JPH01189358A - Sludge dehydration method and apparatus using decanter type centrifugal separator - Google Patents

Sludge dehydration method and apparatus using decanter type centrifugal separator

Info

Publication number
JPH01189358A
JPH01189358A JP63012734A JP1273488A JPH01189358A JP H01189358 A JPH01189358 A JP H01189358A JP 63012734 A JP63012734 A JP 63012734A JP 1273488 A JP1273488 A JP 1273488A JP H01189358 A JPH01189358 A JP H01189358A
Authority
JP
Japan
Prior art keywords
sludge
flocculant
supplied
cylinder
rotating cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63012734A
Other languages
Japanese (ja)
Other versions
JP2540180B2 (en
Inventor
Tadahira Yano
宰平 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pennwalt Corp
Original Assignee
Pennwalt Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pennwalt Corp filed Critical Pennwalt Corp
Priority to JP63012734A priority Critical patent/JP2540180B2/en
Publication of JPH01189358A publication Critical patent/JPH01189358A/en
Application granted granted Critical
Publication of JP2540180B2 publication Critical patent/JP2540180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE: To lower the moisture content of settled sludge by supplying a specific amt. of a flocculating agent into the inside region of a cylindrical part adjacent to the conical part of the rotary cylinder of a decanter type centrifuge and supplying the remaining amt. to the flocculating agent into the inside region of the conical part of the rotary cylinder. CONSTITUTION: The decanter type centrifuge provided with the rotary cylinder 1 consisting of the conical part 1a and the cylindrical part 1b, the inside cylinder 5 disposed concentrically in the rotary cylinder 1 and a screw conveyor 1 consisting of screw vanes 6 is used. The sludge to be subjected to a dehydration treatment is supplied from a pipe 11 and the required amt. of one kind of the flocculating agent for accelerating the separating, thickening and dehydrating effects of the supplied sludge is supplied into the centrifuge from pipes 12 and 13. The dehydrated an concd. sludge is discharged from a discharge port 3. At this time, an amt. of 10 to 40% of the required entire amt. of the flocculating agent is supplied into the inside region of the cylinder part 1b and the remaining amt. of 90 to 60% is supplied into the inside region of the conical part 1a. Consequently, the moisture content of the settled sludge is made lower by 2 to 3% than the simultaneously addition system of the flocculating agent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デカンタ型遠心分離機を用いて、上下水、し
尿、産業排水処理工程等で発生する各種汚泥を従来以上
に効率よく脱水する汚泥脱水方法及び装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses a decanter-type centrifuge to dewater various types of sludge generated in water, sewage, human waste, industrial wastewater treatment processes, etc. more efficiently than ever before. The present invention relates to a sludge dewatering method and device.

〔従来の技術〕[Conventional technology]

従来一般に、上下水、し尿、産業排水処理工程等で発生
する各種汚泥を濃縮脱水処理するのにデカンタ型遠心分
離機が用いられている。
BACKGROUND OF THE INVENTION Conventionally, decanter-type centrifuges have been generally used to concentrate and dewater various types of sludge generated in water, sewage, human waste, industrial wastewater treatment processes, and the like.

上記のデカンタ型遠心分離機は、第4図に示すように、
軸受2.2により軸受支持されて高速度で回転する回転
筒1と、該回転筒1と同方向に回転する内筒5及びスク
リュー羽根6から成るスクリューコンベヤとが同心に設
けられており、回転軸中心には汚泥供給管11が配設さ
れた構成となっている。
As shown in Figure 4, the decanter type centrifuge described above has the following features:
A rotating cylinder 1 that is supported by a bearing 2.2 and rotates at high speed, and a screw conveyor consisting of an inner cylinder 5 and screw blades 6 that rotate in the same direction as the rotating cylinder 1 are provided concentrically. A sludge supply pipe 11 is arranged at the center of the shaft.

回転筒1と内筒5とは差動機7により所要の回転差が付
与され、スクリューコンベヤは濃縮汚泥19を沈殿汚泥
排出口3に向けて搬送する。また回転筒1は円錐部1a
と円筒部1bとから成り、該円錐部1aの末端部にはス
クリューコンベヤによりドライビーチ部17を経て搬送
されてくる濃縮脱水汚泥を排出するための沈殿汚泥排出
口3が設けられ、これと反対側の前記円筒部1bの末端
部には分離された分離液18を排出するためのダム4が
設けられている。
A required rotation difference is applied between the rotary cylinder 1 and the inner cylinder 5 by a differential 7, and the screw conveyor conveys the concentrated sludge 19 toward the settled sludge discharge port 3. In addition, the rotating cylinder 1 has a conical portion 1a.
and a cylindrical part 1b, and a precipitated sludge discharge port 3 is provided at the end of the conical part 1a for discharging the concentrated dehydrated sludge conveyed by a screw conveyor via the dry beach part 17, and a A dam 4 for discharging the separated liquid 18 is provided at the end of the side cylindrical portion 1b.

上記構成のデカンタ型遠心分離機において、汚泥供給管
11を通して分離機内筒5内の汚泥供給部8へ供給され
る汚泥は、円筒壁に設けた汚泥吐出ノズル14を経て円
錐部1aに隣接する円筒部1b内部のプールへ放出され
、高速回転する回転筒1の遠心分離作用を受けて沈殿汚
泥と分離液とに分離され、それぞれ沈殿汚泥排出口3と
ダム4とから機外に排出される。
In the decanter-type centrifugal separator having the above configuration, the sludge supplied to the sludge supply section 8 in the separator inner cylinder 5 through the sludge supply pipe 11 passes through the sludge discharge nozzle 14 provided on the cylinder wall and into the cylinder adjacent to the conical part 1a. The sludge is discharged into a pool inside the section 1b, separated into precipitated sludge and separated liquid by the centrifugal action of the rotating cylinder 1 rotating at high speed, and discharged from the precipitated sludge discharge port 3 and the dam 4 to the outside of the machine.

