JPH0497952A - Silicon carbide-based composite body - Google Patents

Silicon carbide-based composite body

Info

Publication number
JPH0497952A
JPH0497952A JP2211250A JP21125090A JPH0497952A JP H0497952 A JPH0497952 A JP H0497952A JP 2211250 A JP2211250 A JP 2211250A JP 21125090 A JP21125090 A JP 21125090A JP H0497952 A JPH0497952 A JP H0497952A
Authority
JP
Japan
Prior art keywords
sic
composite body
silicon carbide
dispersed
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2211250A
Other languages
Japanese (ja)
Inventor
Akira Kani
明 可児
Shoji Katayama
片山 彰治
Haruhiro Osada
晴裕 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2211250A priority Critical patent/JPH0497952A/en
Publication of JPH0497952A publication Critical patent/JPH0497952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To form a silicon carbide-based composite body sintered under a reaction, having superior toughness and capable of inhibiting cracking by dispersing a specified metal compd. in an SiC-Si matrix composite body. CONSTITUTION:One or more among CrB2, NbB2, ZrB2, TiC, HfB2 and HfC are dispersed in an SiC-Si matrix composite body preferably by 5-30vol.% of the amt. of the SiC in the composite body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭化珪素系複合体に関し、更に詳しくは靭性
に優れた反応結合炭化珪素系複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon carbide-based composite, and more particularly to a reaction-bonded silicon carbide-based composite with excellent toughness.

〔従来の技術] メカニカルシール用摺動材料として、炭化珪素は、高い
硬度、優れた耐食性、高い熱伝導性等の特性を有するた
め、従来の金属材料、超硬合金、アルミナにとって替わ
り使用範囲が拡大しつつある。
[Prior Art] As a sliding material for mechanical seals, silicon carbide has characteristics such as high hardness, excellent corrosion resistance, and high thermal conductivity, so it has been used in a wide range of applications instead of conventional metal materials, cemented carbide, and alumina. It is expanding.

反応結合(焼結)したSiC製品は、熔@Siの存在下
で、炭素粉末とSiC粉末との凝集性γU合物を反応焼
成することによって作製される。
Reactively bonded (sintered) SiC products are made by reactively firing a cohesive γU compound of carbon powder and SiC powder in the presence of molten @Si.

混合物中の炭素は結合性SiCに転換し、はぼ連続した
SiCマトリックスが、フリーSi相中に形成される。
The carbon in the mixture is converted to bonded SiC and a nearly continuous SiC matrix is formed in the free Si phase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにして作製された従来のSiC製品は脆いため
に一度りラフクが発生するとクランクが簡単に成長して
割れやすいという問題点があった。
Conventional SiC products manufactured in this manner are brittle, and therefore once a crack occurs, the crank easily grows and breaks easily.

本発明の目的は、靭性に優れ、クラックの発生を抑制で
きる反応焼結した炭化珪素系複合体を提(共することに
ある。
An object of the present invention is to provide a reaction-sintered silicon carbide composite that has excellent toughness and can suppress the occurrence of cracks.

本発明の複合体は、(1) S i C1(2)フリー
St。
The complex of the present invention includes (1) S i C1 (2) Free St.

(3)CrB、 、NbBg 、ZrBz 、TiC。(3) CrB, NbBg, ZrBz, TiC.

Hr、BtおよびHfCからなる群から選ばれる少なく
とも1種以上(以下、化合物という)との3相からなる
複合体である。
It is a three-phase complex with at least one member selected from the group consisting of Hr, Bt, and HfC (hereinafter referred to as a compound).

フリーStは焼結時の反応で消費されなかったSiで、
材料の封孔化の役割を果たす。
Free St is Si that was not consumed in the reaction during sintering.
It plays the role of sealing the material.

(3)の化合物は、材料中に分散し、5iC−3tマト
リツクスからなる母材とは異なる性質を持った相を形成
する。
The compound (3) is dispersed in the material and forms a phase having properties different from those of the base material consisting of a 5iC-3t matrix.

