JPH0497952A - Silicon carbide-based composite body - Google Patents
Silicon carbide-based composite bodyInfo
- Publication number
- JPH0497952A JPH0497952A JP2211250A JP21125090A JPH0497952A JP H0497952 A JPH0497952 A JP H0497952A JP 2211250 A JP2211250 A JP 2211250A JP 21125090 A JP21125090 A JP 21125090A JP H0497952 A JPH0497952 A JP H0497952A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- composite body
- silicon carbide
- dispersed
- based composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 17
- 239000002131 composite material Substances 0.000 title claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910019918 CrB2 Inorganic materials 0.000 abstract 1
- 229910003862 HfB2 Inorganic materials 0.000 abstract 1
- 229910003864 HfC Inorganic materials 0.000 abstract 1
- 229910019742 NbB2 Inorganic materials 0.000 abstract 1
- 229910034327 TiC Inorganic materials 0.000 abstract 1
- 229910007948 ZrB2 Inorganic materials 0.000 abstract 1
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 abstract 1
- 238000005336 cracking Methods 0.000 abstract 1
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 15
- 239000000463 material Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、炭化珪素系複合体に関し、更に詳しくは靭性
に優れた反応結合炭化珪素系複合体に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon carbide-based composite, and more particularly to a reaction-bonded silicon carbide-based composite with excellent toughness.
〔従来の技術]
メカニカルシール用摺動材料として、炭化珪素は、高い
硬度、優れた耐食性、高い熱伝導性等の特性を有するた
め、従来の金属材料、超硬合金、アルミナにとって替わ
り使用範囲が拡大しつつある。[Prior Art] As a sliding material for mechanical seals, silicon carbide has characteristics such as high hardness, excellent corrosion resistance, and high thermal conductivity, so it has been used in a wide range of applications instead of conventional metal materials, cemented carbide, and alumina. It is expanding.
反応結合(焼結)したSiC製品は、熔@Siの存在下
で、炭素粉末とSiC粉末との凝集性γU合物を反応焼
成することによって作製される。Reactively bonded (sintered) SiC products are made by reactively firing a cohesive γU compound of carbon powder and SiC powder in the presence of molten @Si.
混合物中の炭素は結合性SiCに転換し、はぼ連続した
SiCマトリックスが、フリーSi相中に形成される。The carbon in the mixture is converted to bonded SiC and a nearly continuous SiC matrix is formed in the free Si phase.
このようにして作製された従来のSiC製品は脆いため
に一度りラフクが発生するとクランクが簡単に成長して
割れやすいという問題点があった。Conventional SiC products manufactured in this manner are brittle, and therefore once a crack occurs, the crank easily grows and breaks easily.
本発明の目的は、靭性に優れ、クラックの発生を抑制で
きる反応焼結した炭化珪素系複合体を提(共することに
ある。An object of the present invention is to provide a reaction-sintered silicon carbide composite that has excellent toughness and can suppress the occurrence of cracks.
本発明の複合体は、(1) S i C1(2)フリー
St。The complex of the present invention includes (1) S i C1 (2) Free St.
(3)CrB、 、NbBg 、ZrBz 、TiC。(3) CrB, NbBg, ZrBz, TiC.
Hr、BtおよびHfCからなる群から選ばれる少なく
とも1種以上(以下、化合物という)との3相からなる
複合体である。It is a three-phase complex with at least one member selected from the group consisting of Hr, Bt, and HfC (hereinafter referred to as a compound).
フリーStは焼結時の反応で消費されなかったSiで、
材料の封孔化の役割を果たす。Free St is Si that was not consumed in the reaction during sintering.
It plays the role of sealing the material.
(3)の化合物は、材料中に分散し、5iC−3tマト
リツクスからなる母材とは異なる性質を持った相を形成
する。The compound (3) is dispersed in the material and forms a phase having properties different from those of the base material consisting of a 5iC-3t matrix.
