JPH01189844A - Beam correcting method for charged particle beam device - Google Patents

Beam correcting method for charged particle beam device

Info

Publication number
JPH01189844A
JPH01189844A JP1315088A JP1315088A JPH01189844A JP H01189844 A JPH01189844 A JP H01189844A JP 1315088 A JP1315088 A JP 1315088A JP 1315088 A JP1315088 A JP 1315088A JP H01189844 A JPH01189844 A JP H01189844A
Authority
JP
Japan
Prior art keywords
objective lens
orifice
electrode plates
voltage
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1315088A
Other languages
Japanese (ja)
Inventor
Seiichi Nakagawa
中川 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP1315088A priority Critical patent/JPH01189844A/en
Publication of JPH01189844A publication Critical patent/JPH01189844A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the adjusting operation by providing a mechanism adjusting X-Y axes of an objective lens orifice having multiple orifice holes with different hole diameters and electrode plates located above and below this orifice and having holes larger than the hole diameter of the objective lens orifice and applying the beam correcting voltage to one of the orifice and the electrode plates. CONSTITUTION:Coaxial electrode plates 31 and 32 are provided above and below an objective lens orifice 3 and positioned so that the axes of these electrode plates 31 and 32 and the axis of the objective lens 6 coincide. The upper and lower electrode plates 31 and 32 have holes with the diameter larger than the maximum value of hole diameters of the normally used objective lens orifice 3, e.g., about 1-2mm, the upper and lower electrode plates 31 and 32 may have different hole diameters. The incident angle of the objective orifice differs according to the use objective, but it is designed so that no scattered electron is generated on the upper and lower electrode plates 31 and 32 in any case. The distance between the upper and lower electrode plates 31 and 32 and the objective lens orifice 3 is set to the range of 1-2mm, this range depends on the voltage applied to the objective lens orifice 3, this orifice 3 has a structure that the voltage can be applied from the outside.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、対物レンズ絞りに電圧を印加してビーム補正
を行う荷電粒子線装置における補正方式〔従来の技術〕 第5図及び第6図は走査型電子顕微鏡等の荷電粒子線装
置に組み込まれたオートフォーカスと試料傾斜に対する
ダイナミック・フォーカス機構を説明するための図、第
7図は電子線ビームロッキング機構を説明するための図
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a correction method in a charged particle beam device that performs beam correction by applying a voltage to an objective lens aperture [Prior art] Figs. 7 is a diagram for explaining an autofocus and a dynamic focus mechanism for tilting a sample built into a charged particle beam device such as a scanning electron microscope, and FIG. 7 is a diagram for explaining an electron beam locking mechanism.

従来、走査型電子顕微鏡(SEM)には、オートフォー
カス機構、ダイナミック・フォーカス機構や電子線ビー
ムロッキング機構が組み込まれ、これらの機構における
ビーム補正のために例えば空芯のダイナミックフォーカ
スコイルが設けられている。
Conventionally, a scanning electron microscope (SEM) is equipped with an autofocus mechanism, a dynamic focus mechanism, and an electron beam locking mechanism, and for example, an air-core dynamic focus coil is provided for beam correction in these mechanisms. There is.

オートフォーカス機構は、第5図に示すように磁界型対
物レンズ6、又は磁界型対物レンズと分割された補助コ
イル或いは空芯のダイナミックフォーカスコイル7の夫
々にスウィーブ電流を流した場合において、試料9から
放出される2次電子信号が最大値になったときに、合焦
点と判定し夫々のコイルに流す電流を設定している(例
えば特公昭62−40814号公報参照)。また、ダイ
ナミックフォーカスでは、上段走査コイル5及び下段走
査コイル5の走査に同期して空芯のダイナミックフォー
カスコイル7の電流を制御し、第6図に示すようなダイ
ナミックフォーカスを実現している。
As shown in FIG. 5, the autofocus mechanism operates when a sweep current is applied to the magnetic field type objective lens 6, an auxiliary coil separated from the magnetic field type objective lens, or an air-core dynamic focus coil 7. When the secondary electron signal emitted from the coil reaches its maximum value, it is determined that the focal point is reached, and the current to be passed through each coil is set (see, for example, Japanese Patent Publication No. 40814/1982). Furthermore, in dynamic focusing, the current of the air-core dynamic focusing coil 7 is controlled in synchronization with the scanning of the upper scanning coil 5 and the lower scanning coil 5, thereby realizing dynamic focusing as shown in FIG.