5iCO熱膨張係数(XIO−/’C)は、4.5であ
るのに対し、(3)の各化合物の熱膨張係数(XIO−
’/’C)は、CrB、:10.5、NbBg  =8
.0、ZrBz:5.9、TiC:8.0、HfB、:
6.3、HfC:6゜8の大きな値を持つ。
The thermal expansion coefficient (XIO-/'C) of 5iCO is 4.5, whereas the thermal expansion coefficient (XIO-/'C) of each compound in (3)
'/'C) is CrB, :10.5, NbBg =8
.. 0, ZrBz: 5.9, TiC: 8.0, HfB,:
6.3, HfC: has a large value of 6°8.

このため焼結終了後の冷却時において(3)の各化合物
周囲のSiCに圧縮方向の残留応力が発生する。
Therefore, during cooling after completion of sintering, residual stress in the compressive direction is generated in SiC around each compound (3).

このため、クランクが発生してもクラックは化合物のま
わりで屈曲分岐の作用を受けるとともに応力集中の緩和
も図られ、その結果としてクラックの進展が阻止され破
壊靭性値が大きくなる。
Therefore, even if a crank occurs, the crack is subjected to the action of bending and branching around the compound, and stress concentration is also alleviated, and as a result, the propagation of the crack is inhibited and the fracture toughness value increases.

しかしながら、Siの熱膨張係数は8.0と大きいため
に化合物がSi中に分散されていると、Siに引っ張り
応力が発生し靭性値を低下させ′る。
However, since the coefficient of thermal expansion of Si is as large as 8.0, when a compound is dispersed in Si, tensile stress is generated in the Si, reducing the toughness value.

このため複合体中のSi相の体積を多くすることはでき
ず、15体積%以下であれば悪影響はない、Siを除く
SiC−Siマトリツクス中に分散される化合物の量は
5〜30体積%、特に10〜20体積%が望ましい。
Therefore, it is not possible to increase the volume of the Si phase in the composite, and there is no adverse effect if it is less than 15% by volume.The amount of compounds dispersed in the SiC-Si matrix excluding Si is 5 to 30% by volume. , particularly preferably 10 to 20% by volume.

Siを除くSiC−Stマトリックス中に分散される化
合物の量が5体積%よりも少ないと、破壊靭性値の向上
への寄与が少なく、また30体積%よりも多いと、Si
Cが持つ耐摩耗性などの特性が低下するとともに、Si
相への化合物の分散が増大し靭性の低下を招くこともあ
る。
When the amount of compounds dispersed in the SiC-St matrix excluding Si is less than 5% by volume, the contribution to improving the fracture toughness value is small, and when it is more than 30% by volume, Si
At the same time, the wear resistance and other properties of C deteriorate, and Si
The dispersion of the compound into the phase may increase, leading to a decrease in toughness.

本発明において、(3)の化合物は5iC−Siマトリ
ツクス中に、(3)の化合物をそれぞれ単独に分散して
もよく、また、(3)の化合物を2種以上を同時に分散
してもよい。
In the present invention, the compounds (3) may be dispersed individually in the 5iC-Si matrix, or two or more of the compounds (3) may be simultaneously dispersed. .

(3)の化合物を2種以上分散させる場合には、各化合
物の合計量が5〜30体積%であればよい。
When two or more types of compounds (3) are dispersed, the total amount of each compound may be 5 to 30% by volume.

本発明の炭化珪素系複合体を製造するには、例えば、平
均粒径5〜20μmのS i C*j)末と平均粒径が
3〜7μmの(3)の各化合物を、Siを除くSiC−
Siマトリツクス中に5〜30体積%、特に10〜20
体積%の割合で分散し、これにフェノール樹脂、フラン
樹脂、ウレタン樹脂等の樹脂を5〜15重四%の割合で
配合し、また、ステアリン酸、パラフィン、ワックス等
の滑剤を1〜3重量%の割合で添加して湿式混合する。
In order to produce the silicon carbide-based composite of the present invention, for example, Si C*j) powder with an average particle size of 5 to 20 μm and each compound (3) with an average particle size of 3 to 7 μm are mixed, excluding Si. SiC-
5-30% by volume in the Si matrix, especially 10-20%
% by volume, blended with resin such as phenol resin, furan resin, urethane resin at a ratio of 5 to 15% by weight, and lubricant such as stearic acid, paraffin, wax, etc. from 1 to 3% by weight. % and wet mix.

