JPH01191710A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH01191710A
JPH01191710A JP1575288A JP1575288A JPH01191710A JP H01191710 A JPH01191710 A JP H01191710A JP 1575288 A JP1575288 A JP 1575288A JP 1575288 A JP1575288 A JP 1575288A JP H01191710 A JPH01191710 A JP H01191710A
Authority
JP
Japan
Prior art keywords
coke
blast furnace
distribution
thermal history
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1575288A
Other languages
Japanese (ja)
Inventor
Tomonori Kato
友則 加藤
Sumiyuki Kishimoto
岸本 純幸
Hirohisa Hotta
堀田 裕久
Kunihiko Ishii
邦彦 石井
Yoshio Suzuki
喜夫 鈴木
Shozo Itagaki
省三 板垣
Nariyasu Mitani
三谷 成康
Atsushi Chino
淳 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1575288A priority Critical patent/JPH01191710A/en
Publication of JPH01191710A publication Critical patent/JPH01191710A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To reduce fuel ratio and to continue the stable operation of a blast furnace by varying the drum strength of coke to be charged in accordance with information on the distribution of the heat history of granular coke collected from the level of a tuyere. CONSTITUTION:Granular coke is collected from a raceway at the end of a blast tuyere of a blast furnace and the distribution of the heat history of each granule is examined by laser Raman spectroscopic analysis or other method. The percentage of granules at >=1,200 deg.C in the distribution of the heat history is calculated, the drum strength of coke to be charged is selected from the relation between the rate of powder and pressure drop so as to make the coke fit for operation and the blast furnace is operated. Pressure drop in the lower part of the furnace is suppressed and stable operation can be continued.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は高炉の操業方法に関するものである。[Detailed description of the invention] "Purpose of invention" (Industrial application field) This invention relates to a method of operating a blast furnace.

(従来の技術) 従来、高炉内におけるコークスを採取してコークスの熱
履歴を調らべる方法としては、採取した試料の粒度調整
を行い、次いで弗酸もしくは塩酸により一週間程度脱灰
処理した後、X線回折により約30分程の時間を要し結
晶子LC(002)、La(110)等を測定する方法
があった。然し乍ら一点のコークスの熱履歴を知るのに
、前述のように準備から測定まで長時間を要するので、
試料群としてコークス粒子の熱履歴を分布として把握し
ようとする概念は存在しなかった。そのため羽口先レー
スウェイ内のコークスの熱履歴の分布を炉内解析の手段
として利用する試みは全く存在しなかった。
(Conventional technology) Conventionally, the method of collecting coke in a blast furnace and investigating the thermal history of the coke was to adjust the particle size of the sample, and then decalcify it with hydrofluoric acid or hydrochloric acid for about a week. Thereafter, there was a method of measuring crystallites LC (002), La (110), etc. by X-ray diffraction, which took about 30 minutes. However, as mentioned above, it takes a long time from preparation to measurement to know the thermal history of a single point of coke.
There was no concept of understanding the thermal history of coke particles as a sample group as a distribution. Therefore, there has been no attempt to utilize the distribution of the thermal history of coke in the tuyere raceway as a means of in-furnace analysis.

(発明が解決しようとする課題) 前述したように、X線回折による測定方法は、試料の調
整、測定に長時間を要するので、高炉内のコークスを点
として熱履歴を知ることはできたが、炉内解析に利用す
る試料群としてのデータは得られないという致命的な欠
陥があった。
(Problems to be Solved by the Invention) As mentioned above, the measurement method using X-ray diffraction requires a long time to prepare and measure the sample. However, there was a fatal flaw in that it was not possible to obtain data as a sample group for use in in-core analysis.