5iCO熱膨張係数(XIO−/’C)は、4.5であ
るのに対し、(3)の各化合物の熱膨張係数(XIO−
’/’C)は、CrB、:10.5、NbBg =8
.0、ZrBz:5.9、TiC:8.0、HfB、:
6.3、HfC:6゜8の大きな値を持つ。The thermal expansion coefficient (XIO-/'C) of 5iCO is 4.5, whereas the thermal expansion coefficient (XIO-/'C) of each compound in (3)
'/'C) is CrB, :10.5, NbBg =8
.. 0, ZrBz: 5.9, TiC: 8.0, HfB,:
6.3, HfC: has a large value of 6°8.
このため焼結終了後の冷却時において(3)の各化合物
周囲のSiCに圧縮方向の残留応力が発生する。Therefore, during cooling after completion of sintering, residual stress in the compressive direction is generated in SiC around each compound (3).
このため、クランクが発生してもクラックは化合物のま
わりで屈曲分岐の作用を受けるとともに応力集中の緩和
も図られ、その結果としてクラックの進展が阻止され破
壊靭性値が大きくなる。Therefore, even if a crank occurs, the crack is subjected to the action of bending and branching around the compound, and stress concentration is also alleviated, and as a result, the propagation of the crack is inhibited and the fracture toughness value increases.
しかしながら、Siの熱膨張係数は8.0と大きいため
に化合物がSi中に分散されていると、Siに引っ張り
応力が発生し靭性値を低下させ′る。However, since the coefficient of thermal expansion of Si is as large as 8.0, when a compound is dispersed in Si, tensile stress is generated in the Si, reducing the toughness value.
このため複合体中のSi相の体積を多くすることはでき
ず、15体積%以下であれば悪影響はない、Siを除く
SiC−Siマトリツクス中に分散される化合物の量は
5〜30体積%、特に10〜20体積%が望ましい。Therefore, it is not possible to increase the volume of the Si phase in the composite, and there is no adverse effect if it is less than 15% by volume.The amount of compounds dispersed in the SiC-Si matrix excluding Si is 5 to 30% by volume. , particularly preferably 10 to 20% by volume.
Siを除くSiC−Stマトリックス中に分散される化
合物の量が5体積%よりも少ないと、破壊靭性値の向上
への寄与が少なく、また30体積%よりも多いと、Si
Cが持つ耐摩耗性などの特性が低下するとともに、Si
相への化合物の分散が増大し靭性の低下を招くこともあ
る。When the amount of compounds dispersed in the SiC-St matrix excluding Si is less than 5% by volume, the contribution to improving the fracture toughness value is small, and when it is more than 30% by volume, Si
At the same time, the wear resistance and other properties of C deteriorate, and Si
The dispersion of the compound into the phase may increase, leading to a decrease in toughness.
本発明において、(3)の化合物は5iC−Siマトリ
ツクス中に、(3)の化合物をそれぞれ単独に分散して
もよく、また、(3)の化合物を2種以上を同時に分散
してもよい。In the present invention, the compounds (3) may be dispersed individually in the 5iC-Si matrix, or two or more of the compounds (3) may be simultaneously dispersed. .
(3)の化合物を2種以上分散させる場合には、各化合
物の合計量が5〜30体積%であればよい。When two or more types of compounds (3) are dispersed, the total amount of each compound may be 5 to 30% by volume.
本発明の炭化珪素系複合体を製造するには、例えば、平
均粒径5〜20μmのS i C*j)末と平均粒径が
3〜7μmの(3)の各化合物を、Siを除くSiC−
Siマトリツクス中に5〜30体積%、特に10〜20
体積%の割合で分散し、これにフェノール樹脂、フラン
樹脂、ウレタン樹脂等の樹脂を5〜15重四%の割合で
配合し、また、ステアリン酸、パラフィン、ワックス等
の滑剤を1〜3重量%の割合で添加して湿式混合する。In order to produce the silicon carbide-based composite of the present invention, for example, Si C*j) powder with an average particle size of 5 to 20 μm and each compound (3) with an average particle size of 3 to 7 μm are mixed, excluding Si. SiC-
5-30% by volume in the Si matrix, especially 10-20%
% by volume, blended with resin such as phenol resin, furan resin, urethane resin at a ratio of 5 to 15% by weight, and lubricant such as stearic acid, paraffin, wax, etc. from 1 to 3% by weight. % and wet mix.