次いで乾燥後、所定の圧力で加圧成形し、真空または不
活性ガス雰囲気中、1400〜1500°Cの温度で加
熱して前記樹脂を炭化する。
After drying, the resin is press-molded at a predetermined pressure and heated at a temperature of 1,400 to 1,500°C in a vacuum or an inert gas atmosphere to carbonize the resin.

そして、十分なStと接触可能な形態で再度1450〜
1550°Cの温度で焼成する。
Then, again from 1450 to 1450 in a form that allows contact with sufficient St.
Calcinate at a temperature of 1550°C.

実施例1.2 平均粒径7μmのSiC粉末と、平均粒径1μmのCr
・B!粉末を第1表に示した割合に配合し、これに対し
フェノール樹脂を10重量%、ステアリン酸を1重置%
加えて湿式混合した。
Example 1.2 SiC powder with an average particle size of 7 μm and Cr with an average particle size of 1 μm
・B! Blend the powders in the proportions shown in Table 1, and add 10% by weight of phenolic resin and 1% by weight of stearic acid.
In addition, wet mixing was performed.

乾燥後、金型に移して1.5ton/cdの圧力で加圧
成形した。非酸化性雰囲気で1,500°Cに加熱し樹
脂を炭化させた。ついで十分なSiと接触できる形態で
、再び1,500°Cで焼成した。焼結した材料中のS
iはlO〜12体積%であった。
After drying, it was transferred to a mold and pressure-molded at a pressure of 1.5 ton/cd. The resin was carbonized by heating to 1,500°C in a non-oxidizing atmosphere. Then, it was fired again at 1,500°C in a form that allowed sufficient contact with Si. S in sintered material
i was 10 to 12% by volume.

実施例3.4 平均粒径7μmのSiC粉末と、平均粒径1μmのN 
b B を粉末を第2表に示した割合に配合し、これに
対しフェノール樹脂を10重量%、ステアリン酸を1重
量%加えて湿式混合した。
Example 3.4 SiC powder with an average particle size of 7 μm and N with an average particle size of 1 μm
bB powder was blended in the proportions shown in Table 2, and 10% by weight of phenol resin and 1% by weight of stearic acid were added and wet mixed.

乾燥後、金型に移して1.5fon/cdの圧力で加圧
成形した。非酸化性雰囲気で1.500℃に加熱し樹脂
を炭化させた。
After drying, it was transferred to a mold and pressure molded at a pressure of 1.5 fon/cd. The resin was carbonized by heating to 1.500° C. in a non-oxidizing atmosphere.

ついで十分なSiと接触できる形態で、再び1.500
°Cで焼成した。焼結した材料中のSiは10〜12体
積%であった。
Then, in a form that can contact with sufficient Si, the temperature is increased to 1.500 again.
Calcined at °C. Si in the sintered material was 10-12% by volume.

比較例 実施例1.2において、Cr B tを除いた他は同様
な条件で材料を作成した。
Comparative Example A material was prepared under the same conditions as in Example 1.2 except that Cr B t was removed.

(以下、余白) 1表および第2表から明らかなように、比較例と比べて
、実施例1〜実施例4の複合体は、曲げ強度が向上して
おり、破壊靭性値は大幅に向上している。
(Hereinafter, blank space) As is clear from Tables 1 and 2, the composites of Examples 1 to 4 have improved bending strength and significantly improved fracture toughness values compared to the comparative example. are doing.

〔発明の効果] 本発明の材料は破壊靭性値が大きい利点を有しており、
クランクの発生を防止でき、信顛性の高い慴動材として
用いることができる。
[Effect of the invention] The material of the present invention has the advantage of a large fracture toughness value,
It can prevent the occurrence of cranks and can be used as a highly reliable moving material.

