JPH01189965A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH01189965A
JPH01189965A JP63014926A JP1492688A JPH01189965A JP H01189965 A JPH01189965 A JP H01189965A JP 63014926 A JP63014926 A JP 63014926A JP 1492688 A JP1492688 A JP 1492688A JP H01189965 A JPH01189965 A JP H01189965A
Authority
JP
Japan
Prior art keywords
electrode
organic compound
substrate
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63014926A
Other languages
Japanese (ja)
Inventor
Kenichi Takeyama
竹山 健一
Koji Nitta
新田 恒治
Noriko Iwamoto
岩本 則子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63014926A priority Critical patent/JPH01189965A/en
Publication of JPH01189965A publication Critical patent/JPH01189965A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form the title transistor with high density and an excellent uniformity at a high yield on a substrate with a large area by a method wherein an electrode system consisting of a gate electrode, a source electrode and a drain electrode, an insulating film and a semiconductor layer consisting of a plate type low molecular organic compound are provided. CONSTITUTION:A gate electrode 2 is formed on an insulating substrate 1, and an insulating film 3 is formed on the gate electrode 2 using an electron beam vapor deposition method. Then, a source electrode 5 and a drain electrode 6 are formed by providing a gap adjacent to the insulating film 3, and a thin film 4 of plate type low molecular organic compound is formed in the gap located between the electrodes 5 and 6. A compound showing a discotic crystal phase is suitable for the plate type molecular organic compound, and a semiconductor layer is formed using a thin film of the above-mentioned compounds alone or in a mixed form. As a result, a transistor can be formed on the substrate having a large area at a high yield.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電界効果トランジスタに関するものである。[Detailed description of the invention] Industrial applications The present invention relates to field effect transistors.

従来の技術 従来、電界効果トランジスタを構成する半導体材料u、
単結晶シリコン、アモルファスシリコン。
BACKGROUND OF THE INVENTION Conventionally, semiconductor materials constituting a field effect transistor are
Single crystal silicon, amorphous silicon.

ポリシリコン、硫化カドミウムなどの無機材料が使われ
ている。単結晶基板を用いる方法では、基板製造装置の
制約から、大面積化が困難である。
Inorganic materials such as polysilicon and cadmium sulfide are used. In the method using a single crystal substrate, it is difficult to increase the area due to limitations of substrate manufacturing equipment.

また、プラズマ堆積法によシ形成されたアモルファスシ
リコンやポリシリコンを半導体層に使用した電界効果ト
ランジスタの製造方法があるが、大面積に均一に歩留シ
よく製造することは、プラズマ制御の問題から困難であ
る。以上のよう罠、無機半導体では任意の形状の基板に
電界効果トランジスタを形成するKは多くの問題を抱え
ている。
There is also a method for manufacturing field effect transistors that uses amorphous silicon or polysilicon formed by plasma deposition as a semiconductor layer, but manufacturing uniformly over a large area with a high yield is a problem in plasma control. It is difficult because As described above, inorganic semiconductors have many problems in forming field effect transistors on substrates of arbitrary shapes.

そこで、有機化合物を半導体層に使用した技術提案(例
えば特開昭58−114465号公報など)がなされて
いる。提案されている有機高分子半導体の製造方法は、
大面積基板に触媒を塗布し、その後原料ガスを基板上に
導入する方法である。しかし、触媒を大面積に均一に塗
布することは困難であり、さらに、原料ガスを大面積に
均一に導入することも困難である。
Therefore, technical proposals have been made in which organic compounds are used in semiconductor layers (for example, Japanese Patent Application Laid-Open No. 114465/1983). The proposed method for manufacturing organic polymer semiconductors is
This is a method in which a catalyst is applied to a large-area substrate, and then a raw material gas is introduced onto the substrate. However, it is difficult to uniformly apply the catalyst over a large area, and furthermore, it is difficult to uniformly introduce the raw material gas over a large area.

また、別の提案として、半導体層に有機化合物の電解重
合膜を使用する方法がある、しかしこの方法も大面積に
均一に重合膜を形成することは困難であり、脱ドープ処
理を行う必要がある。
Another proposal is to use an electrolytically polymerized film of an organic compound for the semiconductor layer, but this method also makes it difficult to form a polymerized film uniformly over a large area, and requires dedoping. be.

さらにクラスターイオンビーム蒸着などの蒸着法でフタ
ロシアニンなどの有機化合物を蒸着し、これを半導体層
とした素子の形成法が提案されている。この方法も蒸着
装置を使うため、大面積に均一に歩留りよく素子を製造
することは困難である。
Furthermore, a method has been proposed in which an organic compound such as phthalocyanine is deposited by a vapor deposition method such as cluster ion beam vapor deposition, and an element is formed using this as a semiconductor layer. Since this method also uses a vapor deposition apparatus, it is difficult to manufacture devices uniformly over a large area with a high yield.

発明が解決しようとする課題 本発明は電界効果トランジスタを大面積基板に高密度、
均一、高歩留りに形成しようとするものである。
Problems to be Solved by the Invention The present invention aims to fabricate field-effect transistors on a large-area substrate with high density.
It is intended to be formed uniformly and at a high yield.

課題を解決するための手段 ゲート電極、ソース電極およびドレーン電極からなる電
極系と、絶縁膜と、板状低分子の有機化合物からなる半
導体層を備えた電界効果トランジスタを構成する。ここ
で使用される板状低分子の有機化合物はディスコティッ
ク液晶相をしめす化合物からなる。
Means for Solving the Problems A field effect transistor is constructed which includes an electrode system consisting of a gate electrode, a source electrode, and a drain electrode, an insulating film, and a semiconductor layer consisting of a plate-shaped low-molecular organic compound. The plate-like low-molecular organic compound used here consists of a compound exhibiting a discotic liquid crystal phase.

作用 前記有機化合物の薄膜を半導体層として使用する方法は
、溶液から薄膜を得るこ、とが可能であるので、大面積
に半導体層を使用した素子を集積する場合であっても、
均一に、歩留シよく作成することが容易である。
Function: The method of using a thin film of an organic compound as a semiconductor layer allows the thin film to be obtained from a solution, so even when devices using semiconductor layers are integrated over a large area,
It is easy to produce uniformly and with good yield.

実施例 本発明に使用可能な板状低分子の有機化合物はディスコ
ティック液晶相を示す化合物がよい。例示すると以下の
ごとくである。
Examples The plate-like low molecular weight organic compound that can be used in the present invention is preferably a compound that exhibits a discotic liquid crystal phase. An example is as follows.

■フタロシアニンの8置換体 ■ポリフィリンの8置換体 RR’ ■ベンゼンの6置換体  v  i ■ベンゾキノンの4置換体 OO−R ■ルフィガロール(D6置換K R R〆      \バ これら化合物の単独あるいは混、金物の薄膜を使用する
ことによシ半導体層が形成される。この理由は次のよう
に推測される。すなわち、溶媒の蒸発過程において、有
機化合物と基板との相互作用により、板状に分子が配向
し結晶化するためである。
■8-substituted phthalocyanine ■8-substituted porphyrin RR' ■6-substituted benzene v i ■4-substituted benzoquinone OO-R ■Lufigarol (D6-substituted K A semiconductor layer is formed by using a thin film of .The reason for this is presumed to be as follows: During the evaporation process of the solvent, molecules are formed in a plate shape due to the interaction between the organic compound and the substrate. This is for orientation and crystallization.

次に、図面を用いて本発明の電界効果トランジスタにつ
いて説明する。
Next, the field effect transistor of the present invention will be explained using the drawings.

第1図は本発明の一実施例である電界効果トランジスタ
の素子断面図であり、1は絶縁基板、2はゲート電極、
3は絶縁膜、4は半導体層を構成する有機化合物、5,
6はソース電極及びドレイン電極である。製造法は、絶
縁基板1上にゲート電FM2を形成し、ゲート電極2上
に電子ビーム蒸着法で絶縁膜3を形成し、絶縁膜に接し
て間隙を設けてソース電極とドレイン電極を形成、さら
にソース電極とドレイン電極の間隙に板状低分子の有機
化合物の薄膜を形成する。
FIG. 1 is a cross-sectional view of a field effect transistor according to an embodiment of the present invention, in which 1 is an insulating substrate, 2 is a gate electrode,
3 is an insulating film, 4 is an organic compound constituting a semiconductor layer, 5,
6 is a source electrode and a drain electrode. The manufacturing method is to form a gate electrode FM2 on an insulating substrate 1, form an insulating film 3 on the gate electrode 2 by electron beam evaporation, form a source electrode and a drain electrode with a gap in contact with the insulating film, Further, a thin film of a plate-like low-molecular organic compound is formed in the gap between the source electrode and the drain electrode.

この様にして製造した素子のソース電極とドレイン電極
間の電流制御は、ゲート電圧の印加で行うことが可能で
ある。以上のごとくにして、電界効果トランジスタを製
造することが可能となることが判明した。以下、実施例
をもとにして本発明の詳細な説明する。
Current control between the source electrode and drain electrode of the device manufactured in this way can be performed by applying a gate voltage. It has been found that it is possible to manufacture a field effect transistor in the manner described above. Hereinafter, the present invention will be explained in detail based on examples.

(実施例1) 絶縁基板1としてガラス基板を用い、アルミニウムを蒸
着し、次に公知のホトリソグラフ法でパターンニングし
、ゲート長10μm 、ゲート幅2Hのゲート電極を形
成した。次に、ゲート電極2上に絶縁膜3として、電子
ビーム蒸着法で酸化珪素膜を500オングストローム形
成した。次に、絶縁膜3上に金からなるソース電極6及
びドレーン電極6を形成した。
(Example 1) A glass substrate was used as the insulating substrate 1, and aluminum was vapor-deposited and then patterned by a known photolithography method to form a gate electrode having a gate length of 10 μm and a gate width of 2H. Next, a silicon oxide film having a thickness of 500 angstroms was formed as an insulating film 3 on the gate electrode 2 by electron beam evaporation. Next, a source electrode 6 and a drain electrode 6 made of gold were formed on the insulating film 3.

次に、フタロシアニンの8置換体の1.5X10’Mo
lアセトニトリル溶液をソース電極6とドレーン電極6
間に滴下し乾燥した。
Next, 1.5X10'Mo of 8-substituted phthalocyanine
1. Apply acetonitrile solution to the source electrode 6 and drain electrode 6.
It was dripped in between and dried.

このようにして、製造した素子の特性を第2図に示す。The characteristics of the device manufactured in this way are shown in FIG.

第2図からゲート電圧でソースとトレー/間の電流を制
御し得うるスイッチング素子であることがわかる。すな
わち、電界効果トランジスタが製造されたことを示す。
It can be seen from FIG. 2 that this is a switching element that can control the current between the source and the tray by controlling the gate voltage. That is, it indicates that a field effect transistor has been manufactured.

(実施例2) 実施例1と同様の構成で用いる有機化合物を、ポリフィ
リンの8置換本にかえて素子を製造した。
(Example 2) A device was manufactured in the same manner as in Example 1 except that the organic compound used was replaced with 8-substituted porphyrin.

こうして得られた素子も、実施例1と同様の効果を示し
た。
The device thus obtained also exhibited the same effects as in Example 1.

発明の効果 本発明によれば、高価な蒸着装置を用いることなく大面
積基板に均一に、高歩留シに、トランジスタを形成する
ことが可能である。大型の壁掛はテレビや大面積のイメ
ージセンサ−などのスイッチング素子を集積する素子の
製造などに有効である。この半導体層はMIS構造のダ
イオードなどにも有効であることは自明である。
Effects of the Invention According to the present invention, it is possible to uniformly form transistors on a large-area substrate at a high yield without using expensive vapor deposition equipment. Large wall hangings are effective for manufacturing elements that integrate switching elements such as televisions and large-area image sensors. It is obvious that this semiconductor layer is also effective for diodes of MIS structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電界効果トランジスタ素子
の断面図、第2図は同電界効果トランジスタの出力特性
図である。 1・・・・・・絶縁基板、2・・・・・・ゲート電極、
3・・・・−・絶縁膜、4・・・・・・有機化合物膜、
6・・・・・・ソース電極、6・・・・・・ドレーン電
極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 VG (V)
FIG. 1 is a sectional view of a field effect transistor element according to an embodiment of the present invention, and FIG. 2 is an output characteristic diagram of the same field effect transistor. 1...Insulating substrate, 2...Gate electrode,
3...--Insulating film, 4... Organic compound film,
6... Source electrode, 6... Drain electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 VG (V)

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート電極、ソース電極およびドレーン電極から
なる電極系と、板状低分子の有機化合物からなる半導体
層と、前記ゲート電極と前記半導体層間に設けた絶縁膜
を具備することを特徴とする電界効果トランジスタ。
(1) An electrode system consisting of a gate electrode, a source electrode, and a drain electrode, a semiconductor layer made of a plate-shaped low-molecular organic compound, and an insulating film provided between the gate electrode and the semiconductor layer. field effect transistor.
(2)板状低分子の有機化合物がディスコティック液晶
相をしめす化合物からなることを特徴とする請求項1に
記載の電界効果トランジスタ。
(2) The field effect transistor according to claim 1, wherein the plate-like low-molecular organic compound comprises a compound exhibiting a discotic liquid crystal phase.
JP63014926A 1988-01-26 1988-01-26 Field effect transistor Pending JPH01189965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014926A JPH01189965A (en) 1988-01-26 1988-01-26 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014926A JPH01189965A (en) 1988-01-26 1988-01-26 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH01189965A true JPH01189965A (en) 1989-07-31

Family

ID=11874569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014926A Pending JPH01189965A (en) 1988-01-26 1988-01-26 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH01189965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036082A1 (en) * 1995-05-13 1996-11-14 The University Of Leeds Electronic devices based on discotic liquid crystals
US7193237B2 (en) 2002-03-27 2007-03-20 Mitsubishi Chemical Corporation Organic semiconductor material and organic electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206259A (en) * 1985-03-09 1986-09-12 Rikagaku Kenkyusho Msm or mis type element using phthalocyanine derivative thin-film as semiconductor layer and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206259A (en) * 1985-03-09 1986-09-12 Rikagaku Kenkyusho Msm or mis type element using phthalocyanine derivative thin-film as semiconductor layer and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036082A1 (en) * 1995-05-13 1996-11-14 The University Of Leeds Electronic devices based on discotic liquid crystals
US7193237B2 (en) 2002-03-27 2007-03-20 Mitsubishi Chemical Corporation Organic semiconductor material and organic electronic device

Similar Documents

Publication Publication Date Title
EP0460242B1 (en) Electric element and method of controlling conductivity
JP3246189B2 (en) Semiconductor display device
KR100351651B1 (en) Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
KR100477394B1 (en) Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
JPS60217669A (en) Amorphous silicon field effect transistor, method of producing same and liquid crystal display unit addressed thereby
JP2000150906A5 (en)
EP3588596A1 (en) Thin film transistor and method of manufacturing the same and thin film transistor panel and electronic device
US4994401A (en) Method of making a thin film transistor
JP2000066233A (en) Liquid crystal display device
JPH01189965A (en) Field effect transistor
JP2004158709A (en) Semiconductor device
US4943838A (en) Thin film transistor and method of making the same
JPH06291312A (en) Field-effect transistor and liquid crystal display device using same
JPH04357877A (en) Thin film transistor
JP2756121B2 (en) Method for manufacturing thin film transistor
JP3169617B2 (en) Electric conductivity control method
US20200333669A1 (en) Lcd device production
JPS61188969A (en) Thin film transistor
KR100205521B1 (en) Thin film transistor and its fabrication method
JPS60110164A (en) Thin film field effect transistor and manufacture thereof
JPH0330296B2 (en)
JPH01173758A (en) Field-effect transistor and manufacture thereof
JPH084144B2 (en) Thin film transistor
KR100973300B1 (en) Organic thin film transistor and method of manufacturing the same
JPS62140465A (en) Manufacture of thin-film transistor