JPH011914A - Sensor abnormality diagnosis method - Google Patents
Sensor abnormality diagnosis methodInfo
- Publication number
- JPH011914A JPH011914A JP62-155546A JP15554687A JPH011914A JP H011914 A JPH011914 A JP H011914A JP 15554687 A JP15554687 A JP 15554687A JP H011914 A JPH011914 A JP H011914A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- abnormality diagnosis
- sensors
- sensor abnormality
- diagnosis method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 18
- 238000003745 diagnosis Methods 0.000 title claims description 16
- 230000002159 abnormal effect Effects 0.000 claims description 13
- 238000012417 linear regression Methods 0.000 claims description 11
- 230000005484 gravity Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、プラント異常診断システムの前処理装置に適
用し得るセンサ異常診断方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sensor abnormality diagnosis method that can be applied to a preprocessing device of a plant abnormality diagnosis system.
[従来の技術]
従来、センサ異常診断には、同一センサを3つ以上配置
して、多数決により異常センサを抽出していた。しかし
この方法では、コストアップとなるので、その適用が限
定されていた。このため2つのセンサを用い、その偏差
チエツク等で異常検出を実施する場合が多いが、どちら
のセンサが異常であるのかを特定することができなく、
またセンサの異常の状態を推定することもできなかった
。[Prior Art] Conventionally, in sensor abnormality diagnosis, three or more identical sensors are arranged and an abnormal sensor is extracted by majority vote. However, this method increases costs, so its application is limited. For this reason, two sensors are often used to detect abnormalities by checking their deviations, but it is not possible to identify which sensor is abnormal.
Furthermore, it was not possible to estimate the abnormal state of the sensor.
[発明が解決しようとする問題点コ
2つのセンサを用いる従来のセンサ異常診断方法におい
ては、前記の如く、2つのセンサの出力信号間の偏差に
のみ着目し、その大小で異常、正常を判定するものであ
るから、異常センサの検出が困難であるとともに、異常
の状態の判定も困難であった。[Problems to be solved by the invention] In the conventional sensor abnormality diagnosis method using two sensors, as mentioned above, only the deviation between the output signals of the two sensors is focused, and abnormality or normality is determined based on the magnitude of the deviation. Therefore, it is difficult to detect an abnormal sensor, and it is also difficult to determine an abnormal state.
本発明は上記従来の問題点を解消し、2つのセンサを配
置した場合でも、異常センサを検出し、同時に異常の原
因を判定することができるセンサ異常診断方法を提供す
ることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above conventional problems and provide a sensor abnormality diagnosis method that can detect an abnormal sensor and simultaneously determine the cause of the abnormality even when two sensors are arranged.
本発明によれば、2つのセンサの出力信号間の線形回帰
式を求め、その傾き、切片および重心が、両センサの状
態によって独立の変化を示すことを利用して、上記機能
を実現可能としたものである。According to the present invention, the above function can be achieved by finding a linear regression equation between the output signals of two sensors and utilizing the fact that its slope, intercept, and center of gravity show independent changes depending on the states of both sensors. This is what I did.
ただし、傾き、切片および重心の変化;は、センサの特
性、配置するプロセスの特性で変わるため、その処理に
ファジィ推論を利用するようになされている。ここでフ
ァジィ推論とは、信号の状態をメンパンツブ関数と呼ば
れる帰属度関数を定義してファジィ集合で表現し、集合
演算を行うことて状態の変化を推論するものである。However, since changes in the slope, intercept, and center of gravity vary depending on the characteristics of the sensor and the characteristics of the placement process, fuzzy inference is used for processing. Here, fuzzy inference means defining a membership function called a membership subfunction to represent the state of a signal as a fuzzy set, and performing set operations to infer changes in the state.
[問題点を解決するための手段]
本発明によるセンサ異常診断方法は、2つのセンサの出
力信号間の関係を線形回帰式で表現し、その式の傾き、
切片および重心の変化を、例えば、ファジィ推論等の方
法によって処理することにより、異常センサを特定し、
かつ異常の原因を推論することを特徴とする。[Means for solving the problem] The sensor abnormality diagnosis method according to the present invention expresses the relationship between the output signals of two sensors by a linear regression equation, and calculates the slope of the equation,
Identify abnormal sensors by processing changes in the intercept and center of gravity using methods such as fuzzy inference,
It is also characterized by inferring the cause of the abnormality.