特許出陣n人     イーグル工業株式会社\Patent field n people Eagle Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)SiC−Siマトリックス複合体において、該複
合体中にCrB_2、NbB_2、ZrB_2、TiC
、HfB_2およびHfCからなる群から選ばれる少な
くとも1種以上が分散されていることを特徴とする炭化
珪素系複合体。
(1) In a SiC-Si matrix composite, CrB_2, NbB_2, ZrB_2, TiC
, HfB_2 and HfC are dispersed therein.
(2)前記CrB_2、NbB_2、ZrB_2、Ti
C、HfB_2およびHfCからなる群から選ばれる少
なくとも1種以上が、Siを除くSiC−Siマトリッ
クス複合体中に5〜30体積%の割合で分散されている
ことを特徴とする請求項1記載の炭化珪素系複合体。
(2) Said CrB_2, NbB_2, ZrB_2, Ti
2. The composition according to claim 1, wherein at least one selected from the group consisting of C, HfB_2 and HfC is dispersed in the SiC-Si matrix composite excluding Si at a ratio of 5 to 30% by volume. Silicon carbide composite.
JP2211250A 1990-08-09 1990-08-09 Silicon carbide-based composite body Pending JPH0497952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2211250A JPH0497952A (en) 1990-08-09 1990-08-09 Silicon carbide-based composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2211250A JPH0497952A (en) 1990-08-09 1990-08-09 Silicon carbide-based composite body

Publications (1)

Publication Number Publication Date
JPH0497952A true JPH0497952A (en) 1992-03-30

Family

ID=16602794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2211250A Pending JPH0497952A (en) 1990-08-09 1990-08-09 Silicon carbide-based composite body

Country Status (1)

Country Link
JP (1) JPH0497952A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523763A (en) * 2016-03-03 2016-04-27 刘佩佩 Silicon carbide-chromium boride composite ceramic material and preparation method thereof
CN107879745A (en) * 2017-12-08 2018-04-06 东华大学 A kind of ceramic material containing eutectic structure and preparation method thereof
JP2019064226A (en) * 2017-10-04 2019-04-25 キヤノン株式会社 Molding method and powder material for molding
JP2020105067A (en) * 2018-12-25 2020-07-09 キヤノン株式会社 Silicon carbide-containing article and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523763A (en) * 2016-03-03 2016-04-27 刘佩佩 Silicon carbide-chromium boride composite ceramic material and preparation method thereof
JP2019064226A (en) * 2017-10-04 2019-04-25 キヤノン株式会社 Molding method and powder material for molding
CN107879745A (en) * 2017-12-08 2018-04-06 东华大学 A kind of ceramic material containing eutectic structure and preparation method thereof
CN107879745B (en) * 2017-12-08 2020-08-11 东华大学 Ceramic material containing eutectic structure and preparation method thereof
JP2020105067A (en) * 2018-12-25 2020-07-09 キヤノン株式会社 Silicon carbide-containing article and method for producing the same

Similar Documents

Publication Publication Date Title
CN105384450B (en) Silicon-aluminum sol strengthens the production method of silicon carbide kiln furniture
KR0127871B1 (en) Silicon nitride-based siuters
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
EP0170889A2 (en) ZrB2 Composite sintered material
WO2019077318A1 (en) Refractory material
JPH0497952A (en) Silicon carbide-based composite body
EP2792656A1 (en) Method for producing silicon carbide whisker-reinforced refractory composition
JPH10502613A (en) SiC-molded member
JPH05105506A (en) Slide valve plate brick
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
WO1990013525A1 (en) PROCESS FOR PRODUCING β-SIALON SINTER
JPH03141161A (en) Composite sintered compact
JP6744555B2 (en) Sliding gate type plate refractory
JPS6357389B2 (en)
JPH0372031B2 (en)
JPH0497949A (en) Toughened reaction-coupling silicon carbide-base composite body
JPS624356B2 (en)
JPH10158067A (en) Sialon-containing alumina-chrome composite refractory and its production
JPH02258675A (en) Carbon material for molten metal
JP2532210B2 (en) Radiant tube type heating device
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPH05238829A (en) Sintered silicone nitride ceramic
JPS5845170A (en) High strength titanium nitride boride metal composite ceramics