しかし、このように磁界レンズ或いは分割補助コイルに
スウィープ電流を流した場合には、コイルのインダクタ
ンスが数1008 (ヘンリー)と大きいため、オート
フォーカス電流に対する応答に制限が生じる。さらに、
磁界レンズにヒステリシスがあるため、再現性に問題が
ある。そこで、これらの問題解決のため従来よりオート
フォーカス電流に補正回路を取付けたり、或いは応答速
度を遅くして精度を向上させている。
However, when a sweep current is passed through the magnetic field lens or the auxiliary division coil in this way, the inductance of the coil is as large as several 1008 (Henry), so there is a limit to the response to the autofocus current. moreover,
There is a problem with reproducibility because the magnetic field lens has hysteresis. Therefore, in order to solve these problems, accuracy has been improved by attaching a correction circuit to the autofocus current or slowing down the response speed.

また、走査型電子顕微鏡には、結晶方位解析のため、電
子線ビームロッキング機構が組込まれている。この電子
線ビームロッキング機構では、第7図に示すように下段
走査コイル5がオフにされ、第2コンデンサレンズ2の
焦点位置が対物レンズ5の後焦点面に移動し平行ビーム
が形成される。
Furthermore, the scanning electron microscope is equipped with an electron beam locking mechanism for crystal orientation analysis. In this electron beam locking mechanism, as shown in FIG. 7, the lower scanning coil 5 is turned off, the focal position of the second condenser lens 2 moves to the back focal plane of the objective lens 5, and a parallel beam is formed.

そして上段走査コイル4のみで走査すると、試料9上に
平行ビームがロッキングされる。
When scanning is performed using only the upper scanning coil 4, the parallel beam is locked onto the sample 9.

電子線ビームロッキングの場合、微小領域の結晶方位解
析のためには、ビームの拡がりを数μmφ以下にしなけ
ればならない、しかし、対物レンズ6の球面収差のため
にビームが1点にロッキングされず、拡がりは80μm
φ〜60μmφになる。そのため、第7図に示すように
空芯のダイナミックフォーカスコイル7に走査波形に同
期した2乗波形を流してダイナミック補正を行なう方法
も提案されている。この方法によって得られるビーム径
は、ワーキングデイスタンスWDを8鶴、ビームロッキ
ング角を±10” とすると、2〜3μmφが限界とな
っている。
In the case of electron beam locking, in order to analyze the crystal orientation of a microscopic region, the spread of the beam must be kept below several μmφ.However, due to the spherical aberration of the objective lens 6, the beam cannot be locked to one point. The spread is 80μm
It becomes φ~60 μmφ. Therefore, as shown in FIG. 7, a method has been proposed in which a square waveform synchronized with the scanning waveform is applied to an air-core dynamic focus coil 7 to perform dynamic correction. The limit of the beam diameter obtained by this method is 2 to 3 μmφ, assuming that the working distance WD is 8 cranes and the beam rocking angle is ±10”.

そこで、この限界の理由を詳しく調べて見ると、ロッキ
ングビーム径dは、対物レンズ絞り径で決定されるガウ
シアンビーム径dgと球面収差(補正)によるビーム径
dsによって決まり、これらの関係は1,12 mdg
” +d S”と表わすことができる。しかし、ダイナ
ミック補正を行なうとビーム径d〜2〜3μmφが得ら
れているが、ダイナミック補正を行なっている状態で対
物レンズ絞り径を30μmφ、50μmφ、70μmφ
と大きくしてもビーム径は変化しないことが判った。
Therefore, if we investigate the reason for this limit in detail, the rocking beam diameter d is determined by the Gaussian beam diameter dg determined by the objective lens aperture diameter and the beam diameter ds due to spherical aberration (correction), and the relationship between these is 1, 12 mdg
It can be expressed as "+dS". However, when dynamic correction is performed, a beam diameter d ~ 2 to 3 μmφ is obtained, but when dynamic correction is performed, the objective lens aperture diameter is 30 μmφ, 50 μmφ, and 70 μmφ.
It was found that the beam diameter did not change even if the beam diameter was increased.