デカンタ型遠心分離機で汚泥を脱水する場合には第5図
(a)、(b)、(c)に示されているような手法で、
高分子凝集剤等を供給汚泥に添加し、該汚泥を調質する
方法が一般に用いられている。これらの汚泥調質方法の
一つを用いて凝集剤を添加された汚泥は、凝集フロック
を形成し、回転筒1の高速回転による遠心力で分離液1
8と濃縮汚泥19とに分離される。濃縮汚泥19は、内
筒5及びスクリュー羽根6からなるスクリューコンベヤ
によって搬送され、回転筒1の外に排出され、分離液1
8はスクリュー羽根6に沿って流下し、ダム4から回転
筒1の外に排出される。
When dewatering sludge using a decanter type centrifuge, use the method shown in Figure 5 (a), (b), and (c).
Generally, a method is used in which a polymer flocculant or the like is added to the supplied sludge and the sludge is refined. Sludge to which a coagulant has been added using one of these sludge conditioning methods forms coagulated flocs, and the centrifugal force caused by the high-speed rotation of the rotating tube 1 causes the separated liquid 1 to
8 and thickened sludge 19. The thickened sludge 19 is conveyed by a screw conveyor consisting of an inner cylinder 5 and screw blades 6, is discharged outside the rotary cylinder 1, and is separated into a separated liquid 1.
8 flows down along the screw blades 6 and is discharged from the dam 4 to the outside of the rotating cylinder 1.

第5図(a)、(b)、(e)に示した従来の汚泥調質
方法のうち、同図の(a)及び(b)に示すものは、い
ずれも一種類の高分子凝集剤を供給汚泥に添加して汚泥
を調質するものであり、(a)は予め高分子凝集剤で調
質した汚泥を遠心分離機に供給する例、(b)は汚泥と
高分子凝集剤とを各別に遠心分離機内に供給し、分離機
の回転筒と内筒の間の領域で汚泥に高分子凝集剤を添加
する例を示している。なお(b)は、特公昭52−16
268号公報に詳細に説明されている。
Among the conventional sludge refining methods shown in Fig. 5 (a), (b), and (e), the methods shown in Fig. 5 (a) and (b) all use one type of polymer flocculant. is added to the supplied sludge to refine the sludge. (a) is an example in which sludge that has been tempered with a polymer flocculant is fed to a centrifuge, and (b) is an example in which sludge and polymer flocculant are added to the centrifuge. This example shows an example in which the sludge is supplied separately into a centrifugal separator, and a polymer flocculant is added to the sludge in the area between the rotating cylinder and the inner cylinder of the separator. In addition, (b) is
This is explained in detail in Japanese Patent No. 268.

第5図(e)に示す例は、二種類の凝集剤を汚泥に添加
するものであり、この種のものとしては、特開昭56−
87500号公報及び特開昭57−32797号公報に
二種類の高分子凝集剤を添加する例が、また類似技術と
して特開昭61−257256号公報に一種類の高分子
凝集剤と一種類の無機凝集剤を併用して添加する例がそ
れぞれ開示されている。
The example shown in FIG. 5(e) is one in which two types of flocculants are added to sludge, and this type of flocculant is
87500 and JP-A-57-32797 disclose an example of adding two types of polymer flocculants, and as a similar technique, JP-A-61-257256 discloses an example of adding one type of polymer flocculant and one type of polymer flocculant. Examples are disclosed in which an inorganic flocculant is added in combination.

〔発明が解決しようとする問題点〕・ 近年、デカンタ型遠心分離機の発達により、汚泥は凝集
剤を添加せずに濃縮できるよ5になったのであるが、そ
れでも凝集剤による汚泥の調質を行なわない場合、供給
汚泥中に懸濁している物質の回収率は約90(%)どま
りである。そこで第5図(a)、(b)、(c)につい
て説明したように、デカンタ型遠心分離機で汚泥を脱水
する場合、遠心分離様回転筒内部における遠心力による
汚泥の沈降・圧密・脱水作用を促進する目的で、凝集剤
を添加し汚泥の調質を行なっているのであるが、この場
合凝集剤が一種類であるか二種類であるかを問わず、凝
集剤は沈降・圧密・脱水作用の促進を一括して行なう目
的で供給汚泥に添加されており、遠心分離様回転筒内部
における沈降・圧密までの分離・濃縮とその後に起こる
脱水を分けて調質することは考慮されておらず、これら
従来の方法には次のような問題点がある。
[Problems to be solved by the invention] In recent years, with the development of decanter-type centrifuges, it has become possible to concentrate sludge without adding flocculants. If this is not done, the recovery rate of the substances suspended in the feed sludge is only about 90 (%). Therefore, as explained in Fig. 5 (a), (b), and (c), when dewatering sludge using a decanter-type centrifuge, sedimentation, consolidation, and dewatering of sludge due to centrifugal force inside the centrifugal-like rotating cylinder In order to promote the action, flocculants are added to refine the sludge, but in this case, regardless of whether there is one type of flocculant or two types of flocculants, the flocculant will cause sedimentation, consolidation, and It is added to the supplied sludge for the purpose of promoting the dewatering effect all at once, and it is not considered to separate and refine the separation and concentration up to sedimentation and consolidation inside the centrifugal-like rotating cylinder and the subsequent dehydration. However, these conventional methods have the following problems.