[作 用〕
本発明によれば、線形回帰式により、2つのセンサの出
力信号の時間項を消去し、両者の特性の差を3つのパラ
メータで表現し直すことができ、また例えば、ファジィ
推論により、パラメータの変化判断をセンサやプロセス
の特性を加味して実施し、通常の大小判断に比べ、正常
と異常のあいまいな段階まで処理可能となる。[Operation] According to the present invention, the time term of the output signals of the two sensors can be eliminated using a linear regression equation, and the difference in characteristics between the two can be reexpressed using three parameters. This makes it possible to judge changes in parameters by taking into account the characteristics of sensors and processes, and to process even ambiguous stages of normality and abnormality, compared to normal size judgments.
[実施例]
第1図は本発明方法を実施するのに用いられる装置の一
例を示すブロック図であり、1はセンサA、2はセンサ
B、3は線形回帰分析器、4はファジィ推論器、5はセ
ンサ異常診断装置、6はプロセス麦苗、7は出力A、8
は出力B、9は診断結果を示す。[Example] FIG. 1 is a block diagram showing an example of a device used to implement the method of the present invention, in which 1 is a sensor A, 2 is a sensor B, 3 is a linear regression analyzer, and 4 is a fuzzy inference device. , 5 is a sensor abnormality diagnosis device, 6 is a process wheat seedling, 7 is an output A, 8
indicates the output B, and 9 indicates the diagnosis result.
第1図において、センサA1とセンサB2は、同一のプ
ロセス変量6に対して、出力A7と出力B8とをセンサ
異常診断装置5に送る。センサ異常診断装置5内では、
線形回帰分析器3により線形回帰式B−α・A+βを求
め、ファジィ推論器4に送る。ファジィ推論器4は、重
心位置(m A 。In FIG. 1, sensor A1 and sensor B2 send outputs A7 and B8 to sensor abnormality diagnosis device 5 for the same process variable 6. In the sensor abnormality diagnosis device 5,
A linear regression equation B-α·A+β is determined by the linear regression analyzer 3 and sent to the fuzzy inference unit 4. The fuzzy reasoner 4 calculates the center of gravity position (m A ).
mB)、切片β、傾きαの状態から異常センサの抽出と
その原因を診断し、診断結果9を出力する。mB), intercept β, and slope α, the abnormal sensor is extracted and its cause is diagnosed, and a diagnosis result 9 is output.
第2図は異常チエツクの原理を示し、第2図(A)はゲ
イン変化、第2図(B)はドリフト発生の場合であり、
第3図は、メンバシップ関数を定義している。関数の形
は対象によって決定するが、ここでは正規分布関数を用
いている。第4図および第5図はファジィ推論のルール
テーブルを示し、記号は、個々に対応するメンバシップ
関数名を示している。Fig. 2 shows the principle of abnormality check, Fig. 2 (A) shows the case of gain change, Fig. 2 (B) shows the case of drift occurrence,
FIG. 3 defines membership functions. Although the shape of the function is determined by the object, a normal distribution function is used here. FIG. 4 and FIG. 5 show rule tables for fuzzy inference, and the symbols indicate the names of membership functions that correspond to each one.
」−配本発明の一実施例の原理と方法について説明する
。”-Description The principle and method of one embodiment of the present invention will be explained.
第2図は、センサ異常チエツクの原理図であり、今二個
のセンサをセンサA5センサBとすると、個々の出力は
同一信号であるから、あるM1定期間内の出力のAB二
次元平面上での線形回帰式は両者正常であればB −1
,0*A + 0.0となる。そこで、A、Bいずれか
のセンサが異常となった場合、すなわちセンサのゲイン
あるいはゼロ点が変化した場合、線形回帰式の傾きと切
片および重心は、異常の状態によって特有の変化を示す
。例えば、Bセンサのゲインが増加すると重心は上方に
ずれ、傾きは1.0を越える。もし、ドリフトも同時に
発生した場合は、さらに切片も0.0以外に変化する。Fig. 2 is a diagram showing the principle of sensor abnormality check. If the two sensors are sensor A and sensor B, their individual outputs are the same signal, so the AB two-dimensional plane of the output within a certain M1 period is The linear regression equation for is B −1 if both are normal.
,0*A + 0.0. Therefore, when either sensor A or B becomes abnormal, that is, when the gain or zero point of the sensor changes, the slope, intercept, and center of gravity of the linear regression equation exhibit specific changes depending on the abnormal state. For example, when the gain of the B sensor increases, the center of gravity shifts upward and the slope exceeds 1.0. If drift also occurs at the same time, the intercept also changes to a value other than 0.0.
