JPH01191713A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH01191713A
JPH01191713A JP1575088A JP1575088A JPH01191713A JP H01191713 A JPH01191713 A JP H01191713A JP 1575088 A JP1575088 A JP 1575088A JP 1575088 A JP1575088 A JP 1575088A JP H01191713 A JPH01191713 A JP H01191713A
Authority
JP
Japan
Prior art keywords
width
distribution
coke
blast furnace
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1575088A
Other languages
Japanese (ja)
Inventor
Tomonori Kato
友則 加藤
Sumiyuki Kishimoto
岸本 純幸
Hirohisa Hotta
堀田 裕久
Kunihiko Ishii
邦彦 石井
Yoshio Suzuki
喜夫 鈴木
Shozo Itagaki
省三 板垣
Nariyasu Mitani
三谷 成康
Atsushi Chino
淳 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1575088A priority Critical patent/JPH01191713A/en
Publication of JPH01191713A publication Critical patent/JPH01191713A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To continue the stable operation of a blast furnace and to reduce fuel ratio by obtaining middle value and half-width (width of distribution curve at 1/2 frequency) from the distribution of the heat history of granular coke collected from a raceway at the end of a tuyere and by controlling the opera tional conditions so as to attain prescribed middle value and half-width. CONSTITUTION:Granular coke is collected from a raceway at the end of a blast tuyere of a blast furnace and the distribution of the heat history of each granule is examined by laser Raman spectroscopic analysis or other method. The middle value and halt-width of the heat history are obtd. and the middle value is regulated to 1,500-2,100 deg.C by changing the operational conditions by which theoretical combustion temp. is controlled. The half-width is kept at 30-170 deg.C by increasing the amt. of pulverized coal to be blown and carrying out oxygen enrichment. Fuel ratio and the amt. of Si in molten pig iron can be reduced.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は高炉の操業方法に関するものである。[Detailed description of the invention] "Purpose of invention" (Industrial application field) This invention relates to a method of operating a blast furnace.

(従来の技術) 従来、高炉内におけるコークスを採取してコークスの熱
履歴を調らべる方法としては、採取した試料の粒度調整
を行い、次いで弗酸もしくは塩酸により一週間程度脱灰
処理した後、X線回折により約30分程の時間を要し結
晶子LC(002)、La(110)等を測定する方法
があった。
(Conventional technology) Conventionally, the method of collecting coke in a blast furnace and investigating the thermal history of the coke was to adjust the particle size of the sample, and then decalcify it with hydrofluoric acid or hydrochloric acid for about a week. Thereafter, there was a method of measuring crystallites LC (002), La (110), etc. by X-ray diffraction, which took about 30 minutes.

然し乍ら一点のコークスの熱履歴を知るのに、前述のよ
うに準備から測定まで長時間を要するので、試料群とし
てコークス粒子の熱履歴を分布として把握しようとする
概念は存在しなかった。
However, as mentioned above, it takes a long time from preparation to measurement to determine the thermal history of a single point of coke, so there was no concept of understanding the thermal history of coke particles as a sample group as a distribution.

そのため羽口先レースウェイ内のコークスの熱履歴の分
布を炉内解析の手段として利用する試みは全(存在しな
かった。
Therefore, there have been no attempts to utilize the distribution of the thermal history of coke in the tuyere raceway as a means of in-furnace analysis.

(発明が解決しようとする問題点) 前述したように、X線回折による測定方法は、試料の調
整、測定に長時間を要するので、高炉内のコークスを点
として熱履歴を知ることはできたが、炉内解析に利用す
る試料群としてのデータは得られないという致命的な欠
陥があった。
(Problems to be solved by the invention) As mentioned above, the measurement method using X-ray diffraction requires a long time to prepare and measure the sample, so it was possible to determine the thermal history using the coke in the blast furnace as a point. However, there was a fatal flaw in that it was not possible to obtain data for the sample group used for in-core analysis.

