JPH01190224A - Charger - Google Patents

Charger

Info

Publication number
JPH01190224A
JPH01190224A JP63015491A JP1549188A JPH01190224A JP H01190224 A JPH01190224 A JP H01190224A JP 63015491 A JP63015491 A JP 63015491A JP 1549188 A JP1549188 A JP 1549188A JP H01190224 A JPH01190224 A JP H01190224A
Authority
JP
Japan
Prior art keywords
battery
circuit
batteries
charging
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63015491A
Other languages
Japanese (ja)
Inventor
Ryuichi Nakano
龍一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63015491A priority Critical patent/JPH01190224A/en
Publication of JPH01190224A publication Critical patent/JPH01190224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent deterioration of cells and to enable good charge, by employing a plurality of chargeable cells and using them alternately and charging such a cell as having approximately zero capacity. CONSTITUTION:A plurality of cells 2, 3 are charged by a charge circuit 1 through a charge switching circuit 4, and the voltage of these cells 2, 3 are detected through a cell voltage detecting circuit 5. A control circuit 8 controls a charge switch circuit 4 and a discharge switching circuit 6 based on a detected voltage. At this time, the control circuit 8 switches the discharge control circuit 6 to use the cells 2, 3 alternately, and charges such cells as having approximately zero cell capacity through switching of the charge switching circuit 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、充電可能な2次電池を充電する充電器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charger for charging a rechargeable secondary battery.

〔従来の技術〕[Conventional technology]

一般に、充電器を用いて充電可能な2次電池(以下、単
に電池という)を充電する場合、電池の残容聞を正確に
把握し難いため、電池容量が未だ残っている状態で充電
を繰り返すことが多い。
Generally, when charging a rechargeable secondary battery (hereinafter simply referred to as a battery) using a charger, it is difficult to accurately determine the remaining capacity of the battery, so charging is repeated while the battery still has capacity remaining. There are many things.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このように電池容量を残したままで充電を繰
り返すと、電池を劣化し易く、そのため、電池の繰り返
し充電の可能な回数が減少するという現粂が起き、ひい
ては良好な充電が行えなくなるという問題があった。
However, if the battery is repeatedly charged with remaining battery capacity, the battery tends to deteriorate, which reduces the number of times the battery can be repeatedly charged, which in turn makes it impossible to charge the battery properly. was there.

本発明は、2本以上(複数)の電池を交互に使用し、電
池容量がほぼ0%になった電池を充電し得るようにした
ことにより、電池の劣化を防ぎ、良好な充電が行える充
電器を提供することを目的としている。
The present invention prevents battery deterioration and enables good charging by alternately using two or more batteries and making it possible to charge a battery whose battery capacity is almost 0%. The purpose is to provide equipment.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明は、複数の  ゛充
電可能な電池と、これらの電池を充電する充電回路と、
充電する電池を切り換える充電切換回路と、放電する電
池を切り換える放電切換回路と、前記複数の電池の各端
f同電圧を検出する電池電圧検出回路と、前記電池電圧
検出回路による検出値に基づいて前記充電切換回路と放
電切換回路と充電回路とを制御する制御回路とからなる
充電器であって、前記制御回路は、前記tIi電切換回
路を切り換えて前記複数の電池を交互に使用し、電池容
部がほぼ0%になった電池を前記充電切換回路を9ノリ
換えて充電するようにイリ御するものである。
To achieve the above object, the present invention comprises a plurality of rechargeable batteries, a charging circuit for charging these batteries,
a charging switching circuit for switching batteries to be charged; a discharging switching circuit for switching batteries to be discharged; a battery voltage detection circuit for detecting the same voltage at each end of the plurality of batteries; The charger includes a control circuit that controls the charging switching circuit, the discharging switching circuit, and the charging circuit, the control circuit switching the tIi power switching circuit to alternately use the plurality of batteries, The charge switching circuit is switched 9 times to control the charging of a battery whose capacity is almost 0%.

(作用) 前記構成の充電器によれば、複数の電池が交互に使用さ
れ、また、電池容量がほぼ0%になった電池が充電され
るので、電池容部の残っていない状態でしって充電を繰
り返すことができ、的確な充゛市を行うことができる。
(Function) According to the charger configured as described above, a plurality of batteries are used alternately, and a battery whose battery capacity is almost 0% is charged, so it is possible to charge the battery with no remaining battery capacity. It is possible to repeatedly charge the battery and perform accurate charging.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成を示す。同図において
、1は後述の充電切換回路4を介して電池2.3 (I
池2.3の片方のみ、あるいは両方)を充電する充電回
路である。4は充電する電池2゜3を切り換える充電切
換回路である。5は電池2゜3の各端子間電圧を検出し
、この電圧検出値を出力する電池電圧検出回路である。
FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, a battery 2.3 (I
This is a charging circuit that charges only one or both of the batteries 2 and 3. Reference numeral 4 denotes a charging switching circuit that switches between the batteries 2 and 3 to be charged. Reference numeral 5 denotes a battery voltage detection circuit that detects the voltage between each terminal of the batteries 2 and 3 and outputs the detected voltage value.

6は使用(放電)する電池2,3を切り換え、電池2あ
るいは電池3を負荷7に接続する/i5[電切換回路で
ある。8は制御回路で、電池電圧検出回路5がら出力さ
れた電池2.3の各電圧検出値に基づいて充電切換回路
4と放電切換回路6とによる電池2.3の切り換えを制
御する制御信号を出力し、また、充電回路1を制御する
制御信号を出力するものである。
6 is a power switching circuit that switches between the batteries 2 and 3 to be used (discharged) and connects the battery 2 or 3 to the load 7. Reference numeral 8 denotes a control circuit which generates control signals for controlling the switching of the batteries 2.3 by the charging switching circuit 4 and the discharging switching circuit 6 based on each voltage detection value of the batteries 2.3 outputted from the battery voltage detection circuit 5. It also outputs a control signal for controlling the charging circuit 1.

なお、本実施例では、電池を2本としたが電池を3本以
上としても同様に構成することができる。
In this embodiment, two batteries are used, but the same configuration can be made using three or more batteries.

ここで、放電時および充電時における電池2゜3の切り
換え動作について説明する。
Here, the switching operation of the battery 2.3 during discharging and charging will be explained.

まず、fi荷7を介して電池2.3をIII電する場合
について説明する。制御回路8は、電池電圧検出回路5
から入力された電圧検出値を読み込み、電池2の電圧検
出値がOv、すなわち、電池容部が0%でなければ、放
電切換回路6を切り換え電池2を放電させる。一方、電
池2の電池容量が0%で、かつ、電池3の電池容量が0
%でなければ、制御回路8は放電切換回路6を切り換え
電池3を放電させる。なお、放電の優先順位は電池2.
電池3の順としている。
First, the case where the battery 2.3 is charged via the fi charge 7 will be described. The control circuit 8 includes the battery voltage detection circuit 5
The voltage detection value input from the battery 2 is read, and if the voltage detection value of the battery 2 is Ov, that is, the battery capacity is not 0%, the discharge switching circuit 6 is switched and the battery 2 is discharged. On the other hand, the battery capacity of battery 2 is 0%, and the battery capacity of battery 3 is 0%.
%, the control circuit 8 switches the discharge switching circuit 6 to discharge the battery 3. Note that the discharge priority is battery 2.
The order is battery 3.

次に、電池2.3を充電する場合について説明する。こ
の場合も、制御回路8は、電池電圧検出回路5から入力
された電圧検出値を読み込み、電池2.3の内のいずれ
か一方、あるいは両方の電池容がが0%のとき、その電
池容部の0%の電池(電池2.3の一方、あるいは両方
)を充電するように充電切換回路4を切り換え、充電回
路1は選択された電池容1jiO%の電池を充電する。
Next, the case of charging the battery 2.3 will be explained. In this case as well, the control circuit 8 reads the voltage detection value input from the battery voltage detection circuit 5, and when the battery capacity of one or both of the batteries 2, 3 is 0%, The charging switching circuit 4 is switched to charge the battery having a capacity of 0% (one or both of the batteries 2 and 3), and the charging circuit 1 charges the selected battery having a battery capacity of 1jiO%.

一方、電池2.3のいずれの電池容部も0%でないとき
、制御回路8は電池2.3が共に充電されないように充
電切換回路4の切り換えを制御する。
On the other hand, when the battery capacity of any of the batteries 2.3 is not 0%, the control circuit 8 controls the switching of the charge switching circuit 4 so that the batteries 2.3 are not charged together.

次に、前記構成における充放電の状t!!、遷移につい
て第2図を用いて詳細に説明する。
Next, the state of charging and discharging in the above configuration t! ! , transition will be explained in detail using FIG.

まず、時点taにおける電池2.3の電池容量が共に1
00%の状態からの放電モード1について説明する。こ
のモードでは、制御回路8に読み込まれる電池2,3の
電圧検出値は同電圧なので、&l1m回路8から出力さ
れた制御信号でもって放電切換回路6は切り換えられ、
電池2が負荷7に接続される。そのため、電池2が負荷
7を介して放電され、電池2の電池容部は低下し、電池
3は放電されないので電池3の電池容部は100%のま
まで移行する。したがって、各電池容部は第2図のal
 、a2に示すようになる。
First, the battery capacities of batteries 2 and 3 at time ta are both 1
Discharge mode 1 from the 00% state will be explained. In this mode, the voltage detection values of the batteries 2 and 3 read into the control circuit 8 are the same voltage, so the discharge switching circuit 6 is switched by the control signal output from the &l1m circuit 8.
Battery 2 is connected to load 7 . Therefore, the battery 2 is discharged via the load 7, and the battery capacity of the battery 2 decreases, and the battery 3 is not discharged, so the battery capacity of the battery 3 remains at 100%. Therefore, each battery container is located at al in FIG.
, a2.

次に、時点tbにおける電池2.3の電池容量が共に0
%でない状態(ここでは電池2.3の電池容量がそれぞ
れ50%、100%とする)からの充電モード1につい
て説明する。このt−ドでは、制御回路8に読み込まれ
る1i池2.3の電圧検出値は共にOvでないので、制
御回路8は充電回路1を制御する制御信号を出力しない
。したがって、電池2.3は共に充電されない。そのた
め、電池2.3の容量はそれぞれ50%、100%のま
まで移行し、第2図のす、、b2に示すようになる。
Next, the battery capacities of batteries 2 and 3 at time tb are both 0.
% (here, the battery capacities of batteries 2 and 3 are assumed to be 50% and 100%, respectively), charging mode 1 will be described. In this t-mode, both of the voltage detection values of the 1i battery 2 and 3 read into the control circuit 8 are not Ov, so the control circuit 8 does not output a control signal for controlling the charging circuit 1. Therefore, both batteries 2 and 3 are not charged. Therefore, the capacities of the batteries 2 and 3 remain at 50% and 100%, respectively, as shown in FIG.

次に、時点tcにおける電池2の電池容量が100%以
下で(ここでは電池2の電池容ωを50%とする)、電
池3の電池容量が100%である状態からの放電モード
2について説明する。このモードでは、制御回路8に読
み込まれる電池2の電圧検出値がOVに到達するまで前
述と同じ放電上−ド1の動作を行う。つまり、電池2の
放電により電池2の電池容れ1は低下し、電71!!3
はtIl電されないので電1!!3の電池容量は100
%のままで移1−1シ、第2図の01.c2に示すよう
になる。
Next, we will explain discharge mode 2 from a state where the battery capacity of battery 2 at time tc is 100% or less (here, the battery capacity ω of battery 2 is 50%) and the battery capacity of battery 3 is 100%. do. In this mode, the same operation of the upper discharge board 1 as described above is performed until the voltage detection value of the battery 2 read into the control circuit 8 reaches OV. In other words, due to the discharge of battery 2, the battery capacity 1 of battery 2 decreases, and the charge 71! ! 3
is not charged, so it is charged 1! ! The battery capacity of 3 is 100
Move to 1-1 with the same percentage as 01 in Figure 2. It becomes as shown in c2.

次に、時点[dにおける電池2の電池容量が0%、電池
3の電池容量が100%である状態からの放電モード3
について説明する。このモードでは、制御回路8に読み
込まれる電池2の電圧検出値がOVなので、制御回路8
からの制御信号でもって放電切換回路6は切り換えられ
、電池3が角?南アに接続される。そのため、電池3の
放電により電池3の電池容量は低下し、電池2の電池容
量は0%のままで移行し、第2図のd、、d2に示すよ
うになる。
Next, discharge mode 3 is started from a state where the battery capacity of battery 2 at time [d is 0% and the battery capacity of battery 3 is 100%.
I will explain about it. In this mode, the voltage detection value of the battery 2 read into the control circuit 8 is OV, so the control circuit 8
The discharge switching circuit 6 is switched by a control signal from Connected to South Africa. Therefore, the battery capacity of battery 3 decreases due to discharge of battery 3, and the battery capacity of battery 2 remains at 0%, as shown in d and d2 of FIG. 2.

次に、時点teにおける電池2の電池容量が0%で、電
池3の電池容量が100%以下(ここでは電池3の電池
容量を50%とする)である状態からの充電モード2に
ついて説明する。このモードでは、制御回路8に読み込
まれる電池2の電圧検出値がOVで、一方、電池3の電
圧検出値がOVでないので、充電切換回路4が制御回路
8からの制御信号でもって切り換えられ、電池2は充電
回路1により充電され、電池2の電池容量は上界し、ま
た、電池3は充電されないので電池3の電池容量は50
%のままで移行し、第2図のel。
Next, charging mode 2 from a state where the battery capacity of battery 2 at time te is 0% and the battery capacity of battery 3 is 100% or less (here, the battery capacity of battery 3 is assumed to be 50%) will be explained. . In this mode, the voltage detection value of the battery 2 read into the control circuit 8 is OV, while the voltage detection value of the battery 3 is not OV, so the charging switching circuit 4 is switched by the control signal from the control circuit 8. Battery 2 is charged by charging circuit 1, and the battery capacity of battery 2 has an upper limit, and battery 3 is not charged, so the battery capacity of battery 3 is 50
Migrate as % and el in Figure 2.

e2に示すようになる。It becomes as shown in e2.

次に、時点trにおける電池2の電池容量が100%で
、電池3の電池容量が100%以下(ここでは電池3の
電池容量を50%とする)である状態からの放電モード
4について説明する。このモードでは、まず、前記放電
モード3で電池3が負荷7に接続された状態になってお
り、さらに、制御回路8に読み込まれた電池3の電圧検
出値がOVでないので、前記a電モード2と同様に、電
池3の放電により電池3の電池容量は低下し、電池2の
電池容量は100%のままで移行し、第2図のf、、f
2に示すようになる。
Next, discharge mode 4 from a state where the battery capacity of battery 2 at time tr is 100% and the battery capacity of battery 3 is 100% or less (here, the battery capacity of battery 3 is assumed to be 50%) will be explained. . In this mode, first, the battery 3 is connected to the load 7 in the discharge mode 3, and furthermore, since the voltage detection value of the battery 3 read into the control circuit 8 is not OV, the battery 3 is in the a-power mode. 2, the battery capacity of battery 3 decreases due to discharge of battery 3, and the battery capacity of battery 2 remains at 100%, and the battery capacity of battery 2 changes to f, , f in Fig. 2.
2.

次に、時点tqにおける電池2の電池容量が100%で
、電池3の電池容量が0%である状態からの放電モード
5について説明する。このモードでは、制御回路8に読
み込まれる電池3の電圧検出噴がOvなので、制御回路
8からの制御信号でもって放電切換回路6が切り換えら
れ、電池2が<4荷7に接続され、前記放電モード3と
同様に、電池2の放電により電池2の電池容量は低下し
、電池3の電池容量は0%のままで移行し、第2図の0
1.02に示すようになる。
Next, discharge mode 5 from a state where the battery capacity of battery 2 at time tq is 100% and the battery capacity of battery 3 is 0% will be described. In this mode, since the voltage detection jet of the battery 3 read into the control circuit 8 is Ov, the discharge switching circuit 6 is switched by the control signal from the control circuit 8, and the battery 2 is connected to the <4 load 7, and the discharge As in mode 3, the battery capacity of battery 2 decreases due to discharge of battery 2, and the battery capacity of battery 3 remains at 0%, and the battery capacity of battery 3 remains at 0%.
1.02.

次に、時点thにおける電池2の電池容量が100%以
下で(ここでは電池2の電池容けを50%とする)、電
池3の電池容量が0%である状態からの充電モード3に
ついて説明する。このモードでは、制御回路8に読み込
まれる電池3の電圧検出値が0■で、制御回路8に読み
込まれる電池2の電圧検出値がOVでないので、制御回
路8からの制御信号でもって充電切換回路4が切り換え
られ、前記充電上−ド2と同様に、電池3は充電回路1
により充電され、電池3の電池容lは上昇し、電it!
!2の電池容量は50%のままで移行し、第2図のrl
 、f2に示すようになる。
Next, we will explain charging mode 3 from a state where the battery capacity of battery 2 at time th is 100% or less (here, the battery capacity of battery 2 is assumed to be 50%) and the battery capacity of battery 3 is 0%. do. In this mode, the detected voltage value of the battery 3 read into the control circuit 8 is 0■, and the detected voltage value of the battery 2 read into the control circuit 8 is not OV, so a control signal from the control circuit 8 is used to control the charge switching circuit. 4 is switched, and like the charging top 2, the battery 3 is switched to the charging circuit 1.
The battery capacity l of battery 3 increases, and the electric power it!
! The battery capacity of 2 remains at 50% and the transition is made to rl in Fig. 2.
, f2.