すなわち、ビーム径は球面収差補正のみで決定され、d
” 〜ds” 、d o” 〜ds”である。
In other words, the beam diameter is determined only by spherical aberration correction, and d
"~ds", do"~ds".

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

オートフォーカスにおける問題の改善方法としての空芯
コイルを用いる方法では、コイルのインダクタンスを数
百−mHまで下げることができ、また、空芯コイルのた
めヒステリシスがなく応答速度及び精度の向上が数段改
善できる。しかし、対物レンズとダイナミックフォーカ
スの軸ずれがあると、オートフォーカス電流を流すたび
に視野ずれが生じ、観察視野での合焦点精度が低下する
という新たな問題が生じる。この問題を解決するために
は、対物レンズとダイナミックフォーカスコイルを数μ
mの精度で回忌に作る必要がある。しかし、これは機械
的に大変困難であり、歩留が悪いため、コストアップの
原因となってしまう。
The method of using an air-core coil as a method to improve the problem with autofocus allows the inductance of the coil to be lowered to several hundred mH, and since there is no hysteresis due to the air-core coil, response speed and accuracy are improved by several steps. It can be improved. However, if there is an axis misalignment between the objective lens and the dynamic focus, a new problem arises in that the field of view shifts each time the autofocus current is applied, and the focusing accuracy in the observation field of view decreases. To solve this problem, it is necessary to adjust the objective lens and dynamic focus coil by a few microns.
It is necessary to make a anniversary with an accuracy of m. However, this is mechanically very difficult and has a low yield, resulting in an increase in costs.

また、を子線ビームロッキングの場合、ロッキングビー
ム径dが球面収差補正項に依存していることを先に述べ
たが、この原因を調べるとダイナミンクフォーカスコイ
ルの軸と対物レンズの軸が完全に一致していないことが
原因となっている。
In addition, in the case of consonant beam locking, we mentioned earlier that the locking beam diameter d depends on the spherical aberration correction term, but when we investigate the cause of this, we find that the axis of the dynamic focus coil and the axis of the objective lens are perfectly aligned. This is due to the fact that they do not match.

このことから、軸ずれを5μm程度に合わせるためにダ
イナミックフォーカスコイルを機械的に移動可能にした
り、或いはダイナミックフォーカスコイルの外側に軸合
せコイルを追加して実現する提案を既に行っている。し
かし、これらの方式でも、5μm以下に軸ずれを補正す
ることは困難である。その理由は、■対物レンズにヒス
テリシスがあること、■ダイナミックフォーカスコイル
に傾きがあるため、軸ずれを正確に測定することができ
ないこと等である。従って、空芯コイルを用いたダイナ
ミック補正の限界は、現状ではビーム径が2〜3μmφ
と言わざるを得ない。
For this reason, proposals have already been made to make the dynamic focus coil mechanically movable in order to adjust the axis misalignment to about 5 μm, or to add an alignment coil outside the dynamic focus coil. However, even with these methods, it is difficult to correct the axis deviation to 5 μm or less. The reasons for this are: (1) the objective lens has hysteresis; and (2) the dynamic focus coil has an inclination, making it impossible to accurately measure axis deviation. Therefore, the limit of dynamic correction using an air-core coil is currently limited to a beam diameter of 2 to 3 μmφ.
I have to say.