すなわち第5図(a) 、(b)に示す例では一種類の
高分子凝集剤を汚泥に添加する調質方法であるため、コ
ストも安(取扱いも容易といった利点があるが、回転筒
の外に排出された沈殿汚泥の含水率が高く、後処理工程
である投棄、埋め立て、乾燥、焼却等の処理処分に要す
るコストが割高になるという欠点があった0 また、第5図(C)のように二種類の凝集剤を添加する
汚泥調質方法は、同図(a)、(b)の汚泥調質方法に
比べて、回転筒から排出される沈殿汚泥の含水率を低下
させる効果はあ 〔るものの、二種類の凝集剤を使用す
るため、それぞれの凝集剤を供給するための各別の凝集
剤供給設備をデカンタ型遠心分離機に併設する必要があ
り、このため設備全体の建設費が高くなるばかりでな(
、凝集剤の使用量が多くなるため運転コストも高くなる
という欠点があった。また、前記特開昭57−3279
7号公報に開示の技術は、天然高分子凝集剤の溶解に酢
酸ないし塩酸を使用するものであり、前記特開昭61−
257256号公報に開示の技術は、硫酸鉄を使用する
ものであるため、強酸による装置の腐食があること、取
扱いにも注意を要することなどの問題があり、沈殿汚泥
の含水率が低下し、爾後の処理処分費用が安くなるとい
った効果があるにもかかわらず、さほど広(は用いられ
ていない実状にある。
In other words, in the examples shown in Figures 5(a) and 5(b), the treatment method involves adding one type of polymer flocculant to the sludge, which has the advantage of being low cost (and easy to handle), but it also has the advantage of being easy to handle. The moisture content of the precipitated sludge discharged outside was high, and the cost of post-treatment processes such as dumping, landfilling, drying, and incineration was relatively high. The sludge refining method in which two types of flocculants are added as shown in the figure is more effective in lowering the water content of the settled sludge discharged from the rotating tube than the sludge refining methods shown in (a) and (b) of the same figure. However, since two types of flocculants are used, it is necessary to install separate flocculant supply equipment to the decanter type centrifuge to supply each type of flocculant. Construction costs will only increase (
However, since the amount of flocculant used is large, the operating cost is also high. Also, the above-mentioned Japanese Patent Application Laid-Open No. 57-3279
The technique disclosed in Publication No. 7 uses acetic acid or hydrochloric acid to dissolve a natural polymer flocculant, and is similar to that disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 1986-
Since the technology disclosed in Japanese Patent No. 257256 uses iron sulfate, there are problems such as corrosion of the equipment due to strong acids and the need for care in handling, resulting in a decrease in the water content of the settled sludge. Although it has the effect of reducing subsequent processing and disposal costs, it is not widely used.

本発明は、以上に説明した汚泥脱水技術における問題点
を解決しようとするものである。
The present invention aims to solve the problems in the sludge dewatering technology described above.

問題点を解決するための手段〕 本発明は、第5図(a)、(b)、(C)に示される如
き従来の汚泥脱水技術における問題点を解決すべくなさ
れたものであり、本発明による汚泥の脱水方法は、円錐
部及び円筒部から成る回転筒と、該回転筒内に同心的に
配設された内筒及びスクリュー羽根から成るスクリュー
コンベヤとを備えたデカンタ型遠心分離機を用い、該遠
心分離機の運転にあたり、脱水処理されるべき汚泥を供
給するとともに、該供給汚泥の分離・濃縮・脱水作用を
促進するための所要量の一種類の凝集剤を遠心分離機内
へ供給して、前記回転筒円錐部末端部の排出口から脱水
された濃縮汚泥を排出するようにした汚泥の脱水方法で
あって、前記凝集剤の所要全量の10(%)ないし40
 (%)量を前記回転筒円錐部に隣接する円筒部内領域
に供給するとともK、残余の90 (%)ないし60優
)量を前記回転筒円錐部内領域に供給することを特徴と
するものである。
Means for Solving the Problems] The present invention has been made to solve the problems in conventional sludge dewatering techniques as shown in FIGS. 5(a), (b), and (C). The sludge dewatering method according to the invention uses a decanter-type centrifugal separator equipped with a rotating cylinder consisting of a conical part and a cylindrical part, and a screw conveyor consisting of an inner cylinder and screw blades arranged concentrically within the rotating cylinder. When operating the centrifuge, the sludge to be dehydrated is supplied, and the required amount of one type of flocculant is supplied into the centrifuge to promote separation, concentration, and dewatering of the supplied sludge. 10(%) to 40% of the total required amount of the flocculant, and the dewatered concentrated sludge is discharged from the discharge port at the end of the conical part of the rotary cylinder.
(%) amount is supplied to the internal region of the cylindrical portion adjacent to the rotating cylinder conical portion, and the remaining 90 (%) to 60% amount is supplied to the internal region of the rotating cylinder conical portion. be.