時点tiの状態からの放電モードは、前記放電モード2
と同様に行われ、各電池容量は第2図のil、i2に示
すようになる。
The discharge mode from the state at time ti is the discharge mode 2.
The battery capacity is as shown in il and i2 in FIG. 2.

時点tjの状態からの放電モードは、電池3の電池容量
が0%になるまで、前記放電モード3と同様の動作が行
われ、各1池容噛は第2図のjl。
In the discharging mode from the state at time tj, the same operation as the discharging mode 3 is performed until the battery capacity of the battery 3 becomes 0%, and each battery capacity is set at jl in FIG.

j2に示すようになる。It becomes as shown in j2.

次に、時点tkにおける電池2,3の電池容量が共に0
%の状態からの放電モード4について説明する。このモ
ードでは、制御回路8に読み込まれる電池2,3の電圧
検出値が共にOvなので、制御回路8からの制御信号で
もって電池2.3の両方が充電回路1に接続されるよう
に充電切換回路4は切り換えられ、電池2.3の両方に
充電され、電池2,3の電池容量は共に上昇し、第2図
のkl 、に2に示すようになる。
Next, the battery capacities of batteries 2 and 3 at time tk are both 0.
Discharge mode 4 from the % state will be explained. In this mode, since the voltage detection values of batteries 2 and 3 read into the control circuit 8 are both Ov, charging is switched so that both batteries 2 and 3 are connected to the charging circuit 1 using a control signal from the control circuit 8. Circuit 4 is switched and both batteries 2.3 are charged, and the battery capacities of batteries 2 and 3 are increased together, as shown at kl 2 in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明は、充電可能な電池を複数個用い、電池を使用す
るときは交ηに使用し、充電するときは電池容量がほぼ
0%になった電池を充電するようにしたので、電池容量
が残っている状態で電池を繰り返し充電した場合の電池
の劣化を防止することができ、良好な充電を行うことが
できる。さらには、繰り返し充電可能な回数を増大する
ことができ、結果的に電池の寿命を延ばすことができる
In the present invention, a plurality of rechargeable batteries are used, and when the batteries are used, they are used interchangeably, and when charging, the batteries whose battery capacity is almost 0% are charged, so that the battery capacity can be increased. It is possible to prevent the battery from deteriorating even if the battery is repeatedly charged in the remaining state, and it is possible to perform good charging. Furthermore, it is possible to increase the number of times that the battery can be repeatedly charged, and as a result, the life of the battery can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による充電器の10ツク構成
図、第2図は本実施例構成による充放電動作の状態遷移
を示す図である。 1・・・充電回路、2.3・・・電池、4・・・充電切
換回路、5・・・電池電圧検出回路、6・・・放電切換
回路、8・・・制御回路。 特許出願人    松F電r株式会社 代 理 人    弁理士  小書 悦司同     
 弁理士  長1) 正 向      弁理士  板書 東大 第  1  図
FIG. 1 is a 10-unit configuration diagram of a charger according to an embodiment of the present invention, and FIG. 2 is a diagram showing state transitions of charging and discharging operations according to the configuration of this embodiment. DESCRIPTION OF SYMBOLS 1...Charging circuit, 2.3...Battery, 4...Charging switching circuit, 5...Battery voltage detection circuit, 6...Discharge switching circuit, 8...Control circuit. Patent applicant: Matsu Fden Co., Ltd. Agent: Etsushi Kosho, patent attorney
Patent Attorney Chief 1) Masamukai Patent Attorney Blackboard University of Tokyo Diagram 1

Claims (1)

【特許請求の範囲】[Claims] 1、複数の充電可能な電池と、これらの電池を充電する
充電回路と、充電する電池を切り換える充電切換回路と
、放電する電池を切り換える放電切換回路と、前記複数
の電池の各端子間電圧を検出する電池電圧検出回路と、
前記電池電圧検出回路による検出値に基づいて前記充電
切換回路と放電切換回路と充電回路とを制御する制御回
路とからなる充電器であつて、前記制御回路は、前記放
電切換回路を切り換えて前記複数の電池を交互に使用し
、電池容量がほぼ0%になつた電池を前記充電切換回路
を切り換えて充電するように制御することを特徴とする
充電器。
1. A plurality of rechargeable batteries, a charging circuit for charging these batteries, a charge switching circuit for switching the batteries to be charged, a discharge switching circuit for switching the batteries for discharging, and a voltage between each terminal of the plurality of batteries. a battery voltage detection circuit to detect;
The charger includes a control circuit that controls the charging switching circuit, the discharging switching circuit, and the charging circuit based on a value detected by the battery voltage detection circuit, wherein the control circuit switches the discharging switching circuit to control the charging circuit. A charger characterized in that a plurality of batteries are used alternately and the charge switching circuit is controlled to charge a battery whose battery capacity has reached approximately 0% by switching the charge switching circuit.
JP63015491A 1988-01-25 1988-01-25 Charger Pending JPH01190224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015491A JPH01190224A (en) 1988-01-25 1988-01-25 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015491A JPH01190224A (en) 1988-01-25 1988-01-25 Charger

Publications (1)

Publication Number Publication Date
JPH01190224A true JPH01190224A (en) 1989-07-31

Family

ID=11890268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015491A Pending JPH01190224A (en) 1988-01-25 1988-01-25 Charger

Country Status (1)

Country Link
JP (1) JPH01190224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193033A (en) * 1990-11-26 1992-07-13 Hitachi Ltd Battery system
JP2006149185A (en) * 2004-11-18 2006-06-08 Internatl Business Mach Corp <Ibm> Staggered backup battery charging system
JP2006217696A (en) * 2005-02-02 2006-08-17 Nec Engineering Ltd Apparatus and method for supplying dc power using charging circuit
JP2017509113A (en) * 2014-02-12 2017-03-30 フルイディック, インク.Fluidic, Inc. Method for operating an electrochemical cell containing electrodeposited fuel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193033A (en) * 1990-11-26 1992-07-13 Hitachi Ltd Battery system
JP2006149185A (en) * 2004-11-18 2006-06-08 Internatl Business Mach Corp <Ibm> Staggered backup battery charging system
JP4732857B2 (en) * 2004-11-18 2011-07-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Back-up battery system, method for charging the same, and program
JP2006217696A (en) * 2005-02-02 2006-08-17 Nec Engineering Ltd Apparatus and method for supplying dc power using charging circuit
JP4527560B2 (en) * 2005-02-02 2010-08-18 Necエンジニアリング株式会社 DC power supply method and apparatus using charging circuit
JP2017509113A (en) * 2014-02-12 2017-03-30 フルイディック, インク.Fluidic, Inc. Method for operating an electrochemical cell containing electrodeposited fuel
US10461554B2 (en) 2014-02-12 2019-10-29 Nantenergy, Inc. Method of operating electrochemical cells comprising electrodeposited fuel

Similar Documents

Publication Publication Date Title
KR100415763B1 (en) Rechargeable battery pack
US7193390B2 (en) Apparatus for connecting secondary battery cells in series and method for controlling secondary battery cells connected in series
KR100393436B1 (en) Method for rapid charge of battery
US5519563A (en) Protection circuit for electric cells from overcharge and overdischarge using a plurality of detection units of a single chip type
JP2002078218A5 (en) Charging circuit, charging / discharging circuit, charging method and battery pack
JPH06245406A (en) Charging/discharging circuit
US5397974A (en) Rechargeable battery overdischarge prevention circuit
JP2006337130A (en) Flying capacitor type voltage measurement device
JP3395601B2 (en) Battery charging / discharging device
KR200189819Y1 (en) Battery pack capable of balanced charging cell
JP2001157380A (en) Expansion battery box with communicating function provided on ups
JPH10290531A (en) Battery pack and charger for battery pack
JP3581428B2 (en) Rechargeable power supply
US6329795B1 (en) Charging and discharging control circuit and charging type power supply device
JPH01190224A (en) Charger
JP2004229391A (en) Battery pack
CN215728679U (en) Battery voltage detection circuit
JP3713470B2 (en) Secondary battery charge / discharge controller
KR960039478A (en) Charge / discharge control circuit
JPH1186913A (en) Balance circuit of a plurality of chargeable batteries
JP2005086867A (en) Charging control system
JP2005019385A (en) Charging method of nonaqueous electrolyte secondary battery, and charger
JP2001268817A (en) Series secondary cell group
JPH0759270A (en) Battery charger
JPH08294238A (en) Charging/discharging control circuit