次いで乾燥後、所定の圧力で加圧成形し、真空または不
活性ガス雰囲気中、1400〜1500°Cの温度で加
熱して前記樹脂を炭化する。After drying, the resin is press-molded at a predetermined pressure and heated at a temperature of 1,400 to 1,500°C in a vacuum or an inert gas atmosphere to carbonize the resin.
そして、十分なStと接触可能な形態で再度1450〜
1550°Cの温度で焼成する。Then, again from 1450 to 1450 in a form that allows contact with sufficient St.
Calcinate at a temperature of 1550°C.
実施例1.2
平均粒径7μmのSiC粉末と、平均粒径1μmのCr
・B!粉末を第1表に示した割合に配合し、これに対し
フェノール樹脂を10重量%、ステアリン酸を1重置%
加えて湿式混合した。Example 1.2 SiC powder with an average particle size of 7 μm and Cr with an average particle size of 1 μm
・B! Blend the powders in the proportions shown in Table 1, and add 10% by weight of phenolic resin and 1% by weight of stearic acid.
In addition, wet mixing was performed.
乾燥後、金型に移して1.5ton/cdの圧力で加圧
成形した。非酸化性雰囲気で1,500°Cに加熱し樹
脂を炭化させた。ついで十分なSiと接触できる形態で
、再び1,500°Cで焼成した。焼結した材料中のS
iはlO〜12体積%であった。After drying, it was transferred to a mold and pressure-molded at a pressure of 1.5 ton/cd. The resin was carbonized by heating to 1,500°C in a non-oxidizing atmosphere. Then, it was fired again at 1,500°C in a form that allowed sufficient contact with Si. S in sintered material
i was 10 to 12% by volume.
実施例3.4
平均粒径7μmのSiC粉末と、平均粒径1μmのN
b B を粉末を第2表に示した割合に配合し、これに
対しフェノール樹脂を10重量%、ステアリン酸を1重
量%加えて湿式混合した。Example 3.4 SiC powder with an average particle size of 7 μm and N with an average particle size of 1 μm
bB powder was blended in the proportions shown in Table 2, and 10% by weight of phenol resin and 1% by weight of stearic acid were added and wet mixed.
乾燥後、金型に移して1.5fon/cdの圧力で加圧
成形した。非酸化性雰囲気で1.500℃に加熱し樹脂
を炭化させた。After drying, it was transferred to a mold and pressure molded at a pressure of 1.5 fon/cd. The resin was carbonized by heating to 1.500° C. in a non-oxidizing atmosphere.
ついで十分なSiと接触できる形態で、再び1.500
°Cで焼成した。焼結した材料中のSiは10〜12体
積%であった。Then, in a form that can contact with sufficient Si, the temperature is increased to 1.500 again.
Calcined at °C. Si in the sintered material was 10-12% by volume.
比較例
実施例1.2において、Cr B tを除いた他は同様
な条件で材料を作成した。Comparative Example A material was prepared under the same conditions as in Example 1.2 except that Cr B t was removed.
(以下、余白)
1表および第2表から明らかなように、比較例と比べて
、実施例1〜実施例4の複合体は、曲げ強度が向上して
おり、破壊靭性値は大幅に向上している。(Hereinafter, blank space) As is clear from Tables 1 and 2, the composites of Examples 1 to 4 have improved bending strength and significantly improved fracture toughness values compared to the comparative example. are doing.
〔発明の効果]
本発明の材料は破壊靭性値が大きい利点を有しており、
クランクの発生を防止でき、信顛性の高い慴動材として
用いることができる。[Effect of the invention] The material of the present invention has the advantage of a large fracture toughness value,
It can prevent the occurrence of cranks and can be used as a highly reliable moving material.
特許出陣n人 イーグル工業株式会社\Patent field n people Eagle Industry Co., Ltd.
Claims (2)
合体中にCrB_2、NbB_2、ZrB_2、TiC
、HfB_2およびHfCからなる群から選ばれる少な
くとも1種以上が分散されていることを特徴とする炭化
珪素系複合体。(1) In a SiC-Si matrix composite, CrB_2, NbB_2, ZrB_2, TiC
, HfB_2 and HfC are dispersed therein.