また、本発明による汚泥の脱水装置は、円錐部及び円筒
部から成る回転筒と、該回転筒内に同心的に配設され該
回転筒と回転差速をつけて駆動される内筒及び該内筒に
固定のスクリュー羽根から成るスクリューコンベヤと、
前記内筒中心部に配設された汚泥供給管とを備え、前記
回転筒円錐部末端部の排出口より濃縮汚泥を排出し、前
記回転筒円筒部末端部のダムより分離液を排出するよう
にしたデカンタ型遠心分離機において、 前記汚泥供給管に並設して前記回転筒円錐部に隣接する
円筒部内領域に凝集剤を供給するための第1凝集剤供給
管と前記回転筒円錐部内領域に凝集剤を供給するための
第2凝集剤供給管とを設けたことを特徴とするものであ
る。
The sludge dewatering device according to the present invention also includes a rotating cylinder consisting of a conical part and a cylindrical part, an inner cylinder arranged concentrically within the rotating cylinder and driven at a rotational speed differential with the rotating cylinder, and A screw conveyor consisting of screw blades fixed to an inner cylinder,
and a sludge supply pipe arranged at the center of the inner cylinder, so that concentrated sludge is discharged from an outlet at the end of the conical part of the rotating cylinder, and separated liquid is discharged from a dam at the end of the cylindrical part of the rotating cylinder. In the decanter type centrifugal separator, a first flocculant supply pipe is arranged in parallel with the sludge supply pipe and is configured to supply a flocculant to an internal region of the cylindrical part adjacent to the rotary cylinder conical part, and a first flocculant supply pipe and an internal region of the rotary cylinder conical part. A second flocculant supply pipe for supplying a flocculant to the flocculant is provided.

〔作用及び効果〕[Action and effect]

本発明においては、デカンタ型遠心分離機の回転筒円錐
部に隣接する円筒部内領域に一種類の凝集剤の所要全量
の10(%)ないし40(%)量を供給するようにし、
残余の90 (%)ないし60 (%)量を回転筒円錐
部内領域に供給するようにしたので、前記円筒部内領域
では、凝集剤によって分離・濃縮作用が促進され、また
前記円錐部内領域では、凝集剤によって脱水作用が促進
されることKなり、一種類の凝集剤の所要全量を一括し
て添加する従来の脱水技術と比較するとほとんど同程度
の設備建設費と運転コストでありながら、回転筒の外に
排出される沈殿汚泥の含水率を2(%)ないし3(%)
低く抑えることができた。
In the present invention, an amount of 10 (%) to 40 (%) of the total required amount of one type of flocculant is supplied to the inner region of the cylindrical portion adjacent to the rotating cylinder conical portion of the decanter type centrifuge,
Since the remaining 90 (%) to 60 (%) amount is supplied to the inner region of the conical portion of the rotating cylinder, the separation and concentration action is promoted by the flocculant in the inner region of the cylindrical portion, and in the inner region of the conical portion, The flocculant accelerates the dehydration effect, and compared to conventional dehydration technology in which the entire required amount of one type of flocculant is added at once, the equipment construction cost and operating cost are almost the same, but the rotary cylinder The moisture content of the settled sludge discharged outside is 2 (%) to 3 (%).
I was able to keep it low.

〔実施例〕〔Example〕

次に、第1図、第2図および第3図(a)、(b)に示
した本発明の実施例について説明する。
Next, the embodiments of the present invention shown in FIGS. 1, 2, and 3(a) and (b) will be described.

第1図に示す本発明に用いるデカンタ型遠心分離機は、
基本的には第4図に示すものと同様で、軸受2.2にて
支持され高速度で回転する回転筒1と、該回転筒1の内
部で差動機7により回転差速をつけて駆動される回転筒
1と同心の内f#J5及び該内筒5に固定のスクリュー
羽根6から成るスクリューコンベヤとを備え、回転筒1
は互いに一体的に接続された円錐部1aと円筒部1bと
から成り、該円錐部1aの末端部には沈殿汚泥排出用の
排出口3が、また該円筒部1bの末端部には分離液排出
用のダム4が設けられている。
The decanter type centrifuge used in the present invention shown in FIG.
Basically, it is similar to the one shown in Fig. 4, and includes a rotating cylinder 1 supported by a bearing 2.2 and rotating at a high speed, and a differential gear 7 driving the rotating cylinder 1 at a differential speed. The rotary cylinder 1 is equipped with a screw conveyor consisting of an inner f#J5 concentric with the rotating cylinder 1 and a screw blade 6 fixed to the inner cylinder 5.
It consists of a conical part 1a and a cylindrical part 1b which are integrally connected to each other, and the conical part 1a has a discharge port 3 for discharging the settled sludge at the end thereof, and the separating liquid is provided at the end of the cylindrical part 1b. A dam 4 for discharge is provided.

前記内筒5の内部は汚泥供給部8、分離・濃縮用凝集剤
供給部9及び脱水用凝集剤供給部10に区画され、また
該内筒5の中心部には汚泥供給管11、分離・濃縮用凝
集剤供給管12及び脱水用凝集剤供給管13が配設され
ている。
The inside of the inner cylinder 5 is divided into a sludge supply section 8, a flocculant supply section 9 for separation and concentration, and a flocculant supply section 10 for dewatering. A flocculant supply pipe 12 for concentration and a flocculant supply pipe 13 for dehydration are provided.

運転中のデカンタ型遠心分離機へ汚泥供給管11を通し
て供給される汚泥は、該供給管11の端部開口11aか
ら汚泥供給部8に入り、内筒5の筒壁に設けた汚泥吐出
ノズル14を通して回転筒1の円筒部1b内に導入され
遠心分離機による分離・濃縮作用を受ける。
Sludge supplied to the decanter-type centrifuge in operation through the sludge supply pipe 11 enters the sludge supply section 8 from the end opening 11a of the supply pipe 11, and passes through the sludge discharge nozzle 14 provided on the wall of the inner cylinder 5. It is introduced into the cylindrical portion 1b of the rotary cylinder 1 through the centrifugal separator and subjected to the separation and concentration action of the centrifuge.

