JPH01190270A - Ultrasonic motor - Google Patents
Ultrasonic motorInfo
- Publication number
- JPH01190270A JPH01190270A JP63013925A JP1392588A JPH01190270A JP H01190270 A JPH01190270 A JP H01190270A JP 63013925 A JP63013925 A JP 63013925A JP 1392588 A JP1392588 A JP 1392588A JP H01190270 A JPH01190270 A JP H01190270A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- ultrasonic motor
- elastic
- moving body
- vibrating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 27
- 239000000956 alloy Substances 0.000 claims abstract description 27
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 abstract description 7
- 229910000990 Ni alloy Inorganic materials 0.000 abstract description 5
- 238000005299 abrasion Methods 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229920001875 Ebonite Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
この発明は、弾性振動体に進行弾性波を発生させ、この
進行弾性波によって移動体を駆動する超音波モータに関
する。The present invention relates to an ultrasonic motor that generates traveling elastic waves in an elastic vibrating body and drives a moving body using the traveling elastic waves.
超音波モータは、圧電素子あるいは電歪素子に生じる超
音波振動を機械的振動エネルギに変換させ、それをモー
タの駆動エネルギとするものである。このような超音波
モータは、従来の電磁式モータになかった低速、高トル
ク、高応答性、小形軽量などの特性を持つため、各種の
産業分野で応用研究が盛んに実施されている。
超音波モータの駆動方式としては、現在数種のものが提
案されているが、以下に機械的振動エネルギとして表面
弾性波を用い、この弾性波によって移動体を摩擦駆動す
るようにし、かつその際、少なくとも一つの圧電素子あ
るいは電歪素子の振動によって定在波を発生させるよう
な構成のモータについて説明する。
第4図は、この種の超音波モータの駆動原理を示すもの
で、■を移動体、2を弾性振動体とする。
X軸は弾性振動体2の表面上に発生する表面波の進行方
向を示し、Z軸はその法線方向とする。
弾性振動体2に図示しない圧電素子(電歪素子でも良い
。)により振動を与えると、表面弾性波が発生して弾性
振動体2上を伝搬していく。この弾性波は縦波と横波を
伴った表面波で、その質点は楕円起動を描く運動をする
。ここで、質点Aに着目すると、縦振幅社、横振幅Wの
楕円運動を行っており、表面波の進行方向を+X方向と
すると楕円運動は反時計方向に回転している。
この表面波は一波長ごとに頂点A、A・・・を有し、そ
の頂点速度はX成分のみで、V=2πju(ただし、f
は振動数)である。そこで、弾性振動体2に移動体1を
矢印Pの方向に加圧接触させると移動体1の表面は頂点
A、A・・・にのみ接触するから、移動体1は弾性振動
体2との間の摩擦力により矢印Nの方向に駆動されるこ
とになる。
矢印Nの方向への移動体1の移動速度は、振動数fに比
例する。また加圧接触により摩擦駆動を行うため、縦振
幅Uばかりでな(、横振幅Wにも依存する。すなわち、
移動体1の移動速度は楕円運動の大きさに比例し、楕円
運動が大きいほど移動速度が大きい。このため、移動速
度は圧電素子に加える電圧にも比例してくる。
第5図は第4図に示した弾性振動体2に表面波を発生さ
せる原理を示すものである。3a及び3bは弾性振動体
2の共振周波数から最も効率良く弾性波を得ることので
きる間隔で弾性振動体2に張り付けた、例えばPZTな
どの圧電素子で、3aは導線Aに、3bは導線Bにそれ
ぞれ接続されている。
4は駆動電源で、■−■。sinωtという電圧を供給
している。図から明らかなように、導線Aには■−■。
sinωL (ただし、ωは角周波数、しは時間)の正
弦波電圧が加わり、導線Bには90°移相器5を通して
、V = V 、5in(ωt±π/2)の電圧が加わ
る。+、−は移動体の移動方向により切り換えられる。
すなわち、90°移相器5により+90°位相をずらす
場合と、−90°位相をずらす場合によって移動体の進
行方向が異なる。
第5図において、(a)〜(d)は時間に応じた弾性振
動体2の振動状態を示し、(a)はL−2nπ/ω、(
b)はt−π/2ω+2nπ/ω、(C)はL=π/ω
+2nπ/ω、(d)はt=3π/2ω+2nπ/ωの
状態である。
弾性波は図の右方向に進むが、弾性振動体20表面の任
意の質点は、すでに述べたように反時計方向の楕円運動
を行う。したがって、弾性振動体2の表面に圧接される
図示しない移動体は、左方向に移動する。
第6図及び第7図は、上述の駆動原理に基づいて構成し
た超音波モータの一例を示すもので、図において、1は
その裏面にゴムなどの摩擦体1aが固着された移動体(
回転体)、2は弾性振動体、3は圧電素子、6は振動吸
収部材、7は取付台である。弾性振動体2、圧電素子3
及び振動吸収部材6は互いに接着されて一体構成され、
取付台7に固定される。また、移動体1は適宜の手段に
より、弾性振動体2に加圧接触させられる。
このようの構成された超音波モータにおいて、圧電素子
3に電圧を印加して弾性振動体2の表面に進行弾性波を
発生させると、この表面に摩擦体laを介して加圧接触
されている移動体lが駆動されて回転する。振動吸収部
材6は圧電素子3及び弾性振動体2を取付台7に固定す
るもので、圧電素子3及び弾性振動体2と取付台7との
間で振動による影響が出ないように、フェルトなどの振
動を吸収する材料で作られている。なお、図示しなかっ
たが、第7図の状態で移動体1は適宜に手段で弾性振動
体2に加圧接触させられる。An ultrasonic motor converts ultrasonic vibrations generated in a piezoelectric element or an electrostrictive element into mechanical vibration energy, which is used as driving energy for the motor. Such ultrasonic motors have characteristics that conventional electromagnetic motors do not have, such as low speed, high torque, high responsiveness, small size and light weight, and therefore, applied research is being actively conducted in various industrial fields. Several types of ultrasonic motor drive methods have been proposed at present. , a motor configured to generate a standing wave by the vibration of at least one piezoelectric element or electrostrictive element will be described. FIG. 4 shows the driving principle of this type of ultrasonic motor, where ◯ represents a moving body and 2 represents an elastic vibrating body. The X-axis indicates the traveling direction of surface waves generated on the surface of the elastic vibrating body 2, and the Z-axis indicates the normal direction thereof. When the elastic vibrator 2 is vibrated by a piezoelectric element (an electrostrictive element may also be used), not shown, a surface acoustic wave is generated and propagates on the elastic vibrator 2. This elastic wave is a surface wave with longitudinal waves and transverse waves, and its mass point moves in an elliptical motion. Here, focusing on the mass point A, it is performing an elliptical motion with a vertical amplitude and a lateral amplitude W, and if the traveling direction of the surface wave is the +X direction, the elliptical motion is rotating counterclockwise. This surface wave has vertices A, A... for each wavelength, and its apex velocity is only the X component, V = 2πju (however, f
is the frequency of vibration). Therefore, when the movable body 1 is brought into pressure contact with the elastic vibrating body 2 in the direction of the arrow P, the surface of the movable body 1 contacts only the vertices A, A, etc. It is driven in the direction of arrow N by the frictional force between them. The moving speed of the moving body 1 in the direction of the arrow N is proportional to the frequency f. In addition, since frictional drive is performed by pressurized contact, it depends not only on the longitudinal amplitude U (but also on the lateral amplitude W. In other words,
The moving speed of the moving body 1 is proportional to the size of the elliptical motion, and the larger the elliptical motion, the higher the moving speed. Therefore, the moving speed is also proportional to the voltage applied to the piezoelectric element. FIG. 5 shows the principle of generating surface waves in the elastic vibrating body 2 shown in FIG. 3a and 3b are piezoelectric elements, such as PZT, attached to the elastic vibrating body 2 at intervals that allow the most efficient acquisition of elastic waves from the resonance frequency of the elastic vibrating body 2; 3a is attached to the conductor A, and 3b is attached to the conductor B. are connected to each. 4 is a drive power supply, ■-■. A voltage called sinωt is supplied. As is clear from the figure, conductor A has ■-■. A sinusoidal voltage of sinωL (where ω is the angular frequency and time) is applied, and a voltage of V = V, 5 inches (ωt±π/2) is applied to the conductor B through the 90° phase shifter 5. + and - are switched depending on the moving direction of the moving body. In other words, the moving direction of the moving body differs depending on whether the phase is shifted by +90° by the 90° phase shifter 5 or the case where the phase is shifted by -90°. In FIG. 5, (a) to (d) show the vibration state of the elastic vibrating body 2 according to time, and (a) shows L-2nπ/ω, (
b) is t-π/2ω+2nπ/ω, (C) is L=π/ω
+2nπ/ω, (d) is the state of t=3π/2ω+2nπ/ω. Although the elastic wave propagates to the right in the figure, any mass point on the surface of the elastic vibrating body 20 performs an elliptical motion in the counterclockwise direction, as described above. Therefore, the moving body (not shown) that is pressed against the surface of the elastic vibrating body 2 moves to the left. FIGS. 6 and 7 show an example of an ultrasonic motor constructed based on the above-mentioned driving principle. In the figures, 1 is a moving body (
2 is an elastic vibrating body, 3 is a piezoelectric element, 6 is a vibration absorbing member, and 7 is a mounting base. Elastic vibrator 2, piezoelectric element 3
and the vibration absorbing member 6 are integrally configured by being bonded to each other,
It is fixed to the mounting base 7. Further, the movable body 1 is brought into pressure contact with the elastic vibrating body 2 by appropriate means. In the ultrasonic motor configured as described above, when a voltage is applied to the piezoelectric element 3 to generate a traveling elastic wave on the surface of the elastic vibrating body 2, the elastic wave is brought into pressure contact with this surface via the friction body la. The moving body l is driven and rotates. The vibration absorbing member 6 is used to fix the piezoelectric element 3 and the elastic vibrating body 2 to the mounting base 7, and is made of felt or the like to prevent the influence of vibration between the piezoelectric element 3 and the elastic vibrating body 2 and the mounting base 7. Made of material that absorbs vibrations. Although not shown, in the state shown in FIG. 7, the movable body 1 is brought into pressure contact with the elastic vibrating body 2 by appropriate means.
以上説明したように、超音波モータは移動体と弾性振動
体との間に働(摩擦力によって駆動力の伝達が行われる
ものであるため、その摩擦接触面の材料の特性が超音波
モータの機械出力性能及び寿命に大きく影害する。これ
ら両者を構成する材料に要求される特性は以下の通りで
ある。
(1)摩擦係数が大きく、振動エネルギを効率良く回転
エネルギに変換できること。
(2)耐磨耗性に優れているとともに、接触している相
手材料(弾性振動体あるいは移動体)を磨耗させないこ
と。
(3)精密な機械加工が可能で、熱的、化学的に安定で
あること。
(4)経時変化が少なく、安定した動作が長期にわたっ
て維持できること。
そこで、従来の超音波モータでは、弾性振動体の駆動部
を耐磨耗性のライニングとすることが提唱され、また弾
性振動体を金属で、移動体の被駆動部を硬質ゴムでそれ
ぞれ構成した例も見られる。
いずれの場合においても、その考え方は摩擦力を大きく
し、かつ耐久性を高めることを目的としている。しかし
ながら、このような目的を両立させることは容易ではな
く、より一層の改良が求められる。
この発明は、弾性振動体にその熱膨張特性を圧電素子の
それと同等に選定することが容易な材料を用い、移動体
に耐摩耗性と安定した大摩擦係数とを持つ材料を用いる
ことにより、回転効率と耐久性を大幅に向上させた超音
波モータを提供することを目的とするものである。As explained above, an ultrasonic motor works between a moving body and an elastic vibrating body (the driving force is transmitted by frictional force), so the characteristics of the material of the frictional contact surface of the ultrasonic motor This greatly affects mechanical output performance and service life.The characteristics required of the materials that make up both of these are as follows: (1) A large coefficient of friction and the ability to efficiently convert vibration energy into rotational energy. (2) It has excellent abrasion resistance and does not abrade the mating material it comes in contact with (elastic vibrating body or moving body). (3) Can be precisely machined and is thermally and chemically stable. (4) Stable operation can be maintained over a long period of time with little change over time.Therefore, in conventional ultrasonic motors, it has been proposed that the driving part of the elastic vibrator be provided with a wear-resistant lining. There are also examples where the body is made of metal and the driven part of the moving body is made of hard rubber. In either case, the idea is to increase the frictional force and increase durability. However, However, it is not easy to achieve both of these objectives, and further improvements are required.The present invention uses a material for the elastic vibrator whose thermal expansion characteristics can be easily selected to be equivalent to that of the piezoelectric element. The object of the present invention is to provide an ultrasonic motor with significantly improved rotational efficiency and durability by using a material with wear resistance and a stable large coefficient of friction for the moving body.
この発明は、移動体を加圧接触させた弾性振動体の表面
に進行弾性波を発生させることにより前記移動体を駆動
するようにした超音波モータにおいて、弾性振動体にF
e−Ni合金を用い、また移動体に自己潤滑性合金を用
いて構成するものである。The present invention provides an ultrasonic motor that drives a moving body by generating traveling elastic waves on the surface of an elastic vibrating body that is brought into pressurized contact with the moving body.
It is constructed using an e-Ni alloy and a self-lubricating alloy for the moving body.
この発明において、弾性振動体にFe−Ni合金を用い
る理由は以下の通りである。
(1) Fe−Ni合金の線膨張係数(α)は組成依
存性を持っており、任意のαを有する合金を製造するこ
とが可能である。すなわち、Fe−Ni合金のαとN1
Iiとの関係は第2図に示すようになり、Ni1iを変
化させることによって、3〜16X10−’/”Cの範
囲のαを得ることができ、圧電素子の熱膨張係数に合っ
た合金を選定することができる。
(2) Fe−Ni合金は展延性に冨み、加工性に優
れているので、所要の形状を容易に得ることができる。
(3) Fe−Ni合金は、鉄鋼に比べて耐蝕性、耐
酸化性に優れている。
また、移動体に自己潤滑性合金を用いる理由は以下の通
りである。自己潤滑性合金は、固体潤滑剤であるWS、
、 MoS、などとCu、 Fe、 Taなどの金属の
粉末を混合して成形、焼結されるが、この金属焼結体の
空孔部分にはpbなどが溶浸される。したがって、自己
潤滑性合金は摺動によって合金表面、あるいは相手材表
面に部分的に潤滑被膜を形成して潤滑性、耐焼付性、耐
摩耗性を与える。
第3図は、自己潤滑性合金の断面の一例を示すものであ
る。20は硬質な材料からなるマトリックス金属部、2
1は潤滑性に冨んだ材料から構成さ、れた潤滑部である
。マトリックス金属部20は硬質であるため、摩擦係数
を高める方向に働き、潤滑部21はその潤滑性によって
耐摩耗性を向上させる方向に働く。そして、所要の特性
は、マトリックス金属部20と潤滑部21の割合を変化
させることによって任意に得ることができる。
自己潤滑性合金に類似したものとして含油合金があるが
、これは定期的に含油が必要であり、また油に塵埃が吸
着されて汚れ易く、さらに摩擦係数が小さいことから超
音波モータの移動体の構成材料としては不適当なもので
ある。
なお、超音波モータの駆動源として使用される圧電素子
の要求特性は、以下の通りである。
(1)エネルギ効率が良く、内部摩擦損失が小さいこと
、すなわち電気機械的結合係数(Kr)と機械的品質係
数(Qm)が大きいこと。
(2) キュリー温度の高いこと。
(3)機械的強度が高く、さらに振幅動作時に特性劣化
をきたさないこと。In this invention, the reason why Fe--Ni alloy is used for the elastic vibrator is as follows. (1) The linear expansion coefficient (α) of the Fe-Ni alloy has composition dependence, and it is possible to manufacture an alloy having any α. That is, α and N1 of the Fe-Ni alloy
The relationship with Ii is shown in Figure 2, and by changing Ni1i, it is possible to obtain α in the range of 3 to 16X10-'/''C, and by selecting an alloy that matches the thermal expansion coefficient of the piezoelectric element. (2) Fe-Ni alloy is highly malleable and has excellent workability, so the desired shape can be easily obtained. (3) Fe-Ni alloy is suitable for use in steel. It has excellent corrosion resistance and oxidation resistance compared to other materials.The reason why self-lubricating alloys are used in moving bodies is as follows.Self-lubricating alloys are solid lubricants such as WS,
, MoS, etc. and metal powders such as Cu, Fe, Ta, etc. are mixed, molded and sintered, and the pores of this metal sintered body are infiltrated with PB or the like. Therefore, a self-lubricating alloy partially forms a lubricating film on the alloy surface or the mating material surface by sliding, thereby imparting lubricity, seizure resistance, and wear resistance. FIG. 3 shows an example of a cross section of a self-lubricating alloy. 20 is a matrix metal part made of a hard material;
Reference numeral 1 denotes a lubricating part made of a material rich in lubricity. Since the matrix metal part 20 is hard, it works to increase the coefficient of friction, and the lubricating part 21 works to improve wear resistance due to its lubricity. The desired characteristics can be obtained arbitrarily by changing the ratio of the matrix metal part 20 and the lubricating part 21. Oil-impregnated alloys are similar to self-lubricating alloys, but they require periodic oil impregnation, are easily contaminated by oil adsorption, and have a small coefficient of friction, making them suitable for ultrasonic motors. It is unsuitable as a constituent material. Note that the required characteristics of the piezoelectric element used as the drive source of the ultrasonic motor are as follows. (1) Good energy efficiency and low internal friction loss, that is, high electromechanical coupling coefficient (Kr) and mechanical quality coefficient (Qm). (2) High Curie temperature. (3) It has high mechanical strength and does not cause characteristic deterioration during amplitude operation.
以下、図に基づいてこの発明の詳細な説明する。 第1
図において、11は自己潤滑性合金からなる移動体、1
2はFe−Ni合金からなる弾性振動体、13は圧電素
子、14はフェルトなどからなる振動吸収部材、15は
取付台である。
移動体11には、Fe焼結体の空孔部分にpbを含浸し
たFe −Pb複合焼結体を用いた。
圧電素子13には、組成がPbZr0:+ PbTi
0z Pb(Sr、 Sb )03で、電気機械結合
係数(Kr)が0.66、機械的品質係数(Qm)が1
800、そして線膨張係数(α)が5.7X10−’/
”Cである材料を選定した。
弾性振動体12には、線膨張係数(α)が圧電素子13
と同等の値を持ったFe −40%Ni合金を採用した
。振動吸収部材14には、市販のフェルトを用いた。
このようにして構成した超音波モータは、連続的に長期
に駆動しても摩耗がほとんどなく、運転効率の経時安定
性にも優れていることが確認された。なお、移動体にF
e −Pb複合焼結体以外の自己潤滑性合金を用いても
、上記と同様な効果が得られることも確認された。Hereinafter, the present invention will be explained in detail based on the drawings. 1st
In the figure, 11 is a moving body made of a self-lubricating alloy;
2 is an elastic vibrating body made of Fe--Ni alloy, 13 is a piezoelectric element, 14 is a vibration absorbing member made of felt, etc., and 15 is a mounting base. For the moving body 11, an Fe--Pb composite sintered body was used, in which the pores of the Fe sintered body were impregnated with PB. The piezoelectric element 13 has a composition of PbZr0:+PbTi
0zPb(Sr, Sb)03, the electromechanical coupling coefficient (Kr) is 0.66, the mechanical quality coefficient (Qm) is 1
800, and the coefficient of linear expansion (α) is 5.7X10-'/
A material with a coefficient of linear expansion (α) of
An Fe-40%Ni alloy with a value equivalent to that of the above was used. For the vibration absorbing member 14, commercially available felt was used. It was confirmed that the ultrasonic motor constructed in this manner shows almost no wear even when driven continuously for a long period of time, and has excellent stability of operating efficiency over time. In addition, if the moving object
It was also confirmed that the same effects as above can be obtained even when a self-lubricating alloy other than the e-Pb composite sintered body is used.
この発明は、弾性振動体に圧電素子と同様の線膨張係数
を持つ合金を容易に選定できるFe−Ni合金を用い、
また移動体に大摩擦係数と潤滑性とを併せ持つ自己潤滑
性合金を用いて超音波モータを構成したので、超音波モ
ータの回転効率及び耐久性(経時安定性)が向上すると
ともに、回転トルクがアップするなどの効果が得られる
。This invention uses an Fe-Ni alloy for the elastic vibrating body, which can be easily selected from an alloy having a coefficient of linear expansion similar to that of the piezoelectric element.
In addition, since the ultrasonic motor is constructed using a self-lubricating alloy that has both a large coefficient of friction and lubricity for the moving body, the rotational efficiency and durability (stability over time) of the ultrasonic motor are improved, and the rotational torque is reduced. You can obtain effects such as increasing
第1図はこの発明の実施例の縦断面図、第2図Fe−N
i合金のNi量と線膨張係数との関係を示す線図、第3
図は自己潤滑性合金の断面図、第4図は超音波モータの
原理を説明する説明図、第5図は第4図における弾性振
動体の表面波の発生原理を説明する説明図、第6図は従
来の超音波モータの構成を示す分解斜視図、第7図は第
6図の組立断面図である。
11:移動体、12:弾性振動体、13:圧電素子、1
4:振動吸収部材、15:取付台。
第4図
Ni量(%〕
第2図
第3図
第5図
第7図Fig. 1 is a vertical sectional view of an embodiment of the present invention, Fig. 2 is a Fe-N
Diagram showing the relationship between Ni content and linear expansion coefficient of i-alloy, 3rd
Figure 4 is a cross-sectional view of a self-lubricating alloy, Figure 4 is an explanatory diagram explaining the principle of an ultrasonic motor, Figure 5 is an explanatory diagram explaining the principle of generation of surface waves in the elastic vibrating body in Figure 4, and Figure 6 The figure is an exploded perspective view showing the configuration of a conventional ultrasonic motor, and FIG. 7 is an assembled sectional view of FIG. 6. 11: moving body, 12: elastic vibrating body, 13: piezoelectric element, 1
4: Vibration absorbing member, 15: Mounting base. Figure 4 Ni amount (%) Figure 2 Figure 3 Figure 5 Figure 7
Claims (1)
弾性波を発生させることにより前記移動体を駆動するよ
うにした超音波モータにおいて、弾性振動体にFe−N
i合金を用い、また移動体に自己潤滑性合金を用いて構
成したことを特徴とする超音波モータ。1) In an ultrasonic motor that drives a moving body by generating traveling elastic waves on the surface of an elastic vibrating body that is brought into pressure contact with the moving body, the elastic vibrating body is made of Fe-N.
An ultrasonic motor characterized in that it is constructed using an i-alloy and a self-lubricating alloy for a moving body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63013925A JPH01190270A (en) | 1988-01-25 | 1988-01-25 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63013925A JPH01190270A (en) | 1988-01-25 | 1988-01-25 | Ultrasonic motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01190270A true JPH01190270A (en) | 1989-07-31 |
Family
ID=11846763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63013925A Pending JPH01190270A (en) | 1988-01-25 | 1988-01-25 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01190270A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108224712A (en) * | 2017-12-01 | 2018-06-29 | 霍尼韦尔环境自控产品(天津)有限公司 | For reminding the method for cleaning electrostatic precipitator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57185794A (en) * | 1981-05-12 | 1982-11-16 | Sony Corp | Digital speaker system |
JPS639300A (en) * | 1986-06-27 | 1988-01-14 | Matsushita Electric Ind Co Ltd | Speaker system |
-
1988
- 1988-01-25 JP JP63013925A patent/JPH01190270A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57185794A (en) * | 1981-05-12 | 1982-11-16 | Sony Corp | Digital speaker system |
JPS639300A (en) * | 1986-06-27 | 1988-01-14 | Matsushita Electric Ind Co Ltd | Speaker system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108224712A (en) * | 2017-12-01 | 2018-06-29 | 霍尼韦尔环境自控产品(天津)有限公司 | For reminding the method for cleaning electrostatic precipitator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7307372B2 (en) | Piezoelectric motor and method of exciting an ultrasonic traveling wave to drive the motor | |
US5122700A (en) | Frictional material for vibration wave driven motor | |
KR20030076037A (en) | Piezoelectric linear ultrasonic motor | |
US5274295A (en) | Vibration driven motor | |
US6140741A (en) | Vibration type actuator | |
US6664712B2 (en) | Ultrasonic motors | |
JP4882252B2 (en) | Vibration wave motor | |
JPS6022479A (en) | Stator of surface wave motor and improvement in movable element | |
JPS60200778A (en) | Supersonic drive motor | |
JPH0532991B2 (en) | ||
JPH01190270A (en) | Ultrasonic motor | |
US5187406A (en) | Vibration driven motor | |
JPH03195379A (en) | Ultrasonic motor | |
KR101531268B1 (en) | Ultrasonic motor having lightweight vibrating element | |
KR100530867B1 (en) | Complex Piezoelectric Linear Ultrasonic Motor | |
JPH0197179A (en) | Supersonic motor | |
JP2537393B2 (en) | Compound transducer type ultrasonic actuator | |
JPH09327185A (en) | Oscillating actuator | |
JP4924726B2 (en) | Vibration wave motor, lens barrel and camera | |
JPS60183982A (en) | Piezoelectric motor | |
JPH01177878A (en) | Oscillatory wave motor | |
JPS61173683A (en) | Supersonic drive motor | |
JPH0217873A (en) | Ultrasonic motor | |
JPS61102177A (en) | Surface wave drive motor | |
JPH0349573A (en) | Ultrasonic motor |