本発明は、レーザーラマン分光法において測定されるグ
ラファイト構造の散乱スペクトルが、温度に依存するこ
とが大きいと云う先人の知見をもとにして、脱灰処理を
必要とせず短時間に多数点の測定を可能とする、高炉内
コークスの熱履歴の分布を推定する方法の発明が本発明
の出願人の社内において完成したのに伴ない具体的な高
炉操業法として創案されたものであり、前述のコークス
の熱履歴の分布を炉内解析の指針とする高炉操業法を提
供することを目的とする。
The present invention is based on the knowledge of our predecessors that the scattering spectrum of graphite structures measured in laser Raman spectroscopy is highly dependent on temperature. It was created as a specific blast furnace operating method in conjunction with the completion of the invention of a method for estimating the distribution of thermal history of coke in a blast furnace, which enables the measurement of The purpose of this study is to provide a blast furnace operating method that uses the above-mentioned coke thermal history distribution as a guideline for furnace interior analysis.

「発明の構成」 (問題点を解決する手段) 前述の目的を達成するために、本発明者等は、送風羽口
先のレースウェイ内の粉粒コークスを採取し、その熱履
歴の分布から中心値と半価幅を求め、中心値を1700
〜2100℃、半価幅を30〜170℃となるように、
操業条件を制御することを特徴とする高炉操業法。
"Structure of the Invention" (Means for Solving Problems) In order to achieve the above-mentioned object, the present inventors collected coke particles in the raceway at the tip of the blast tuyere, and based on the distribution of its thermal history, Find the value and half width, and set the center value to 1700.
~2100℃, half width 30~170℃,
A blast furnace operating method characterized by controlling operating conditions.

を蘇に提案する。propose to Su.

(作用) ゛本発明の実施に当っては、先ず羽口先レースウェイ内
の粉粒コークスを採取して、粒子毎の熱履歴の分布を短
時間に知る必要がある。そのためにはマルチチャンネル
ディテクターを有するレーザーラマン分光法により、散
乱スペクトル1360(m −’と1580C11−’
の強度比から黒鉛化度を測定することができる。この黒
鉛化度はコークスの熱履歴と高度の相関がある。黒鉛化
度はコンピューターにより数値化されているから、簡単
なソフトにより熱履歴の分布として情報を得ることがで
きる。
(Function) In carrying out the present invention, it is first necessary to sample the pulverulent coke in the tuyere tip raceway and to know the thermal history distribution of each particle in a short time. For this purpose, the scattering spectra of 1360 (m −' and 1580 C11 −'
The degree of graphitization can be measured from the intensity ratio of . This degree of graphitization is highly correlated with the thermal history of coke. Since the degree of graphitization is quantified by a computer, it is possible to obtain information as a distribution of thermal history using simple software.

第2図は黒鉛化度(R値と)と、熱履歴温度との関係を
示す(マクロ測定)。
FIG. 2 shows the relationship between the degree of graphitization (R value) and the thermal history temperature (macro measurement).

第1図は本発明の技術思想を説明するだめの、コークス
の熱履歴の分布を示すものである。縦軸に頻度を横軸に
各粒子の熱履歴をとったものである。本発明者等は別に
2000℃以上の粒子の占める割合並びに1500℃以
下の粒子の占める割合を適量に制御する高炉操業法を提
案しているが、それは目的が操業度の維持向上であった
。本発明の目的は燃料比並びに溶銑中のSiの低下にあ
るから、単に高温熱履歴もしくは低温熱履歴粒子の量的
規制と異なり、分布の形状が大きな影響を持つことが研
究の結果判明した。
FIG. 1 shows the distribution of the thermal history of coke, which serves to explain the technical idea of the present invention. The frequency is plotted on the vertical axis and the thermal history of each particle is plotted on the horizontal axis. The present inventors have separately proposed a blast furnace operation method in which the proportion of particles with a temperature of 2,000 °C or higher and the proportion of particles with a temperature of 1,500 °C or lower are appropriately controlled, but the purpose was to maintain and improve the operating rate. Since the purpose of the present invention is to reduce the fuel ratio and the Si content in hot metal, research has revealed that the shape of the distribution has a large influence, unlike simply regulating the quantity of high-temperature heat history or low-temperature heat history particles.