同じく、分離・濃縮用凝集剤供給管12を通して供給さ
れる凝集剤は、該供給管の端部開口12aから分離・濃
縮用凝集剤供給部9に入り、内筒5の筒壁に設けた分離
・濃縮用凝集剤吐出ノズル15を通して円錐部1aに隣
接する円筒部1b内忙導入され、遠心分離機による供給
汚泥の沈降・圧密作用を促進し、さらに脱水用凝集剤供
給管13を通して供給される凝集剤は、該供給管の端部
開口13aから脱水用凝集剤供給部10に入り、内筒5
の筒壁に設けた脱水用凝集剤吐出ノズル16を通して回
転筒1の円錐部1a内に導入され、遠心分離機による濃
縮汚泥の脱水作用を促進する。
Similarly, the flocculant supplied through the separation/concentration flocculant supply pipe 12 enters the separation/concentration flocculant supply section 9 from the end opening 12a of the supply pipe, and enters the separation/concentration flocculant supply section 9 provided on the wall of the inner cylinder 5. - The flocculant for concentration is introduced into the cylindrical part 1b adjacent to the conical part 1a through the discharge nozzle 15, promotes the sedimentation and compaction of the supplied sludge by the centrifuge, and is further supplied through the flocculant supply pipe 13 for dewatering. The flocculant enters the dewatering flocculant supply section 10 from the end opening 13a of the supply pipe, and enters the inner cylinder 5.
The coagulant for dewatering is introduced into the conical part 1a of the rotary cylinder 1 through a discharge nozzle 16 provided on the cylinder wall, and promotes the dewatering action of the thickened sludge by the centrifugal separator.

遠心分離機の内筒5の内部中心部に配設される汚泥供給
管11、分離・濃縮用凝集剤供給管12及び脱水用凝集
剤供給管13は、第1図及び第2図に示すような3重管
に構成してもよいが、第3図C&)及び(b)にそれぞ
れ断面図示のような多重管の構成にしてもよい。
A sludge supply pipe 11, a flocculant supply pipe 12 for separation and concentration, and a flocculant supply pipe 13 for dewatering, which are arranged in the center of the inner cylinder 5 of the centrifugal separator, are as shown in FIGS. 1 and 2. Alternatively, a multi-tube structure as shown in cross-section in FIGS. 3C&) and (b) may also be used.

上記したようなデカンタ型遠心分離機を用いた本発明実
施例による汚泥脱水方法は、次のようにして実施される
。まず、汚泥供給管11の端部開口11aから吐出した
汚泥は、汚泥供給部8で回転加速され、汚泥吐出ノズル
14から回転筒1の円筒部1b内部に供給され、該汚泥
吐出ノズル14付近に設けた分離・濃縮用凝集剤吐出ノ
ズル15から全使用量の10(%)ないし40 (%)
量、代表的には20(%)量供給される凝集剤と混合さ
れて、分離に必要なフロックを形成する。
The sludge dewatering method according to the embodiment of the present invention using the decanter type centrifuge as described above is carried out as follows. First, the sludge discharged from the end opening 11a of the sludge supply pipe 11 is rotated and accelerated in the sludge supply section 8, and is supplied from the sludge discharge nozzle 14 into the cylindrical portion 1b of the rotary cylinder 1, and near the sludge discharge nozzle 14. 10 (%) to 40 (%) of the total amount used from the provided separation/concentration flocculant discharge nozzle 15
The flocculant is mixed with a flocculant provided in an amount, typically 20(%), to form the flocs required for separation.

フロックを形成した汚泥は、遠心力により分離され回転
筒1の内壁に沈降する。汚泥から分離した水は回転筒1
の内部を流下し、円筒部i bの末端部のダム4から分
離液として排出される。沈降した汚泥はスクリューコン
ベヤにより濃縮されながら沈殿汚泥排出口3側へ搬送さ
れる。搬送されてきた濃縮汚泥はまだ流動性を有するた
め、回転筒の円錐部1aにあるビーチ部で遠心力による
すべり現象を起こし、スクリューコンベヤの搬送力とす
べり分力とにより激しく攪拌される。このように汚泥が
攪拌されている部分に脱水用凝集剤吐出ノズル16から
残りの凝集剤が全使用量の90 (%)ないし60 (
%)量、代表的には80(%)量供給され、濃縮汚泥の
脱水作用を一層促進することになる。
The sludge that has formed flocs is separated by centrifugal force and settles on the inner wall of the rotating cylinder 1. The water separated from the sludge is transferred to rotating cylinder 1.
and is discharged as a separated liquid from the dam 4 at the end of the cylindrical portion ib. The settled sludge is conveyed to the settled sludge discharge port 3 side while being concentrated by the screw conveyor. Since the transported concentrated sludge still has fluidity, it causes a sliding phenomenon due to centrifugal force at the beach in the conical portion 1a of the rotating cylinder, and is violently agitated by the transporting force of the screw conveyor and the sliding force. The remaining flocculant is discharged from the dewatering flocculant discharge nozzle 16 into the area where the sludge is being stirred, from 90 (%) to 60 (%) of the total usage amount.
%) amount, typically 80(%) amount, to further promote the dewatering effect of the thickened sludge.

第5図(a)、(b)及び(e)に示す例を比較例とし
、高分子凝集剤をデカンタ型遠心分離機の円筒部と円錐
部の2箇所に分けて分注した本発明実施例とを比較して
みると、それぞれの高分子凝集剤の添加率と排出された
沈殿汚泥の含水率は、次表のようになる。
The examples shown in FIGS. 5(a), (b), and (e) are taken as comparative examples, and the present invention was implemented in which the polymer flocculant was separately dispensed into two parts, a cylindrical part and a conical part of a decanter-type centrifuge. When compared with the example, the addition rate of each polymer flocculant and the water content of the discharged settled sludge are as shown in the following table.