本発明は、上記の問題点を解決するものであって、ダイ
ナミックフォーカスコイルを用いることなく対物レンズ
絞りと極板のいずれかを使って容易に軸ずれのないビー
ム補正を行うことができる荷電粒子線装置におけるビー
ム補正方式を提供することを目的とする。
The present invention solves the above-mentioned problems, and the present invention is directed to charged particle particles that can easily perform beam correction without axis deviation using either an objective lens diaphragm or a polar plate without using a dynamic focusing coil. The purpose of the present invention is to provide a beam correction method in a line apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の荷電粒子線装置におけるビーム補正
方式は、孔径の異なる複数個の絞り孔を有する対物レン
ズ絞り、該対物レンズ絞りのX−Y軸を調整するX−Y
軸調整機構、対物レンズ絞りの上下に位置し対物レンズ
絞りの孔径より大きい孔を有する極板、ビーム補正電圧
を発生する補正電源を備え、ビーム補正電圧を対物レン
ズ絞りと掻板のうちのいずれか一方に印加するように構
成したことを特徴とするものである。
For this purpose, the beam correction method in the charged particle beam apparatus of the present invention includes an objective lens diaphragm having a plurality of apertures with different diameters, and an X-Y axis for adjusting the X-Y axes of the objective lens diaphragm.
It is equipped with an axis adjustment mechanism, a pole plate located above and below the objective lens diaphragm and having a hole larger than the diameter of the objective lens diaphragm, and a correction power source that generates a beam correction voltage. It is characterized in that it is configured so that the voltage is applied to either one of the two.

〔作用〕[Effect]

本発明の荷電粒子線装置におけるビーム補正方式では、
対物レンズ絞りと極板のうちのいずれか一方に電圧を印
加してビームを補正するので、X−Y軸調整機構により
対物レンズ絞りのX−Y軸を調整し補正電源の出力電圧
を変化させて軸合わせとビーム補正ができ、簡単に軸合
わせを行うことができる。従って、対物レンズとダイナ
ミックフォーカスコイルとの軸ずれのような問題がなく
なる。
In the beam correction method in the charged particle beam device of the present invention,
Since the beam is corrected by applying a voltage to either the objective lens aperture or the electrode plate, the X-Y axis of the objective lens aperture is adjusted using the X-Y axis adjustment mechanism to change the output voltage of the correction power supply. Axis alignment and beam correction can be performed easily using the Therefore, problems such as axis misalignment between the objective lens and the dynamic focus coil are eliminated.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の1実施例を示す図、第2図は電子線ビ
ームロッキング機構に本発明を適用した例を示す図、第
3回は対物レンズ絞り電源回路の構成例を示す図、第4
図はX−Y軸調整部の構成例を示す図である0図中、l
は第1コンデンサレンズ、2は第2コンデンサレンズ、
3は対物レンズ絞り、4は上段走査コイル、5は下段走
査コイル、6は対物レンズ、31と32は極板、11は
準算回路、12と13は関数発生回路、14は走査信号
発生回路、21〜24は調整つまみ、25は対物レンズ
絞り電源を示す。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing an example in which the present invention is applied to an electron beam locking mechanism, and the third diagram is a diagram showing an example of the configuration of an objective lens aperture power supply circuit. Fourth
The figure shows an example of the configuration of the X-Y axis adjustment section.
is the first condenser lens, 2 is the second condenser lens,
3 is an objective lens aperture, 4 is an upper scanning coil, 5 is a lower scanning coil, 6 is an objective lens, 31 and 32 are electrode plates, 11 is a subarithm circuit, 12 and 13 are a function generation circuit, and 14 is a scanning signal generation circuit. , 21 to 24 are adjustment knobs, and 25 is an objective lens aperture power source.

対物レンズ絞り3は、第1図、第5図〜第7図に示すよ
うに従来より上段走査コイル4と第2コンデンサレンズ
2との間に設けられ、X−Yllhli整機構を備えX
−Y軸が調整できるようになっている。そして、孔径が
異なる複数個の絞り孔を有し、絞り孔径は、プローブ電
流とワークデイスタンス(WD)と加速電圧からプロー
ブ径が最小となるように選択される。この絞り孔径が選
択された後、対物レンズ絞り3のX−Y軸調整では、ビ
ームが対物レンズ5の軸と一致するように対物レンズ絞
り3の位置が調整される。なお、対物レンズ絞りの選択
及びX−Y軸合わせは、真空外から実施できる機構とな
っている。
The objective lens diaphragm 3 is conventionally provided between the upper scanning coil 4 and the second condenser lens 2, as shown in FIGS.
-Y-axis can be adjusted. It has a plurality of aperture holes with different diameters, and the aperture diameter is selected from the probe current, work distance (WD), and acceleration voltage so that the probe diameter becomes the minimum. After this aperture diameter is selected, the position of the objective lens aperture 3 is adjusted in the X-Y axis adjustment of the objective lens aperture 3 so that the beam coincides with the axis of the objective lens 5. Note that the selection of the objective lens aperture and the alignment of the X-Y axes can be performed from outside the vacuum.