本発明は、レーザーラマン分光法において測定されるグ
ラファイト構造の散乱スペクトルが、温度に依存するこ
とが大きいと云う先人の知見をもとにして、脱灰処理を
必要とせず、短時間に多数点の測定を可能とする、高炉
内コークスの熱履歴の分布を推定する方法の発明が、本
発明の出願人の社内において完成したのに伴ない、具体
的な高炉操業法として創案されたものであり、前述のコ
ークスの熱履歴の分布を基にして、操業条件に適合する
DI(%)の装入コークスを選択して使用する高炉操業
方法を提供することを目的とする。
The present invention is based on the knowledge of our predecessors that the scattering spectrum of graphite structures measured in laser Raman spectroscopy is highly dependent on temperature. This invention was created as a specific blast furnace operating method in conjunction with the completion of the invention of a method for estimating the distribution of thermal history of coke in a blast furnace that enables point measurement. It is an object of the present invention to provide a blast furnace operating method that selects and uses charged coke with a DI (%) that matches the operating conditions based on the distribution of the thermal history of the coke described above.

「発明の構成」 (課題を解決するための手段) 前述の目的を達成するために、本発明者等は羽口レベル
から採取した粉粒コークスの熱履歴の分布のうち200
0℃以上の粒子の占める割合により、装入コークスのド
ラム強度を変更することを特徴とする高炉操業法、を芸
に提案する。
"Structure of the Invention" (Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventors have developed a method for analyzing 200% of the thermal history distribution of pulverulent coke collected from the tuyere level.
We propose a blast furnace operating method characterized by changing the drum strength of charged coke depending on the proportion of particles with a temperature of 0°C or higher.

(作用) 本発明の実施に当っては、先ず羽口先レースウェイ内の
粉粒コークスを採取して、粒子毎の熱履歴の分布を短時
間に知る必要がある。そのためにはマルチチャンネルデ
ィテクターを有するレーザーラマン分光法により、散乱
スペクトル1360e11− ’と1580−’の強度
比から黒鉛化度を測定することができる。この黒鉛化度
はコークスの熱履歴と高度の相関がある。黒鉛化度はコ
ンピューターにより数値化されているから、簡単なソフ
トにより熱履歴の分布として情報を得ることができる。
(Function) In carrying out the present invention, it is first necessary to sample the pulverulent coke in the tuyere end raceway and to know the distribution of thermal history of each particle in a short time. For this purpose, the degree of graphitization can be measured from the intensity ratio of scattering spectra 1360e11-' and 1580-' by laser Raman spectroscopy with a multi-channel detector. This degree of graphitization is highly correlated with the thermal history of coke. Since the degree of graphitization is quantified by a computer, it is possible to obtain information as a distribution of thermal history using simple software.

第4図は黒鉛化度(R値)と熱履歴温度との関係を示す
(マクロ測定)。
FIG. 4 shows the relationship between the degree of graphitization (R value) and the thermal history temperature (macro measurement).

第2図は、縦軸に3龍以下の粉の発生率を横軸に羽目レ
ベルで採取した粉粒コークスの熱履歴分布における20
00℃以上の占める割合をとったものである。D1%9
0.95.98の三段階について粉率30%のラインに
ついて調べてみると、DIの低い程2000℃以上の熱
履歴を有する粒子の占める割合が低いことが判る。又、
DI=95%では2000℃以上の粒子の占める割合が
40%を超えると急激に粉率が増大しており、各DI毎
にその臨界点が異なっており2000℃以上の占める割
合が極めて重要なことが判る。
Figure 2 shows the thermal history distribution of powdered coke sampled at the grain level, with the vertical axis representing the incidence of powder of 3 or less particles and the horizontal axis representing
This is the proportion of temperatures above 00°C. D1%9
When examining the 30% powder ratio line for the three stages of 0.95.98, it can be seen that the lower the DI, the lower the proportion of particles with a thermal history of 2000° C. or higher. or,
At DI = 95%, the powder ratio increases rapidly when the proportion of particles above 2000℃ exceeds 40%, and the critical point is different for each DI, and the proportion of particles above 2000℃ is extremely important. I understand that.