高分子凝集剤添加量は、ドライソリッド(絶対乾燥固形
物)D、S、に対する重量(チ)である。
The amount of polymer flocculant added is the weight (chi) relative to dry solids (absolutely dry solids) D and S.

実験対象汚泥・・・・・・下水消化汚泥使用実験機・・
・・・・・・デカンタ型遠心分離機回転筒内径356 
mm 実験機遠心効果・・・・2,100G スクリユーコンベヤ回転差速・・・5rpm供給汚泥量
・・・・ ・・4 m / h上記表かられかるように
、凝集剤を添加しない場合、通常汚泥回収率が50(%
)ないし90(%)であるのに対して、高分子凝集剤を
添加することにより、比較例(a)、(b)、(e)及
び実施例では、汚泥回収率がいずれも98(%)台と高
率であって、汚泥回収率の点では比較例、実施例を通し
てそれ程の差はみられない。しかしながら、一種類の高
分子凝集剤 ゆを添加する比較例(a)及び(b)と本
発明の実施例との比較かられかるように、排出沈殿汚泥
含水率は、本発明によれば2.4(%)ないし2.6(
%)も低い値となり、この種の汚泥含水率を1(%)低
くすることが爾後の沈殿汚泥処理に大きな影響を与える
ことを考慮すれば−、本発明による汚泥含水率の低減効
果は顕著なものというべきである。
Sludge to be tested: Experimental machine using sewage digested sludge.
... Decanter type centrifuge rotating cylinder inner diameter 356
mm Experimental machine centrifugal effect: 2,100G Screw conveyor rotation differential speed: 5 rpm Amount of sludge supplied: 4 m/h As can be seen from the table above, when no flocculant is added, Usually the sludge recovery rate is 50 (%)
) to 90 (%), whereas in Comparative Examples (a), (b), (e) and Examples, by adding a polymer flocculant, the sludge recovery rate was all 98 (%). ), and there is no significant difference in sludge recovery rate between the comparative example and the example. However, as can be seen from the comparison between Comparative Examples (a) and (b) in which one type of polymer flocculant was added and the Example of the present invention, the water content of the discharged settled sludge is 2. .4(%) to 2.6(
%), and considering that lowering the water content of this type of sludge by 1 (%) has a great effect on the subsequent treatment of settled sludge, the effect of reducing the water content of sludge by the present invention is remarkable. It should be called something.

本発明の実施例と比較例(C)との比較では、汚泥回収
率及び排出沈殿汚泥含水率のいずれも大差はない。しか
しながら比較例(e)では二種類の高分子凝集剤を各別
に供給するための設備を必要とするため、汚泥脱水装置
の設備全体として建設費が高(なるばかりでな(、高分
子凝集剤の使用量も本発明実施例の2.5倍にもなって
運転コストも高くなる。したがって、本発明によれば比
較例(C)に比べて建設費及び運転コストの面で大幅の
低減が期待できる。
In a comparison between Examples of the present invention and Comparative Example (C), there is no significant difference in either the sludge recovery rate or the water content of the discharged settled sludge. However, in Comparative Example (e), since equipment is required to supply two types of polymer flocculants separately, the construction cost for the entire sludge dewatering equipment is high. The usage amount is also 2.5 times that of the example of the present invention, and the operating cost is also higher. Therefore, according to the present invention, compared to the comparative example (C), there is a significant reduction in construction cost and operating cost. You can expect it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の汚泥脱水方法を実施するデカンタ型遠
心分離機を用いた汚泥脱水装置の一実施例を示した側断
面図、第2図は第1図のA−A線に沿う汚泥供給管、分
離・濃縮用凝集剤供給管及び脱水用凝集剤供給管から成
る3重管の断面図、第3図(a)、(b)は第2図とは
異なる汚泥供給管、分離・濃縮用凝集剤供給管及び脱水
用凝集剤供給管から成る集合管の断面図、第4図はデカ
ンタ型遠心分離機の側断面図、第5図(a)、(b)、
(e)は従来の汚泥調質方法の説明図である。 1・・・・・回転筒 2・・・・・軸 受 3 ・・・・・ 沈殿汚泥排出口 4  ・・・・・  ダ     ム 5  ・・・・・  内    筒 6 ・・・・ スクリュー羽根 7・・・・・差動機 8 ・・・・・ 汚泥供給部 9 ・・・・ 分離・濃縮用凝集剤供給部10  ・・
・・・ 脱水用凝集剤供給部11  ・・・・・ 汚泥
供給管 12  ・・・・・ 分離・濃縮用凝集剤供給管13 
 ・・・・・ 脱水用凝集剤供給管14  ・・・・ 
汚泥吐出ノズル 15  ・・・・・ 分離・濃縮用凝集剤吐出ノズル1
6  ・・・・ 脱水用凝集剤吐出ノズル17  ・・
・・・ ドライビーチ部 第1図 第4図
FIG. 1 is a side sectional view showing an embodiment of a sludge dewatering device using a decanter-type centrifugal separator for carrying out the sludge dewatering method of the present invention, and FIG. 2 is a sludge view taken along line A-A in FIG. Cross-sectional views of a triple pipe consisting of a supply pipe, a flocculant supply pipe for separation/concentration, and a flocculant supply pipe for dewatering, Figures 3 (a) and (b) show different sludge supply pipes, separation/concentration pipes, and A cross-sectional view of a collecting pipe consisting of a flocculant supply pipe for concentration and a flocculant supply pipe for dehydration, Figure 4 is a side cross-sectional view of a decanter type centrifuge, Figures 5 (a), (b),
(e) is an explanatory diagram of a conventional sludge refining method. 1...Rotating tube 2...Bearing 3...Settled sludge discharge port 4...Dam 5...Inner tube 6...Screw blade 7 ... Differential machine 8 ... Sludge supply section 9 ... Separation/concentration flocculant supply section 10 ...
... Coagulant supply section for dewatering 11 ... Sludge supply pipe 12 ... Coagulant supply pipe for separation and concentration 13
... Dewatering flocculant supply pipe 14 ...
Sludge discharge nozzle 15 ... Separation/concentration flocculant discharge nozzle 1
6... Dewatering flocculant discharge nozzle 17...
・・・ Dry beach section Figure 1 Figure 4

Claims (1)

【特許請求の範囲】 1、円錐部及び円筒部から成る回転筒と、該回転筒内に
同心的に配設された内筒及びスクリュー羽根から成るス
クリューコンベヤとを備えたデカンタ型遠心分離機を用
い、該遠心分離機の運転にあたり、脱水処理されるべき
汚泥を供給するとともに、該供給汚泥の分離・濃縮・脱
水作用を促進するための所要量の一種類の凝集剤を遠心
分離機内へ供給して、前記回転筒円錐部末端部の排出口
から脱水された濃縮汚泥を排出するようにした汚泥の脱
水方法であって、 前記凝集剤の所要全量の10(%)ないし 40(%)量を前記回転筒円錐部に隣接する円筒部内領
域に供給するとともに、残余の90(%)ないし60(
%)量を前記回転筒円錐部内領域に供給することを特徴
とするデカンタ型遠心分離機を用いる汚泥の脱水方法。 2、前記凝集剤が高分子凝集剤であり、該高分子凝集剤
を前記回転筒円錐部に隣接する円筒部内領域に対して所
要全量の20(%)量を、また前記回転筒円錐部内領域
に残余の80(%)量を供給することを特徴とする請求
項1記載のデカンタ型遠心分離機を用いる汚泥の脱水方
法。 3、円錐部及び円筒部かな成る回転筒と、該回転筒内に
同心的に配設され該回転筒と回転差速をつけて駆動され
る内筒及び該内筒に固定のスクリュー羽根から成るスク
リューコンベヤと、前記内筒中心部に配設された汚泥供
給管とを備え、前記回転筒円錐部末端部の排出口より濃
縮汚泥を排出し、前記回転筒円筒部末端部のダムより分
離液を排出するようにしたデカンタ型遠心分離機におい
て、 前記汚泥供給管に並設して前記回転筒円錐部に隣接する
円筒部内領域に凝集剤を供給するための第1凝集剤供給
管と前記回転筒円錐部内領域に凝集剤を供給するための
第2凝集剤供給管とを設けたことを特徴とする汚泥の脱
水装置。 4、前記回転筒の内部が、該回転筒円筒部側から円錐部
側にかけて汚泥供給部、分離・濃縮用凝集剤供給部及び
脱水用凝集剤供給部に区画され、前記汚泥供給管からの
供給汚泥は汚泥供給部及び内筒に設けた汚泥吐出ノズル
を介して前記回転筒円筒部内領域に供給され、前記第1
凝集剤供給管からの供給凝集剤は、前記分離・濃縮用凝
集剤供給部及び前記内筒に設けた分離・濃縮用凝集剤吐
出ノズルを介して前記回転筒円錐部に隣接する円筒部内
領域に供給され、さらに、前記第2凝集剤供給管からの
供給凝集剤は、前記脱水用凝集剤供給部及び前記内筒に
設けた脱水用凝集剤吐出ノズルを介して前記回転筒円錐
部内領域に供給されるようにしたことを特徴とする請求
項3記載の汚泥の脱水装置。
[Claims] 1. A decanter-type centrifugal separator equipped with a rotating cylinder consisting of a conical part and a cylindrical part, and a screw conveyor consisting of an inner cylinder and screw blades arranged concentrically within the rotating cylinder. When operating the centrifuge, the sludge to be dehydrated is supplied, and the required amount of one type of flocculant is supplied into the centrifuge to promote separation, concentration, and dewatering of the supplied sludge. 10(%) to 40(%) of the total required amount of the flocculant, the method comprising: discharging the dehydrated thickened sludge from an outlet at the end of the conical part of the rotating cylinder; is supplied to the internal region of the cylindrical part adjacent to the rotating cylinder conical part, and the remaining 90(%) to 60(%)
%) to the internal region of the rotary cylinder conical part. 2. The flocculant is a polymer flocculant, and the polymer flocculant is applied in an amount of 20 (%) of the required total amount to the inner region of the cylindrical portion adjacent to the conical portion of the rotary tube, and to the inner region of the conical portion of the rotary tube. 2. A method for dewatering sludge using a decanter-type centrifugal separator according to claim 1, characterized in that the remaining 80 (%) is supplied to a decanter-type centrifugal separator. 3. Consists of a rotating cylinder consisting of a conical part and a cylindrical part, an inner cylinder arranged concentrically within the rotating cylinder and driven with a rotational speed differential with the rotating cylinder, and a screw blade fixed to the inner cylinder. It is equipped with a screw conveyor and a sludge supply pipe arranged in the center of the inner cylinder, and the concentrated sludge is discharged from the outlet at the end of the conical part of the rotating cylinder, and the separated liquid is discharged from the dam at the end of the cylindrical part of the rotating cylinder. In a decanter-type centrifugal separator configured to discharge sludge, a first flocculant supply pipe is arranged in parallel with the sludge supply pipe and is configured to supply a flocculant to an inner region of the cylindrical part adjacent to the rotary cylindrical conical part; A sludge dewatering device characterized in that a second flocculant supply pipe is provided for supplying a flocculant to the inner region of the cylindrical conical part. 4. The inside of the rotating cylinder is divided from the cylindrical part side to the conical part side into a sludge supply part, a flocculant supply part for separation and concentration, and a flocculant supply part for dewatering, and the supply from the sludge supply pipe The sludge is supplied to the inner region of the rotary cylinder cylindrical part via a sludge supply part and a sludge discharge nozzle provided in the inner cylinder, and
The flocculant supplied from the flocculant supply pipe is supplied to the inner region of the cylindrical part adjacent to the rotating cylinder conical part through the flocculant supply part for separation and concentration and the flocculant discharge nozzle for separation and concentration provided in the inner cylinder. Further, the flocculant supplied from the second flocculant supply pipe is supplied to the inner region of the rotating cylinder conical part via the dehydration flocculant supply section and the dehydration flocculant discharge nozzle provided in the inner cylinder. 4. The sludge dewatering apparatus according to claim 3, wherein
JP63012734A 1988-01-25 1988-01-25 Sludge dewatering method and apparatus using decanter type centrifuge Expired - Fee Related JP2540180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012734A JP2540180B2 (en) 1988-01-25 1988-01-25 Sludge dewatering method and apparatus using decanter type centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012734A JP2540180B2 (en) 1988-01-25 1988-01-25 Sludge dewatering method and apparatus using decanter type centrifuge