C、HfB_2およびHfCからなる群から選ばれる少
なくとも1種以上が、Siを除くSiC−Siマトリッ
クス複合体中に5〜30体積%の割合で分散されている
ことを特徴とする請求項1記載の炭化珪素系複合体。(2) Said CrB_2, NbB_2, ZrB_2, Ti
2. The composition according to claim 1, wherein at least one selected from the group consisting of C, HfB_2 and HfC is dispersed in the SiC-Si matrix composite excluding Si at a ratio of 5 to 30% by volume. Silicon carbide composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2211250A JPH0497952A (en) | 1990-08-09 | 1990-08-09 | Silicon carbide-based composite body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2211250A JPH0497952A (en) | 1990-08-09 | 1990-08-09 | Silicon carbide-based composite body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0497952A true JPH0497952A (en) | 1992-03-30 |
Family
ID=16602794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2211250A Pending JPH0497952A (en) | 1990-08-09 | 1990-08-09 | Silicon carbide-based composite body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0497952A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105523763A (en) * | 2016-03-03 | 2016-04-27 | 刘佩佩 | Silicon carbide-chromium boride composite ceramic material and preparation method thereof |
CN107879745A (en) * | 2017-12-08 | 2018-04-06 | 东华大学 | A kind of ceramic material containing eutectic structure and preparation method thereof |
JP2019064226A (en) * | 2017-10-04 | 2019-04-25 | キヤノン株式会社 | Molding method and powder material for molding |
JP2020105067A (en) * | 2018-12-25 | 2020-07-09 | キヤノン株式会社 | Silicon carbide-containing article and method for producing the same |
-
1990
- 1990-08-09 JP JP2211250A patent/JPH0497952A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105523763A (en) * | 2016-03-03 | 2016-04-27 | 刘佩佩 | Silicon carbide-chromium boride composite ceramic material and preparation method thereof |
JP2019064226A (en) * | 2017-10-04 | 2019-04-25 | キヤノン株式会社 | Molding method and powder material for molding |
CN107879745A (en) * | 2017-12-08 | 2018-04-06 | 东华大学 | A kind of ceramic material containing eutectic structure and preparation method thereof |
CN107879745B (en) * | 2017-12-08 | 2020-08-11 | 东华大学 | Ceramic material containing eutectic structure and preparation method thereof |
JP2020105067A (en) * | 2018-12-25 | 2020-07-09 | キヤノン株式会社 | Silicon carbide-containing article and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105384450B (en) | Silicon-aluminum sol strengthens the production method of silicon carbide kiln furniture | |
KR0127871B1 (en) | Silicon nitride-based siuters | |
JPS5918349B2 (en) | Titanium carbonitride-metal boride ceramic materials | |
EP0170889A2 (en) | ZrB2 Composite sintered material | |
WO2019077318A1 (en) | Refractory material | |
JPH0497952A (en) | Silicon carbide-based composite body | |
EP2792656A1 (en) | Method for producing silicon carbide whisker-reinforced refractory composition | |
JPH10502613A (en) | SiC-molded member | |
JPH05105506A (en) | Slide valve plate brick | |
JPH1149568A (en) | Graphite-silicon carbide crucible for nonferrous molten metal and its production | |
JPH11217258A (en) | Sintered compact of alumina-base ceramic and its production | |
JP2519076B2 (en) | Method for manufacturing silicon carbide whisker-reinforced ceramics | |
WO1990013525A1 (en) | PROCESS FOR PRODUCING β-SIALON SINTER | |
JPH03141161A (en) | Composite sintered compact | |
JP6744555B2 (en) | Sliding gate type plate refractory | |
JPS6357389B2 (en) | ||
JPH0372031B2 (en) | ||
JPH0497949A (en) | Toughened reaction-coupling silicon carbide-base composite body | |
JPS624356B2 (en) | ||
JPH10158067A (en) | Sialon-containing alumina-chrome composite refractory and its production | |
JPH02258675A (en) | Carbon material for molten metal | |
JP2532210B2 (en) | Radiant tube type heating device | |
JPH02221160A (en) | Production of high-density silicon nitride sintered body | |
JPH05238829A (en) | Sintered silicone nitride ceramic | |
JPS5845170A (en) | High strength titanium nitride boride metal composite ceramics |