第3図は縦軸に炉下部圧損をとり横軸に3 ms以下の
粉率をDI毎に表示したものである。DI=95%では
粉率が30%に達すると急激に圧損が増大することが判
る。而もこの圧損の急変する臨界点はDIにより異なる
ことも明確に示されている。。
In FIG. 3, the vertical axis shows the pressure drop in the lower part of the furnace, and the horizontal axis shows the powder rate of 3 ms or less for each DI. It can be seen that when the powder ratio reaches 30% at DI=95%, the pressure loss increases rapidly. Furthermore, it is clearly shown that the critical point at which this pressure drop suddenly changes varies depending on the DI. .

第1図は縦軸に装入コークスのDI(%)を横軸に羽口
レベルから採取した粉粒コークスの熱履歴分布における
2000℃以上の粒子の占める割合をとったものである
。従って、高炉操業においては炉下部の圧損は1.2 
kg / cd程度に押える必要があるから、第2図、
第3図の関係から操業に適したDI(%)を選択するこ
とができる。
In FIG. 1, the vertical axis shows the DI (%) of the charged coke, and the horizontal axis shows the proportion of particles of 2000° C. or higher in the thermal history distribution of the pulverulent coke sampled from the tuyere level. Therefore, in blast furnace operation, the pressure drop in the lower part of the furnace is 1.2
Since it is necessary to keep it to about kg/cd, Fig. 2,
The DI (%) suitable for the operation can be selected from the relationship shown in FIG.

(実施例) 1、炉容4000ryfの高炉における実施例を記載す
る。
(Example) 1. An example in a blast furnace with a furnace capacity of 4000 ryf will be described.

操業条件を燃料比517kg/T、装入コークスDI(
%)95とした場合で、羽目レベルから採取した粉粒コ
ークスの熱履歴分布の平均値が1680℃であって、2
000℃以上の粒子の占める割合26%であったから、
単連コークス工場へ装入コークスのDI(%)を94に
変更する旨指示、翌日から新しい配合とした。新しい配
合に移行してから6時間後には羽口レベルの粉粒コーク
ス中に占める2000℃以上の熱粒子の占める割合は2
0%に阻生した。
The operating conditions were a fuel ratio of 517 kg/T, charged coke DI (
%) 95, the average value of the thermal history distribution of the pulverulent coke collected from the grain level is 1680°C, and 2
Since the proportion of particles above 000°C was 26%,
Instructions were given to the single continuous coke plant to change the DI (%) of the charged coke to 94, and the new formulation was started the next day. Six hours after switching to the new formulation, the proportion of thermal particles of 2000℃ or higher in the pulverulent coke at the tuyere level was 2.
The incidence was 0%.

2、従来の操業は装入コークスのDI(%)一定操業で
あったが、炉下部の状況に応じ操業に適合するDI(%
)のコークスを使用することにより、1ケ月間を平均す
ると炉況点数(炉下部圧損、スリップ棚吊り回数)のバ
ラツキ60〜90点から80〜90点への向上結果が得
られている。
2. Conventionally, the DI (%) of charged coke was constant, but depending on the situation in the lower part of the furnace, the DI (%) was adjusted to suit the operation.
) By using the coke of 2000, an improvement in the variation of the furnace condition score (pressure loss in the lower part of the furnace, number of slip rack hangings) from 60 to 90 points to 80 to 90 points was obtained when averaged over one month.

「発明の効果」 以上詳述したように本発明方法により羽口レベルから採
取した粉粒コークスの熱履歴分布中特に2000℃以上
の粒子の占める割合を求め粉率と圧損の関係、粉率30
%の場合のDI(%)の関係から操業に適した装入コー
クスのDI(%)を選択できるから燃料比の低い安定操
業を続行することができる。
"Effects of the Invention" As detailed above, by the method of the present invention, the proportion of particles with a temperature of 2000°C or higher in the thermal history distribution of coke particles collected from the tuyere level was determined, and the relationship between the powder ratio and pressure loss was determined.
Since the DI (%) of charged coke suitable for the operation can be selected from the relationship of DI (%) in the case of %, stable operation with a low fuel ratio can be continued.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた羽口レベルにおける粉粒
コークスの熱履歴分布における2000℃以上の粒子の
占める割合とDI(%)の関係を示し、第2図は粉率と
熱履歴温度2000”C以上の粒子の占める割合を示し
、第3図は炉下部圧損と粉率の関係を示す図表、第4図
はコークスの黒鉛化度と熱履歴温度の関係を示す図表で
ある。
Figure 1 shows the relationship between the proportion of particles with a temperature of 2000°C or higher in the thermal history distribution of coke powder at the tuyere level obtained by the present invention and DI (%), and Figure 2 shows the relationship between the powder ratio and the thermal history temperature. The ratio of particles of 2000"C or more is shown. FIG. 3 is a chart showing the relationship between the pressure drop in the lower part of the furnace and the powder ratio, and FIG. 4 is a chart showing the relationship between the degree of graphitization of coke and the thermal history temperature.

Claims (1)

【特許請求の範囲】[Claims] 羽口レベルから採取した粉粒コークスの熱履歴の分布の
うち2000℃以上の粒子の占める割合により、装入コ
ークスのドラム強度を変更することを特徴とする高炉操
業法。
A blast furnace operating method characterized in that the drum strength of charged coke is changed depending on the proportion of particles of 2000° C. or higher in the thermal history distribution of pulverulent coke collected from the tuyere level.
JP1575288A 1988-01-28 1988-01-28 Operation of blast furnace Pending JPH01191710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1575288A JPH01191710A (en) 1988-01-28 1988-01-28 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1575288A JPH01191710A (en) 1988-01-28 1988-01-28 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH01191710A true JPH01191710A (en) 1989-08-01

Family

ID=11897504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1575288A Pending JPH01191710A (en) 1988-01-28 1988-01-28 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH01191710A (en)

Similar Documents

Publication Publication Date Title
Ginnings et al. Heat capacities at high temperatures of uranium, uranium trichloride, and uranium tetrachloride
Lichtenstein et al. Thermochemical Property Measurements of FLiNaK and FLiBe in FY 2020
Ouensanga Thermodynamic study of the Ti C O system in the temperature range 1400–1600 K
JPH01191710A (en) Operation of blast furnace
US20110071788A1 (en) Method and apparatus for the calculation of coal ash fusion values
JP2019163986A (en) Coke analysis method
JPH01191711A (en) Operation of blast furnace
JPH01191713A (en) Operation of blast furnace
JPH01191712A (en) Operation of blast furnace
Kohli et al. Heat capacity and thermodynamic properties of the alkali metal compounds in the temperature range 300–800 KI Cesium and rubidium molybdates
JPH01191708A (en) Method for estimating heat history of coke in blast furnace
Rehim Formation of mullite, topaz and corundum
CN118483369B (en) Method for detecting element composition content of coagulated slag of blast furnace wall and application thereof
Afonichkin et al. Salts purification and redox potential measurement for the molten LiF-ThF 4-UF 4 mixture
Valvoda X‐ray diffraction study of Debye temperature and charge distribution in tantalum monocarbide
Sagues et al. Substitutional-interstitial interactions in Ta-Re-N and Ta-Re-O alloys
JP2000256046A (en) Method of calculating scattering factor and firing factor of lime stone in fluidized bed lime stone firing furnace
JPH028306A (en) Method for operating blast furnace
JPS6361366B2 (en)
Miskowiec et al. Improving Elemental Ratio Measurements on Uranyl Fluoride with NanoSIMS
Huber Jr et al. Enthalpy of formation of europium monoxide
JP2749171B2 (en) Simple method for analyzing oxygen in ZrF lower 4 or HfF lower 4
Dale An investigation of the reaction mechanism of copper fluoride carriers in the spectrochemical determination of boron and silicon
JP2024139259A (en) Method for estimating coke strength
JPS5933383A (en) Prediction of properties of coke under heating