Publications (2)

Publication Number Publication Date
JPH01189358A true JPH01189358A (en) 1989-07-28
JP2540180B2 JP2540180B2 (en) 1996-10-02

Family

ID=11813666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012734A Expired - Fee Related JP2540180B2 (en) 1988-01-25 1988-01-25 Sludge dewatering method and apparatus using decanter type centrifuge

Country Status (1)

Country Link
JP (1) JP2540180B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966299A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Two-stage chemical injection type centrifugal dehydrator
JPH09323097A (en) * 1996-06-07 1997-12-16 Mitsubishi Heavy Ind Ltd Sludge treating equipment
KR20020024146A (en) * 2002-01-25 2002-03-29 이한욱 centrifugal separator pouring into a chemical
US20110105292A1 (en) * 2008-06-06 2011-05-05 M-I L.L.C. Dual feed centrifuge
JP2012011300A (en) * 2010-06-30 2012-01-19 Nishihara Environment Co Ltd Centrifugal separation apparatus and sludge treatment method
JP2019118853A (en) * 2017-12-28 2019-07-22 水ing株式会社 Method for dewatering organic sludge, treatment apparatus used for dewatering organic sludge, and organic coagulant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966299A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Two-stage chemical injection type centrifugal dehydrator
JPH09323097A (en) * 1996-06-07 1997-12-16 Mitsubishi Heavy Ind Ltd Sludge treating equipment
KR20020024146A (en) * 2002-01-25 2002-03-29 이한욱 centrifugal separator pouring into a chemical
US20110105292A1 (en) * 2008-06-06 2011-05-05 M-I L.L.C. Dual feed centrifuge
US8961381B2 (en) * 2008-06-06 2015-02-24 M-I L.L.C. Dual feed centrifuge
JP2012011300A (en) * 2010-06-30 2012-01-19 Nishihara Environment Co Ltd Centrifugal separation apparatus and sludge treatment method
JP2019118853A (en) * 2017-12-28 2019-07-22 水ing株式会社 Method for dewatering organic sludge, treatment apparatus used for dewatering organic sludge, and organic coagulant

Also Published As

Publication number Publication date
JP2540180B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP2540198B2 (en) Sludge dewatering method and apparatus using decanter type centrifuge
AU722025B2 (en) Water and wastewater treatment system with internal recirculation
TWI542552B (en) Centrifugal dewatering and centrifugal dewatering
JP3032283B2 (en) Decanter centrifuge
JP2020097027A (en) centrifuge
CN111495612A (en) Horizontal spiral filtering centrifuge
JPH01189358A (en) Sludge dehydration method and apparatus using decanter type centrifugal separator
JP2017131847A (en) Centrifugal separator
US5586966A (en) Apparatus and method for separating solid/fluid mixtures
JPH03270747A (en) Decantation-type centrifugal separator
RU2185892C2 (en) Suspension separating centrifuge
JPS63194759A (en) Centrifugal dehydrator
JPH0587308B2 (en)
CN111495616A (en) Rotary drum device for horizontal spiral filtering centrifuge
JPH0716630B2 (en) Screen-decanter centrifuge
JP4163050B2 (en) Upper solids reflux type screw conveyor centrifugal dehydrator
JPH0217990A (en) Centrifugal dehydrator
KR100226518B1 (en) Pretreatment system for excretions and centrifugal separator
JPH0760300A (en) Treatment for concentrating and dehydrating sewage sludge and device therefor
US3658182A (en) Sludge centrifuge
KR200165604Y1 (en) Centrifugal machine
CN210764941U (en) Intelligent control system of horizontal screw centrifuge
JPH0217956A (en) Thickening dewatering apparatus
AU666362B2 (en) Separating, thickening or dewatering a solid/liquid mixture
JPH0235949A (en) Centrifugal concentrator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees