material of the present invention contains Si in the AI.
The matrix is an aluminum alloy with excellent mechanical properties that contains CuMg in a predetermined proportion, and hard ceramic particles are dispersed in it, so it has high strength and maintains its strength even under high temperature conditions of 250 to 300 degrees Celsius. The result is a composite material that does not deteriorate. The material also has excellent toughness and forgeability.

従って本発明の複合材料で、例えば内燃機関用のピスト
ンを製造した場合、該ピストンは高温、高負荷下で使用
されても摩耗が少なく、非常に優れた耐久性を示すこと
から、エンジンの高出力化に大きく貢献する。
Therefore, when a piston for an internal combustion engine is manufactured using the composite material of the present invention, the piston shows very little wear even when used at high temperatures and high loads, and exhibits excellent durability. It greatly contributes to output.

図は本発明の一実施例のアルミニウム合金複合材料の金
属表面組織を示す電子顕微鏡写真である。
The figure is an electron micrograph showing the metal surface structure of an aluminum alloy composite material according to an example of the present invention.

図中、 l−・5iOR子 2”・アルミニウム合金特許出願人
  トヨタ自動車株式会社 アイシン軽金属株式会社 アイシン精機株式会社
In the figure, 1-・5iOR element 2”・Aluminum alloy patent applicant Toyota Motor Corporation Aisin Light Metal Co., Ltd. Aisin Seiki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)珪素(Si)3〜12重量%、銅(Cu)0.5
〜20重量%、マグネシウム(Mg)3〜7重量%及び
、残部アルミニウム(Al)からなる組成のアルミニウ
ム合金がマトリックスであり、その中に炭化珪素(Si
C)、アルミナ(Al_2O_3)、シリカ(SiO_
2)ムライト(Al_2SiO_3)の少なくとも一種
のセラミックス粉末が体積比で5〜20%分散している
ことを特徴とするアルミニウム合金複合材料。
(1) Silicon (Si) 3-12% by weight, copper (Cu) 0.5
The matrix is an aluminum alloy having a composition of ~20% by weight, 3~7% by weight of magnesium (Mg), and the balance aluminum (Al), and silicon carbide (Si) is contained in the matrix.
C), alumina (Al_2O_3), silica (SiO_
2) An aluminum alloy composite material characterized in that at least one type of ceramic powder of mullite (Al_2SiO_3) is dispersed in a volume ratio of 5 to 20%.
JP1562888A 1988-01-26 1988-01-26 Aluminum alloy composite material Pending JPH01191759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1562888A JPH01191759A (en) 1988-01-26 1988-01-26 Aluminum alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1562888A JPH01191759A (en) 1988-01-26 1988-01-26 Aluminum alloy composite material

Publications (1)

Publication Number Publication Date
JPH01191759A true JPH01191759A (en) 1989-08-01

Family

ID=11893979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1562888A Pending JPH01191759A (en) 1988-01-26 1988-01-26 Aluminum alloy composite material

Country Status (1)

Country Link
JP (1) JPH01191759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892075A1 (en) * 1997-07-17 1999-01-20 Yamaha Hatsudoki Kabushiki Kaisha Aluminium alloy for a piston and method of manufacturing a piston
KR100256758B1 (en) * 1995-10-12 2000-05-15 정몽규 Aluminum alloy for automobile brake system
CN105177367A (en) * 2015-08-31 2015-12-23 苏州莱特复合材料有限公司 Antibacterial and anti-corrosion copper-based composite material and preparation method thereof
CN106566964A (en) * 2016-11-16 2017-04-19 南京工程学院 High strength and toughness bimodal distribution aluminum alloy composite material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256758B1 (en) * 1995-10-12 2000-05-15 정몽규 Aluminum alloy for automobile brake system
EP0892075A1 (en) * 1997-07-17 1999-01-20 Yamaha Hatsudoki Kabushiki Kaisha Aluminium alloy for a piston and method of manufacturing a piston
CN105177367A (en) * 2015-08-31 2015-12-23 苏州莱特复合材料有限公司 Antibacterial and anti-corrosion copper-based composite material and preparation method thereof
CN106566964A (en) * 2016-11-16 2017-04-19 南京工程学院 High strength and toughness bimodal distribution aluminum alloy composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6918970B2 (en) High strength aluminum alloy for high temperature applications
US6592687B1 (en) Aluminum alloy and article cast therefrom
US6383656B1 (en) Perform for metal matrix composite material and cylinder block made of the same
Lee Cast aluminum alloy for high temperature applications
US10851020B2 (en) Machinable metal matrix composite and method for making the same
JPH01191759A (en) Aluminum alloy composite material
Kishore Al 7075 Reinforced with WC metal matrix composites
JP3128041B2 (en) Cylinder block and its manufacturing method
JPH06212328A (en) Aluminum matrix composite material having high heat resistance, high rigidity, and low thermal expansion
Asano et al. Microstructure and strength of a squeeze cast aluminium piston alloy composite reinforced with alumina short fibre using Al2O3 binder
JP2011190719A (en) Wear resistant ring using particle reinforced aluminum alloy composite material, aluminum alloy piston with the same, and method of manufacturing the same
Praveen et al. Investigations on Dry Sliding Wear Behaviour of LM13-SiC-Gr Hybrid Composites by Response Surface Methodology
RU2785672C1 (en) Composition of mixed cutting ceramics and method for manufacture thereof
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JP2971380B2 (en) Method for producing aluminum alloy having high wear resistance
US11001914B2 (en) Machinable metal matrix composite and method for making the same
JPH0497952A (en) Silicon carbide-based composite body
Nallabelli et al. Evaluation of Mechanical Properties of Al 7075 reinforced with WC Metal Matrix Composites
JPH0873972A (en) Composite material excellent in strength, wear resistance, and thermal conductivity and its production
JP5176192B2 (en) Ceramic fiber used for fiber-reinforced metal composite material with fiber diameter of 30 μm or less and carbon component on fiber surface removed, and method for producing the same
JPS6342343A (en) High-strength aluminum alloy for member for machine structural use
JPH0790420A (en) Fiber reinforced al alloy
Aravind et al. Comparative Analysis of an SI Engine Block Using Al Alloy and Metal Matrix Composite
JPH0570879A (en) Connecting rod for internal combustion engine
JPH02102306A (en) Spring retainer