本発明は、上記機構を有すると共に、この対物レンズ絞
り3の上下に同軸の極板31,32を備え、この極板3
1.32の軸が対物レンズ6と同一軸となるように位置
決めされる。そして上下の極板31.32は、通常用い
られる対物レンズ絞り3の孔径の最大値よりも大きい、
例えば略1nφ〜2鶴φ程度の孔を有するものであり、
上下の極板31.32で孔径が異なっても良い。要する
に、第5図〜第7図に示すように走査電子顕微鏡の使用
目的によって対物絞りの入射角が異なるが、いかなる場
合にも上下の掻板31.32で散乱電子が発生しないよ
うに設計すれば良い、また、この上下の掻板31.32
と対物レンズ絞り3との間隔は、1鶴〜2mmの範囲と
なるが、この範囲は後述する対物レンズ絞り3の印加電
圧に依存する。
The present invention has the above mechanism, and also includes coaxial polar plates 31 and 32 above and below the objective lens diaphragm 3.
It is positioned so that the axis of 1.32 is coaxial with the objective lens 6. The upper and lower electrode plates 31 and 32 are larger than the maximum aperture diameter of the objective lens diaphragm 3 that is normally used.
For example, it has a hole of about 1nφ to 2φ,
The hole diameters may be different between the upper and lower electrode plates 31 and 32. In short, as shown in Figures 5 to 7, although the incident angle of the objective aperture varies depending on the purpose of use of the scanning electron microscope, the design must be such that no scattered electrons are generated in the upper and lower scrapers 31 and 32 in any case. Good, also, this upper and lower scraping plate 31.32
The distance between the objective lens diaphragm 3 and the objective lens diaphragm 3 is in the range of 1 mm to 2 mm, but this range depends on the voltage applied to the objective lens diaphragm 3, which will be described later.

さらに、対物レンズ絞り3は外部より電圧が印加できる
構造となる。
Furthermore, the objective lens diaphragm 3 has a structure to which a voltage can be applied from the outside.

上記において上下の極板31.32を接地し、その孔を
1日〜2+aφ、対物レンズ絞り3との間隔をそれぞれ
1鶴〜2fiにした場合、加速電圧30kVの電子線を
対物レンズ6で15mにフォーカスさせたとき、対物レ
ンズ絞り3に±IOV〜±30V印加すると、第5図に
示すΔfは±100μm〜±300μmが得られる。従
って、従来の対物レンズ6あるいはダイナミックフォー
カスコイル7に流していたオートフォーカス用スウィー
ブ電流、これに対応する電圧を対物レンズ絞り3に印加
することによってオートフォーカスのサーチングができ
る。その結果、試料からの2次電子信号を最大値にする
検出系及び演算回路は従来のものをそのまま利用できる
In the above case, when the upper and lower electrode plates 31 and 32 are grounded, the holes are set to 1~2+aφ, and the distance from the objective lens aperture 3 is set to 1~2fi, respectively, an electron beam with an acceleration voltage of 30 kV is applied to the objective lens 6 for 15 m. When focused on, if ±IOV to ±30V is applied to the objective lens diaphragm 3, Δf shown in FIG. 5 can be obtained from ±100 μm to ±300 μm. Therefore, autofocus search can be performed by applying the autofocus sweep current, which was passed through the conventional objective lens 6 or dynamic focus coil 7, and the corresponding voltage to the objective lens diaphragm 3. As a result, the conventional detection system and calculation circuit that maximize the secondary electron signal from the sample can be used as they are.