そしてこれらはいずれも独立に起こるため、三個のパラ
メータすなわち重心、傾き、切片の状態を調べれば、異
常センサの抽出と状態の判定か+−+J能である。Since all of these occur independently, it is possible to extract an abnormal sensor and determine its condition by examining the conditions of the three parameters, namely, the center of gravity, slope, and intercept.
ただし上の判定は次の前提条件が満たされている時に限
られる。However, the above judgment is only possible when the following prerequisites are met.
(i)A、Bセンサの異常発生の程度、時間は独立事象
として扱うことが出来る。(i) The extent and time of occurrence of abnormality in sensors A and B can be treated as independent events.
(11)一定値へのへばりつきはない。へばりつきが発
生した時は線形回帰による状態判定は行なわない。異常
センサの抽出は重心移動で判定可能。(11) There is no sticking to a constant value. When sticking occurs, the condition is not determined by linear regression. Abnormal sensor extraction can be determined by moving the center of gravity.
前記三個のパラメータの変化を追跡すれば状態の判定が
可能であるが、通常実施する値の大小判断で変化を追跡
すると、基準値の設定の良否で判定の特性が大きく変っ
てしまう危険性がある。特にセンサの健全性が緩やかに
損なわれて行った場合の検出と、ノイズ等による誤動作
を除外する場合とを同時に実現するのは困難を伴う。It is possible to judge the state by tracking changes in the three parameters mentioned above, but if you track changes by determining the size of the values, which is usually done, there is a risk that the characteristics of the judgment will change significantly depending on the quality of the reference value settings. There is. In particular, it is difficult to simultaneously detect the gradual loss of sensor health and exclude malfunctions due to noise or the like.
本実施例では、変化の追跡をファジィ推論と統計処理に
より実施し、問題の解決を計った。In this example, changes were tracked using fuzzy inference and statistical processing to solve the problem.
第3図はメンバシップ関数の形を定義しており、正規分
布関数を用いている。台集合は各平均値と標準偏差値を
用いて逐次決定しており、プロセスの経時変化にも追従
出来る。また、傾き、切片の台集合については、固定的
な値を用いているが、いずれも対象とするセンサの特性
を加味して経験的に決める値である。FIG. 3 defines the form of the membership function, and uses a normal distribution function. The set of tables is determined sequentially using each average value and standard deviation value, and it is possible to follow changes over time in the process. Further, although fixed values are used for the slope and the set of intercepts, these values are determined empirically in consideration of the characteristics of the target sensor.
[発明の効果]
本発明によれば、センサの異常診断が安価にかつ確実に
実施可能となり、プラント異常診断システム等を構築す
る際の前処理装置として各方面で利用可能となり、実用
外大である等の優れた効果が奏せられる。[Effects of the Invention] According to the present invention, sensor abnormality diagnosis can be carried out inexpensively and reliably, and it can be used in various fields as a pre-processing device when constructing a plant abnormality diagnosis system, etc., and is beyond practical use. Some excellent effects can be achieved.
第1図は本発明方法を実施するのに用いられる装置の一
例を示すブロック図、第2図は本発明方法におけるセン
サ異常チエツク原理図、第3図はメンバシップ関数を定
義する図、第4図および第5図はファジィ推論のルール
テーブルを示す図である。
1・・・センサA、2・・・センサB、3・・・線形回
帰分析器、4・・・ファジィ推論器、5・・・センサ異
常診断装置。
第1図
Nのの−(LZ
α)
城FIG. 1 is a block diagram showing an example of a device used to carry out the method of the present invention, FIG. 2 is a principle diagram of sensor abnormality check in the method of the present invention, FIG. 3 is a diagram defining membership functions, and FIG. FIG. 5 and FIG. 5 are diagrams showing a rule table for fuzzy inference. DESCRIPTION OF SYMBOLS 1...Sensor A, 2...Sensor B, 3...Linear regression analyzer, 4...Fuzzy inference device, 5...Sensor abnormality diagnosis device. Figure 1 N-no-(LZ α) Castle
Claims (1)
め、その式の傾きと切片および重心の変化から、前記2
つのセンサの中の異常センサを検出し、同時にその異常
原因がセンサのゲイン変化かまたはドリフト発生かを判
定することを特徴とするセンサ異常診断方法。A linear regression equation between the output signals of the two related sensors is determined, and from the change in the slope, intercept, and center of gravity of the equation, the above 2.
1. A sensor abnormality diagnosis method characterized by detecting an abnormal sensor among two sensors and simultaneously determining whether the cause of the abnormality is a change in sensor gain or occurrence of drift.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15554687A JPS641914A (en) | 1987-06-24 | 1987-06-24 | Diagnosis of sensor abnormality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15554687A JPS641914A (en) | 1987-06-24 | 1987-06-24 | Diagnosis of sensor abnormality |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH011914A true JPH011914A (en) | 1989-01-06 |
JPS641914A JPS641914A (en) | 1989-01-06 |
Family
ID=15608424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15554687A Pending JPS641914A (en) | 1987-06-24 | 1987-06-24 | Diagnosis of sensor abnormality |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS641914A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950156A (en) * | 1989-06-28 | 1990-08-21 | Digital Equipment Corporation | Inert gas curtain for a thermal processing furnace |
JPH0643905B2 (en) * | 1989-07-27 | 1994-06-08 | 株式会社新潟鐵工所 | Monitoring / control device |
US5700090A (en) * | 1996-01-03 | 1997-12-23 | Rosemount Inc. | Temperature sensor transmitter with sensor sheath lead |
US5746511A (en) * | 1996-01-03 | 1998-05-05 | Rosemount Inc. | Temperature transmitter with on-line calibration using johnson noise |
US5828567A (en) * | 1996-11-07 | 1998-10-27 | Rosemount Inc. | Diagnostics for resistance based transmitter |
US6859755B2 (en) | 2001-05-14 | 2005-02-22 | Rosemount Inc. | Diagnostics for industrial process control and measurement systems |
JP5017678B2 (en) * | 2005-08-31 | 2012-09-05 | 鵬 陳山 | Signal inspection method and signal inspection module |
DE102007044613B3 (en) * | 2007-09-19 | 2009-07-09 | Continental Automotive Gmbh | Defective fuel pressure sensor determining method for vehicle, involves providing regression function, and determining pressure sensor as defective when value of regression function exceeds predetermined threshold value |
US9207129B2 (en) | 2012-09-27 | 2015-12-08 | Rosemount Inc. | Process variable transmitter with EMF detection and correction |
IT202000004573A1 (en) * | 2020-03-04 | 2021-09-04 | Nuovo Pignone Tecnologie Srl | Hybrid risk model for the optimization of maintenance and system for the execution of this method. |
-
1987
- 1987-06-24 JP JP15554687A patent/JPS641914A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH011914A (en) | Sensor abnormality diagnosis method | |
WO2005024794A3 (en) | Automated identification of anomalous conditions in supply chain processes | |
JPH0140304B2 (en) | ||
KR102067344B1 (en) | Apparatus and Method for Detecting Abnormal Vibration Data | |
EP0770854A1 (en) | Method, apparatus and system for determining specimen | |
JP2002090267A (en) | Failure diagnosis method | |
AU2002210499A1 (en) | Method, device and system for collecting, visualising and/or modifying operating data of at least one machine pertaining to the tobacco processing industry | |
Sadoughi et al. | A deep learning-based approach for fault diagnosis of roller element bearings | |
CN108830291A (en) | A kind of wheeled crane Fault Diagnosis Methods for Hydraulic System and system | |
EP0347645A3 (en) | Monitoring a plurality of parameters from identical processes | |
JP2754760B2 (en) | Tool damage detection device | |
RU112135U1 (en) | ARROW ELECTRIC DRIVE | |
JPS642203B2 (en) | ||
Hodouin et al. | On-line reconciliation of mineral processing data. | |
Alexander et al. | Monitoring, diagnosis and control of industrial processes | |
KR20200079769A (en) | Method for monitoring health of machines using smart vibration sensor | |
Hindman et al. | Condition monitoring of fluid power systems: A survey | |
JP2710863B2 (en) | Rolling mill thickness control method | |
Zhou et al. | Actuator fault diagnosis of a class of nonlinear systems in closed-loops: a case study | |
JPS61107405A (en) | Driver | |
KR960000803B1 (en) | The method for checking a rotary machine | |
JPS61107406A (en) | Plant supervisory method | |
JPS62169034A (en) | Bearing diagnosing apparatus for rotary machine | |
JPS61114134A (en) | Diagnosing method of rotary machine | |
RU2477695C1 (en) | Switch electric drive |