第1図の例から判るように、熱履歴の分布の中心値は1
910℃であるが、本発明においては中心値は1700
〜2100℃の間にあり且つ半価幅(中心値の高さのA
のところにおける分布の拡がり幅)を30−170℃の
間に規制する必要がある。
As can be seen from the example in Figure 1, the center value of the thermal history distribution is 1
910°C, but in the present invention, the central value is 1700°C.
~2100℃ and the half width (A of the height of the center value)
It is necessary to control the spread width of the distribution at 30-170°C.

半価幅が30℃より狭い場合は、サーマルショックによ
りコークスは大きな粒子に破砕され炉下部の圧損は大き
くなる。一方、半価幅が170℃より広い場合には、羽
口先において粉の発生が増大し棚吊り、スリップの回数
が多くなり、炉下部における圧損は増大する。圧損の増
大は燃料比の増大をもたらすことになる(第3〜5図)
When the half width is narrower than 30°C, the coke is broken into large particles due to thermal shock, and the pressure drop in the lower part of the furnace becomes large. On the other hand, if the half-value width is wider than 170°C, the generation of powder at the tuyere tip increases, the number of shelving and slipping increases, and the pressure loss in the lower part of the furnace increases. An increase in pressure drop will result in an increase in fuel ratio (Figures 3 to 5)
.

又、中心値が2100℃以上となることは、羽口先のフ
レイムの温度が高いことを意味し、コークスの粉化率が
大きくなり、ガスの通気性は悪化するからガスの利用率
は低下する。−男中心値が1700℃以下となることは
、フレイム温度が低いことを意味するから、燃料比を上
げざるを得す、燃料比の増大に伴い溶銑中の5iilは
上昇するという悪循環を招く (第6図)。
In addition, if the center value is 2100°C or higher, it means that the temperature of the flame at the tip of the tuyere is high, which increases the coke pulverization rate and deteriorates gas permeability, resulting in a decrease in gas utilization. . - If the male center value is below 1700℃, it means that the flame temperature is low, so the fuel ratio has to be increased, and as the fuel ratio increases, the 5iil in the hot metal increases, resulting in a vicious cycle ( Figure 6).

発明者等の研究によれば、羽口先レースウェイで採取さ
れるコークス粒子の熱履歴の分布の中心値と羽口先理論
燃焼温度との間には高度の相関があり、しかも近似的に
は理論燃焼温度−200℃=中心値の温度、が確認され
ているから、中心値を1700〜2100℃内に規制す
るためには、理論燃焼温度を制御する操業条件の変更を
行うことにより操業を管理することができる(第7図)
According to the research conducted by the inventors, there is a high degree of correlation between the center value of the thermal history distribution of coke particles collected in the tuyere raceway and the theoretical combustion temperature of the tuyere tip. It has been confirmed that combustion temperature - 200℃ = center value temperature, so in order to regulate the center value within 1700 to 2100℃, operations must be managed by changing the operating conditions to control the theoretical combustion temperature. (Figure 7)
.

半価幅を30〜170℃に維持するには微粉炭の吹き込
み量を増大するとよく、これに酸素富化を併用すると更
に効果がある(第8図)。
In order to maintain the half width at 30 to 170° C., it is recommended to increase the amount of pulverized coal blown into the coal, and it is even more effective to combine this with oxygen enrichment (Fig. 8).

(実施例) 1、第3〜8図は炉下部圧損1.2kg/cffl以下
、燃料比510〜520kg/Tで中心値を1800〜
2000℃、半価幅50〜100℃を目標に操業した例
を中心として記載したもので、特許請求の範囲外の数値
は試験的に少数実施したものと理論計算により求めた数
値が含まれる。
(Example) 1. Figures 3 to 8 show the central value at 1800 to 1800 with a pressure drop of 1.2 kg/cffl or less in the lower part of the furnace and a fuel ratio of 510 to 520 kg/T.
The description focuses on examples in which operations were carried out with a target of 2000°C and a half-width of 50 to 100°C, and numerical values outside the scope of the claims include those obtained through a small number of experimental runs and those determined by theoretical calculations.

2、 レースウェイから採取された粉粒コークス粒子の
熱履歴の分布の中心値が2130℃ の場合の例。
2. An example where the center value of the thermal history distribution of pulverulent coke particles collected from a raceway is 2130°C.

一定の操業度を維持するために燃料比528kg / 
T、溶銑中のSi0.33%で操業していたが、水蒸気
の使用量を8kg/T、追加する操業に切り替えて4時
間後に中心値が2000℃に下り燃料比520 kg/
 T、 Si値0.30%の通常の操業状態に復帰した
To maintain a constant operating rate, the fuel ratio is 528kg/
The operation was carried out with 0.33% Si in the hot metal, but after 4 hours after switching to the operation where the amount of steam used was increased to 8 kg/T, the central value dropped to 2000°C and the fuel ratio was 520 kg/T.
It returned to normal operating conditions with a T and Si value of 0.30%.

3、 レースウェイから採取された粉粒コークス粒* 子の熱履歴の分布において半価幅が180℃゛  の場
合の例。
3. An example of a thermal history distribution of powdered coke grains collected from a raceway where the half-value width is 180°C.

炉下部の圧損1.3kg/aJ  棚吊り、スリップ指
数1、燃料比530kg/Tの使用を余儀なくされてい
たが、酸素富化0.8%増、微粉炭吹込み15kg/T
増、の操業に移行して4時間後に半価幅は120℃に復
帰し、燃料比520 kg/T、溶銑中のSi0.30
%の通常の操業状態に復帰した。
Pressure drop in the lower part of the furnace was 1.3 kg/aJ, hanging on a shelf, slip index 1, and fuel ratio 530 kg/T had to be used, but oxygen enrichment increased by 0.8% and pulverized coal injection was increased by 15 kg/T.
Four hours after shifting to increased operation, the half value width returned to 120°C, the fuel ratio was 520 kg/T, and the Si in the hot metal was 0.30.
% returned to normal operating conditions.

* 何れも規制値より外れているが本発明の効果の確認
のために短期間の操業を行なったもの。
* All of these are outside the regulation values, but a short-term operation was conducted to confirm the effectiveness of the present invention.

「発明の効果」 以上詳述したように本発明方法による場合には、羽口先
レースウェイより採取された粉粒コークスの熱履歴分布
から、その中心値、半価幅を求め、所定の中心値、半価
幅に入るように羽目周辺の炉下部における操炉条件を制
御するだけですむから、アクションの効きが早く、安定
操業を続行させ乍ら、目的とする燃料比の低下、溶銑中
のSiの低下を図ることができる。
"Effects of the Invention" As detailed above, in the case of the method of the present invention, the center value and half-width are determined from the thermal history distribution of the powdered coke collected from the tuyere tip raceway, and the predetermined center value is determined. Since it is only necessary to control the operating conditions in the lower part of the furnace around the siding so that it is within the half-value range, the action is quick and stable operation can be continued while reducing the target fuel ratio and reducing the It is possible to reduce Si.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の技術思想を説明するためのコークス粒
子の熱履歴分布その他を示す図表であり、第2図はコー
クスの黒鉛化度と熱履歴温度との関係、第3図は炉下部
圧損と半価幅の関係、第4図は棚吊りスリップ指数と炉
下部圧損の関係、第5図は燃料比と炉下部圧損の関係、
第6図は燃料比とコークス熱履歴分布の中心値との関係
、第7図はコークス熱履歴分布の中心値と羽口先理論燃
焼温度との関係、第8図は半価幅と微粉炭吹込量との関
係を示すものである。 第 2[2 τ。 然1引緒(°0) 第 3  国 11ス一ケ幅(00) 第  l 国 1910℃
Fig. 1 is a chart showing the thermal history distribution of coke particles and other information to explain the technical idea of the present invention, Fig. 2 is a diagram showing the relationship between the degree of graphitization of coke and the thermal history temperature, and Fig. 3 is a chart showing the relationship between the degree of graphitization of coke and the thermal history temperature, and Fig. 3 is a chart showing the thermal history distribution of coke particles and other information to explain the technical idea of the present invention. The relationship between pressure drop and half-value width, Figure 4 shows the relationship between shelf suspension slip index and lower furnace pressure drop, Figure 5 shows the relationship between fuel ratio and lower furnace pressure drop,
Figure 6 is the relationship between the fuel ratio and the center value of the coke heat history distribution, Figure 7 is the relationship between the center value of the coke heat history distribution and the theoretical combustion temperature at the tuyere tip, and Figure 8 is the relationship between the half value width and pulverized coal injection. It shows the relationship with quantity. 2nd [2 τ. 1 draw (°0) 3rd country 11 stroke width (00) 1st country 1910℃

Claims (1)

【特許請求の範囲】[Claims] 送風羽口先のレースウェイ内の粉粒コークスを採取し、
その熱履歴の分布から中心値と半価幅を求め、中心値を
1700〜2100℃、半価幅を30〜170℃となる
ように、操業条件を制御することを特徴とする高炉操業
法。
Collect the powder coke in the raceway at the tip of the blast tuyere,
A blast furnace operating method characterized by determining a center value and a half-value width from the distribution of the thermal history, and controlling operating conditions so that the center value is 1700 to 2100°C and the half-value width is 30 to 170°C.
JP1575088A 1988-01-28 1988-01-28 Operation of blast furnace Pending JPH01191713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1575088A JPH01191713A (en) 1988-01-28 1988-01-28 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1575088A JPH01191713A (en) 1988-01-28 1988-01-28 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH01191713A true JPH01191713A (en) 1989-08-01

Family

ID=11897446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1575088A Pending JPH01191713A (en) 1988-01-28 1988-01-28 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH01191713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109875A1 (en) * 2006-03-28 2007-10-04 Tenova Goodfellow Inc. Infrared light sensors for diagnosis and control of industrial furnaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109875A1 (en) * 2006-03-28 2007-10-04 Tenova Goodfellow Inc. Infrared light sensors for diagnosis and control of industrial furnaces

Similar Documents

Publication Publication Date Title
EP3190194A1 (en) Method for detecting air flow distribution in blast furnace
CN107641669B (en) It is a kind of to realize 4000m using scanning radar3The method that blast furnace efficient low-consume is smelted
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
CN116862052A (en) Scoring method and scoring system for blast furnace conditions
CN111241715B (en) Method for determining test parameters of pulverized coal injection combustion rate of blast furnace under different coal ratios
Kurunov Ways of improving blast furnace smelting efficiency with injection of coal-dust fuel and natural gas
CN201561645U (en) First slag experimental furnace
CN114662767A (en) Low-carbon blast furnace smelting cost control method and system
JPH01191713A (en) Operation of blast furnace
JPH11116968A (en) Evaluation and blending of coal for preparation of coke
JPH07305105A (en) Method for evaluating raceway condition of blast furnace
WO1998038130A1 (en) Operation management method of iron carbide production process
JPH01191712A (en) Operation of blast furnace
JPH01191710A (en) Operation of blast furnace
Barnhart et al. Pulverized coal combustion and gasification in a cyclone reactor. 1. Experiment
JPH01191711A (en) Operation of blast furnace
CN116256493A (en) Method for matching blast furnace ore reducibility and coke reactivity
Wang et al. Improving the Desulphurization in COREX Process by Adjusting the Hot Metal Chemical Composition
WO2018177510A1 (en) Improved process for conducting a coke oven
JPS6112002B2 (en)
Strakhov et al. Industrial investigation of thermooxidative coking on interlinked gratings
CN118006370A (en) Method for replacing coal type in gasification adaptive operation in liquid slag-discharging gasification furnace
CN109266368A (en) A kind of top dress coke oven mixed coal and formulating method
Korshikov et al. Energy expenditures and carbon-dioxide emissions at blast furnaces
JP3646361B2 (en) Blast furnace charge distribution control method