電子線ビームロッキング機構では、第2図に示すように
下段走査コイル5をオフにし、極板31.32を接地し
て対物レンズ絞り3に電圧を印加するが、この電圧は、
第3図に示すような回路により従来のダイナミックフォ
ーカスコイルに流していた走査波形と同期した2乗波形
を電圧変換し生成したものである。第3図において、関
数発生回路12.13は、それぞれ走査信号発生回路1
4で発生した水平走査同期信号i、I、垂直走査同期信
号ivを2乗した電圧111”、kvtを生成し、演算
回路11はこれらを加算処理するものである。
In the electron beam locking mechanism, as shown in FIG. 2, the lower scanning coil 5 is turned off, the electrode plates 31 and 32 are grounded, and a voltage is applied to the objective lens aperture 3.
It is generated by voltage conversion of a square waveform synchronized with the scanning waveform applied to a conventional dynamic focus coil using a circuit as shown in FIG. In FIG. 3, the function generating circuits 12 and 13 are the scanning signal generating circuits 1 and 13, respectively.
The arithmetic circuit 11 generates a voltage 111'', kvt, which is the square of the horizontal scanning synchronizing signals i, I and the vertical scanning synchronizing signal iv generated in step 4, and the arithmetic circuit 11 adds these.

このように本発明は、従来のダイナミック補正回路をそ
のまま利用し電流を電圧に変換するのみでよい。
In this way, the present invention requires only the conventional dynamic correction circuit to be used as is and to convert current into voltage.

従来のダイナミックフォーカスコイルを用いた方式では
、ダイナミックフォーカスコイルで発生した磁界と対物
レンズで発生した磁界との合成によってビームを1点に
ロッキングさせているため、補正電流の応答速度をモニ
タテレビのスキャン速度まで高速にしても、ダイナミッ
クフォーカスコイルのインダクタンスにより、また、ダ
イナミックフォーカスイルの洩れ磁界が対物レンズのヨ
ークに流れ込むことにより磁気応答に制限されてしまう
という欠点があった。そのため、スロースキャンでしか
観察できなかった。その点、対物レンズ絞りに電圧を印
加してダイナミック補正する本発明の方式では、応答速
度を数μsecまで向上させることができ、また、1μ
mφ以下のロッキングビーム径を得ることができる。
In the conventional method using a dynamic focus coil, the beam is locked to one point by combining the magnetic field generated by the dynamic focus coil and the magnetic field generated by the objective lens. Even if the speed is increased, there is a drawback that the magnetic response is limited by the inductance of the dynamic focus coil and by the leakage magnetic field of the dynamic focus coil flowing into the yoke of the objective lens. Therefore, it could only be observed with slow scans. On this point, the method of the present invention, which performs dynamic correction by applying a voltage to the objective lens aperture, can improve the response speed to several μsec, and
A rocking beam diameter of less than mφ can be obtained.

なお、本発明は、上記の実施例に限定されるものではな
く、種々の変形が可能である9例えば上述した実施例に
おいては、極板を接地して対物絞りに補正電圧を与える
ようにしたが、対物絞りを接地して極板に補正電圧を与
えるようにしても良い、又、上下極板の軸と対物レンズ
の軸が不一致の場合、対物レンズ絞りのX−Y軸調整の
みでは軸合せが困難となるが、この場合には、第4図に
示すように上下極板を一体にしてX−Y軸調整機構を組
込んで解決を図ってもよい、すなわち、第4図では、調
整つまみ21.22により極板31.32をX−Y軸方
向へ移動させ、調整つまみ23.24により対物レンズ
絞り3をX−Y軸方向へ移動させる。そして、対物レン
ズ絞り電g25より対物レンズ絞り3に例えばオートフ
ォーカスのスウィープ電圧を印加する。
Note that the present invention is not limited to the embodiments described above, and various modifications are possible.9 For example, in the embodiments described above, the electrode plate was grounded to apply a correction voltage to the objective aperture. However, it is also possible to ground the objective aperture and apply a correction voltage to the plates.Also, if the axes of the upper and lower plates do not match the axis of the objective lens, it is not possible to adjust the axis by just adjusting the X-Y axis of the objective lens aperture. Although alignment becomes difficult, in this case, it is possible to solve this problem by integrating the upper and lower electrode plates and incorporating an X-Y axis adjustment mechanism as shown in FIG. The adjustment knob 21.22 moves the polar plate 31.32 in the X-Y axis direction, and the adjustment knob 23.24 moves the objective lens diaphragm 3 in the X-Y axis direction. Then, for example, an autofocus sweep voltage is applied to the objective lens diaphragm 3 from the objective lens diaphragm electric g25.

また、第6図に従来の試料傾斜に対するダイナミックフ
ォーカスを示しているが、知吻レンズの内側の空芯コイ
ルに試料傾斜と一致した走査電流を分割して同期したス
ウィープ電流を流すようにしてもよい。一方、上記に述
べた電圧印加対物レンズ絞りに走査電流の一部を電圧変
換して印加することによって試料傾斜に対するダイナミ
ックフォーカスを実現してもよい。
Figure 6 shows the conventional dynamic focus for sample tilt, but it is also possible to divide the scanning current that matches the sample tilt and apply a synchronized sweep current to the air-core coil inside the Chigo lens. good. On the other hand, dynamic focusing with respect to the specimen tilt may be realized by converting a part of the scanning current into a voltage and applying it to the voltage-applying objective lens diaphragm described above.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、空芯
のダイナミックフォーカスコイルを用いた場合に生じる
対物レンズの軸との軸ずれ問題が従来の対物絞りのX−
Y軸合せ機構だけで解決でき、プローブ電流やワークデ
イスタンスや加速電圧等の条件を変化させてもその都度
簡便の操作により調整できる。さらに電圧が低いために
合焦点スウィープが秒以下、μSeCオーダーで可能と
なり、電気的応答速度の向上を図ることができる。
As is clear from the above description, according to the present invention, the problem of axis misalignment with the axis of the objective lens that occurs when using an air-core dynamic focusing coil can be solved by
This can be solved using only the Y-axis alignment mechanism, and even if conditions such as probe current, work distance, acceleration voltage, etc. are changed, adjustments can be made each time with simple operations. Furthermore, since the voltage is low, the focal point sweep can be performed in seconds or less, on the order of μSeC, and the electrical response speed can be improved.

しかも、軸ずれかないことから合焦点精度の向上も図る
ことができる。また、従来のコイル方式ではスロースキ
ャンまでしか利用できなかったのに比べて、本発明の対
物レンズ絞り電圧印加方式では、モニタテレビの静止画
像で操作ができ、操作性の向上、分析精度の向上を図る
ことができる。
Moreover, since there is no axis deviation, it is possible to improve the focusing accuracy. In addition, compared to the conventional coil method, which could only be used up to slow scan, the objective lens aperture voltage application method of the present invention can be operated using a still image on a monitor TV, improving operability and analysis accuracy. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す図、第2図は電子線ビ
ームロッキング機構に本発明を適用した例を示す図、第
3図は対物レンズ絞り電源回路の構成例を示す図、第4
図はX−Y軸調整部の構成例を示す図、第5図及び第6
図は走査型電子顕微鏡に組み込まれたオートフォーカス
機構を説明するための図、第7図は電子線ビームロッキ
ング機構を説明するための図である。 1・・・第1コンデンサレンズ、2・・・第2コンデン
サレンズ、3・・・対物レンズ絞り、4・・・上段走査
コイル、5・・・下段走査コイル、6・・・対物レンズ
、31と32・・・極板、11・・・演算回路、12と
13・・・関数発生回路、14・・・走査信号発生回路
、21〜24・・・調整つまみ、25・・・対物レンズ
絞り電源。 出 願 人  日本電子株式会社 代理人 弁理士 阿 部 龍 吉(外本名)第1図  
 第2図
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing an example in which the present invention is applied to an electron beam locking mechanism, and FIG. 3 is a diagram showing an example of the configuration of an objective lens aperture power supply circuit. Fourth
The figures are diagrams showing an example of the configuration of the X-Y axis adjustment section, Figures 5 and 6.
The figure is a diagram for explaining an autofocus mechanism built into a scanning electron microscope, and FIG. 7 is a diagram for explaining an electron beam locking mechanism. DESCRIPTION OF SYMBOLS 1... First condenser lens, 2... Second condenser lens, 3... Objective lens aperture, 4... Upper scanning coil, 5... Lower scanning coil, 6... Objective lens, 31 and 32...Pole plate, 11...Arithmetic circuit, 12 and 13...Function generation circuit, 14...Scanning signal generation circuit, 21-24...Adjustment knob, 25...Objective lens aperture power supply. Applicant JEOL Ltd. Agent Patent Attorney Ryukichi Abe (Other real name) Figure 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)孔径の異なる複数個の絞り孔を有する対物レンズ
絞り、該対物レンズ絞りのX−Y軸を調整するX−Y軸
調整機構、対物レンズ絞りの上下に位置し対物レンズ絞
りの孔径より大きい孔を有する極板、ビーム補正電圧を
発生する補正電源を備え、ビーム補正電圧を対物レンズ
絞りと極板のうちのいずれか一方に印加するように構成
したことを特徴とする荷電粒子線装置における補正方式
(1) An objective lens aperture having multiple aperture holes with different diameters, an X-Y axis adjustment mechanism that adjusts the X-Y axes of the objective lens aperture, and an X-Y axis adjustment mechanism located above and below the objective lens aperture, A charged particle beam device comprising a polar plate having a large hole, a correction power source for generating a beam correction voltage, and configured to apply the beam correction voltage to either the objective lens aperture or the electrode plate. Correction method in.
JP1315088A 1988-01-23 1988-01-23 Beam correcting method for charged particle beam device Pending JPH01189844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315088A JPH01189844A (en) 1988-01-23 1988-01-23 Beam correcting method for charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315088A JPH01189844A (en) 1988-01-23 1988-01-23 Beam correcting method for charged particle beam device

Publications (1)

Publication Number Publication Date
JPH01189844A true JPH01189844A (en) 1989-07-31

Family

ID=11825137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315088A Pending JPH01189844A (en) 1988-01-23 1988-01-23 Beam correcting method for charged particle beam device

Country Status (1)

Country Link
JP (1) JPH01189844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029185A (en) * 2009-07-24 2011-02-10 Carl Zeiss Nts Gmbh Particle beam device having diaphragm unit and method for adjusting beam current of particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029185A (en) * 2009-07-24 2011-02-10 Carl Zeiss Nts Gmbh Particle beam device having diaphragm unit and method for adjusting beam current of particle beam device
US11139140B2 (en) 2009-07-24 2021-10-05 Carl Zeiss Microscopy Gmbh Particle beam apparatus having an aperture unit and method for setting a beam current in a particle beam apparatus

Similar Documents

Publication Publication Date Title
KR100382026B1 (en) Scanning Electron Microscope
US5598002A (en) Electron beam apparatus
US20060016992A1 (en) Electron beam apparatus
JPH11148905A (en) Electron beam inspection method and apparatus therefor
JPH0233843A (en) Scanning electronic microscope
US3702398A (en) Electron beam apparatus
JP2004342341A (en) Mirror electron microscope, and pattern defect inspection device using it
JP2926132B1 (en) Secondary ion image observation method using focused ion beam
JPS6134221B2 (en)
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JPH07230784A (en) Composite charge particle beam device
GB2162682A (en) Method of displaying electron diffraction patterns
JPH01189844A (en) Beam correcting method for charged particle beam device
JPH09171790A (en) Scanning electron microscope
JPS5854784Y2 (en) Stereo scanning electron microscope
JP3649008B2 (en) Electron beam equipment
JP4221817B2 (en) Projection type ion beam processing equipment
JPH027506B2 (en)
CA1061477A (en) Electron microscope
KR102628711B1 (en) Charged particle beam device
JPH1186770A (en) Scanning electron microscope
JP2001076665A (en) Low-energy reflection electron microscope
JPS6324617Y2 (en)
JP3174307B2 (en) Secondary charged particle analyzer and sample analysis method using the same
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam