JPH01188436A - Molding die made of glass for optical element - Google Patents

Molding die made of glass for optical element

Info

Publication number
JPH01188436A
JPH01188436A JP924388A JP924388A JPH01188436A JP H01188436 A JPH01188436 A JP H01188436A JP 924388 A JP924388 A JP 924388A JP 924388 A JP924388 A JP 924388A JP H01188436 A JPH01188436 A JP H01188436A
Authority
JP
Japan
Prior art keywords
glass
molding
mold
optical element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP924388A
Other languages
Japanese (ja)
Inventor
Kazuo Kogure
和雄 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP924388A priority Critical patent/JPH01188436A/en
Publication of JPH01188436A publication Critical patent/JPH01188436A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/50Structural details of the press-mould assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To reduce the production cost of an optical element by providing a lightening hole having specified diameter to the central part of a molding die and also regulating the surface roughness excepting a molding face to the prescribed value or below. CONSTITUTION:A molding die 5 made of glass is freely slidably fitted and provided in a cylindrical drum mold 2. In this case, the molding die 5 has the deverging temp. higher than the transition temp. of a glass stock 3 and a lightening hole 6 having diameter of 20-80% of the diameter of the die is formed in the central part thereof. Furthermore, the surface of the die 5 excepting the molding face is finished at surface roughness not larger than 0.1mum. The glass stock 3 is arranged between the molding dies 5 and press-molded at the temp. close to the softening temp. in the furnace of the nonoxidative atmosphere. Then an optical element is obtained by performing slow cooling and cooling therefor. Thereby a crack on the surface of a product during cooling is prevented and the time for cooling and molding is shortened. Thus, the production cost of the optical element is reduced by improvement of productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラスまたはプラスチックよりなるレンズ、
プリズム等の光学素子を押圧成形するための光学素子の
ガラス製成形型に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lens made of glass or plastic;
The present invention relates to a glass mold for optical elements for press-molding optical elements such as prisms.

〔従来の技術〕[Conventional technology]

従来、レンズ、プリズム等の光学素子を製造するには、
光学素子素材をダイヤモンド砥石等によって研削した後
、酸化セリウム等によって研削する方法が採用されてい
た。しかし、近年、非球面レンズ等の需要が多くなり、
上記従来の加工方法では、低コストで大量の非球面レン
ズ等を生産することが困難になってきた。そこで、現在
、光学素子の製造方法として、研削、研磨等を行わずに
、高い面精度の一対の成形型間に加熱軟化した光学素子
素材を挿入配置し、これを加圧するだけで光学素子を得
る押圧成形が行われている。
Conventionally, to manufacture optical elements such as lenses and prisms,
A method has been adopted in which the optical element material is ground with a diamond grindstone or the like and then ground with cerium oxide or the like. However, in recent years, demand for aspherical lenses has increased,
With the conventional processing methods described above, it has become difficult to produce large quantities of aspherical lenses and the like at low cost. Therefore, the current manufacturing method for optical elements is to insert and place a heat-softened optical element material between a pair of molds with high surface precision, and pressurize it, without performing any grinding, polishing, etc. Press molding is carried out to obtain.

この押圧成形に用いる成形型としては、その材料にステ
ンレス鋼等の金属を用いたものがあるが、この金属製成
形型はガラスの成形および熱間加工の温度サイクルによ
り結晶粒等の成長を生じて結晶構造が変化し、その結果
、型表面が肌荒れしてしまい、表面形状や離型性を劣化
させて型寿命が非常に短いという問題があった。
Some of the molds used for this pressure forming are made of metals such as stainless steel, but these metal molds cause crystal grains to grow due to the temperature cycles of glass molding and hot working. As a result, the mold surface becomes rough, deteriorating the surface shape and mold releasability, resulting in a very short mold life.

この問題点を解消すべく、例えば特開昭61−7263
4号公報に開示されるように、金属製成形型の成形面に
PVD法(物理的蒸着法)またはCVD法(化学的蒸着
法)によって5i3NaまたはHfN等のセラミック層
を形成したものが知られている。
In order to solve this problem, for example, Japanese Patent Laid-Open No. 61-7263
As disclosed in Publication No. 4, it is known that a ceramic layer of 5i3Na or HfN is formed on the molding surface of a metal mold by PVD (physical vapor deposition) or CVD (chemical vapor deposition). ing.

しかし、このようにセラミック層を設けた金属製成形型
であっても、ガラスの成形および熱間加工の温度サイク
ルにより型基材自体の結晶粒等が成長し、結晶構造が変
化してしまうことは不可避的であり、薄層であるセラミ
ック層の表面に肌荒れを生じ、場合によってはセラミッ
ク層が剥離してしまうこともあった。
However, even with a metal mold with a ceramic layer like this, the crystal grains of the mold base material itself grow due to the temperature cycles of glass molding and hot processing, and the crystal structure changes. This is unavoidable, and the surface of the thin ceramic layer becomes rough, and in some cases, the ceramic layer may peel off.

このため、光学素子の成形型として、好ましいガラス成
形物性を有し、かつ構造的、熱的特性の向上したものの
開発が望まれている。
Therefore, it is desired to develop a mold for optical elements that has favorable glass molding properties and improved structural and thermal properties.

そこで、発明者は、先に特願昭62−134581号に
おいて、熱間成形での温度サイクルでも押圧成形品の表
面粗さを劣化させることなく、かつガラスに対する離型
性に優れ、加工が掻めて容易なガラス製成形型を提案し
た。このガラス製成形型は成形保持温度よりも高いデー
バージング温度を存するガラスよりなり、成形面に離型
被膜を被覆したものである。ここに、デーバージング温
度とは、徐歪ガラスと急冷ガラスの熱膨張曲線が、ガラ
ス転移点温度(Tg)以下の領域で交わった点の温度を
言う。
Therefore, the inventor previously proposed in Japanese Patent Application No. 62-134581 that the surface roughness of the press-molded product does not deteriorate even during temperature cycles during hot forming, has excellent mold releasability from glass, and is easy to process. We proposed an easy-to-use glass mold. This glass mold is made of glass having a devarging temperature higher than the molding holding temperature, and has a molding surface coated with a mold release film. Here, the deverging temperature refers to the temperature at the point where the thermal expansion curves of slowly strained glass and quenched glass intersect in a region below the glass transition temperature (Tg).

すなわち、第3図に示すように、上記ガラス製成形型1
は、円筒状の円型2内に所定のクリアランスをもって摺
動自在に嵌合される。このガラス製成形型1は、その硝
材として、被成形ガラスであるガラス素材3の転移点温
度よりも高いデーバージング温度を有するものが用いら
れている0例えばガラス素材3がSF7よりなる場合に
は、そのガラス転移点温度は約530″Cであるので、
この温度よりも高いデーバージング温度を有するLa5
FO8をガラス製成形型lの硝材とする。
That is, as shown in FIG. 3, the glass mold 1
is slidably fitted into the cylindrical circular mold 2 with a predetermined clearance. This glass mold 1 uses a glass material having a devarging temperature higher than the transition point temperature of the glass material 3 which is the glass to be molded. For example, when the glass material 3 is made of SF7, Its glass transition temperature is about 530″C, so
La5 with debarging temperature higher than this temperature
Let FO8 be the glass material for the glass mold l.

また、ガラス製成形型1の成形面は、所望の形状精度お
よび表面粗さに形成され、その表面には、例えばAff
i、O,等よりなる離型被膜4が形成されている。
Further, the molding surface of the glass mold 1 is formed to have desired shape accuracy and surface roughness, and the surface includes, for example, Aff.
A release film 4 made of i, 0, etc. is formed.

上記ガラス製成形型1により、例えばレンズを製造する
には、先ず、円型2内に直径20■、長さ301m1の
一対のガラス製成形型1を嵌合するとともに、これらガ
ラス製成形型1間にガラス素材3を配置する。そして、
この組立体を非酸化性雰囲気の電気炉(図示省略)内で
加熱する。加熱温度はガラス素材3の軟化点付近の59
0°Cで、加熱時間は約1時間とする。この間、上方の
ガラス製成形型1におもりWをのせて50g/cdの圧
力をガラス素材3に加える。なお、ガラス素材3と成形
品との形状差に応じて上記加熱時間は増減することがで
きる。
In order to manufacture, for example, a lens using the glass mold 1, first, a pair of glass molds 1 with a diameter of 20 mm and a length of 301 m1 are fitted into the circular mold 2. A glass material 3 is placed between them. and,
This assembly is heated in an electric furnace (not shown) in a non-oxidizing atmosphere. The heating temperature is 59, which is around the softening point of glass material 3.
Heating time is approximately 1 hour at 0°C. During this time, a weight W is placed on the upper glass mold 1 and a pressure of 50 g/cd is applied to the glass material 3. Note that the heating time can be increased or decreased depending on the difference in shape between the glass material 3 and the molded product.

成形後、所定の冷却速度で徐冷し、約95°Cになった
とき、ガラス成形品(レンズ)を取出した。
After molding, the molded glass product (lens) was slowly cooled at a predetermined cooling rate, and when the temperature reached approximately 95°C, the glass molded product (lens) was taken out.

第4図は、この成形工程における時間と温度との関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between time and temperature in this molding process.

上記成形においては、成形品と離型被膜4とは全く融着
を生ずることなく、ガラス製成形型1の成形面の高い形
状精度および表面粗さがそのまま転写された、研磨不要
のプレスレンズが得られた。
In the above molding, there is no fusion between the molded product and the mold release coating 4, and the high shape accuracy and surface roughness of the molding surface of the glass mold 1 are directly transferred, resulting in a press lens that does not require polishing. Obtained.

また、ガラス製成形型1の材料は、デーバージング温度
が約700℃なので、この温度以下で成形を行う限り、
成形面の形状は全く変化せず、また非晶質であるので、
金属のように結晶粒が成長することなく、成形面の表面
粗さが劣化することもない。
In addition, the material of the glass mold 1 has a devarging temperature of about 700°C, so as long as the molding is carried out below this temperature,
The shape of the molding surface does not change at all and is amorphous, so
Unlike metals, crystal grains do not grow and the surface roughness of the molded surface does not deteriorate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、高温(ただし、歪点以下)のガラスを常温の
大気中に取り出すと、ガラスの表面は急″速に冷え縮も
うとするのに対して、内部は遅れる。
However, when glass at a high temperature (but below its strain point) is taken out into the air at room temperature, the surface of the glass rapidly cools and contracts, while the interior lags behind.

その結果、ガラスの表面近くには表面に平行な方向に張
力が発生する。この張力がガラスの抗張強度より大きく
なると、ガラスに亀裂(カン)が発生して破壊する0発
生する応力は、ガラスが大型で肉厚が厚く、熱膨張係数
が大きいほど大きい。
As a result, tension is generated near the surface of the glass in a direction parallel to the surface. If this tension becomes greater than the tensile strength of the glass, cracks will occur in the glass and it will break.The stress that occurs increases as the size of the glass increases, the thickness increases, and the coefficient of thermal expansion increases.

また、ガラス表面の熱伝達係数が大きいと表面の応力も
太き(なる、このような応力は、ガラス中に温度不均一
がある時期だけに一時的に発生するので一時歪という。
Also, if the heat transfer coefficient of the glass surface is large, the stress on the surface will also be large (this kind of stress is called temporary strain because it only occurs temporarily when there is temperature non-uniformity in the glass.

したがって、上記従来のように、直径20m、長さ30
rmのような比較的肉厚のガラス製成形型1を用いて成
形を行う場合には、成形型温度が歪点以下に下がっても
、急激な速度で温度を下げることができなかった。急激
に常温の大気中に取出すと、ガラス製成形型lはカンを
発生して割れてしまうからである、これは、成形しよう
とするレンズ(光学素子)が大口径になればなるほど、
カンを発生することがないように、十分にゆっくりした
速度でガラス製成形型1を室温近くまで徐冷する必要が
ある。
Therefore, as in the conventional case, the diameter is 20 m and the length is 30 m.
When molding is performed using a relatively thick glass mold 1 such as rm, even if the mold temperature drops below the strain point, the temperature cannot be lowered rapidly. This is because if the glass mold l is suddenly taken out into the atmosphere at room temperature, it will crack and break.This is because the larger the diameter of the lens (optical element) to be molded, the more
It is necessary to slowly cool the glass mold 1 to near room temperature at a sufficiently slow rate so as not to cause formation of cans.

すなわち、従来のガラス製成形型1では、カンを発生し
ないように十分遅い速度で徐冷を行わなければならない
ので、1回の成形に際して成形時間が著しく長くなって
しまい、結局、光学素子の価格が高くなるという問題点
があった。
In other words, in the conventional glass mold 1, slow cooling must be carried out at a sufficiently slow rate to prevent formation of cans, which results in a significantly longer molding time for one molding process, which ultimately results in an increase in the price of the optical element. There was a problem in that it became high.

本発明は、かかる従来の問題点に鑑みてなされたもので
、成形型の冷却速度を遅くすることができ、成形時間の
短縮化が図れ、安価にして光学素子を得ることができる
光学素子のガラス製成形型を提供することを目的とする
The present invention has been made in view of such conventional problems, and is an optical element that can slow down the cooling rate of the mold, shorten the molding time, and obtain the optical element at low cost. The purpose is to provide glass molds.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、成形保持温度よ
りも高いデーバージング温度を有するガラスよりなり、
成形型中心部に成形型直径の20〜80%の直径である
白抜穴を設けるとともに、成形面以外の表面粗さを0.
1μm以下として光学素子のガラス製成形型を構成した
ものである。
In order to achieve the above object, the present invention is made of a glass having a debarring temperature higher than a forming holding temperature,
A blank hole with a diameter of 20 to 80% of the mold diameter is provided in the center of the mold, and the surface roughness of the surfaces other than the molding surface is reduced to 0.
The glass mold for the optical element is configured to have a thickness of 1 μm or less.

本発明において、白抜穴の直径を成形型の直径の20〜
80%としたのは、20%未満であると、型肉厚を均一
に薄くして一時歪による破壊を防止するという効果が得
られず、また80%を越えると型肉厚が薄くなりすぎ、
成形型自体の強度が弱くなってしまうからである。
In the present invention, the diameter of the blank hole is 20 to 20% of the diameter of the mold.
The reason for setting it to 80% is that if it is less than 20%, the effect of uniformly thinning the mold wall thickness and preventing destruction due to temporary strain cannot be obtained, and if it exceeds 80%, the mold wall thickness will become too thin. ,
This is because the strength of the mold itself becomes weak.

〔作用〕[Effect]

上記のように構成の光学素子のガラス製成形型において
は、成形型の型肉厚は均一に薄くなり、成形型の冷却過
程において成形型各部の温度差が小さくなって、−時歪
による破壊は防止される。
In a glass mold for an optical element configured as above, the wall thickness of the mold becomes uniformly thin, and during the cooling process of the mold, the temperature difference between each part of the mold becomes small, causing damage due to -time strain. is prevented.

また、上記の如く型肉厚を均一に薄くしても多少の温度
差は生じ、成形型の表面近くにはわずかながら表面に平
行な方向に張力が発生する。そして、成形型の表面に傷
等の表面欠陥が存在すると、その表面欠陥のある箇所か
らカンが発生する虞れがある。そこで、本発明に係るガ
ラス製成形型は、従来考慮されていなかった成形面以外
(白抜穴の表面を含む)の表面粗さを0.1μm以下と
しているので、カンを発生させるような表面欠陥がなく
、−時歪による破壊を完全に防止できる。
Further, even if the mold wall thickness is made uniformly thin as described above, some temperature difference occurs, and a slight tension is generated near the surface of the mold in a direction parallel to the surface. If a surface defect such as a scratch exists on the surface of the mold, there is a possibility that a hole may be generated from the location of the surface defect. Therefore, the glass mold according to the present invention has a surface roughness of 0.1 μm or less on surfaces other than the molding surface (including the surface of the white holes), which has not been considered in the past, so There are no defects, and destruction due to -time strain can be completely prevented.

〔実施例〕〔Example〕

第1図において、ガラス製成形型5は、内筒状の調型2
内に所定のクリアランスをもって摺動自在に嵌合されて
いる。このガラス製成形型5は、その硝材として、被成
形ガラスであるガラス素材3の転移点温度よりも高いデ
ーバージング温度を有するものが用いられている0本実
施例においては、ガラス素材3がSF7よりなり、SF
7のガラス転移点温度は約530°Cであるので、デー
バージング温度が約700°CであるLa5FO8をガ
ラス製成形型5の硝材としている。
In FIG. 1, the glass mold 5 has an inner cylindrical mold 2.
It is slidably fitted inside with a predetermined clearance. This glass mold 5 uses a glass material having a devarging temperature higher than the transition point temperature of the glass material 3 which is the glass to be molded. In this embodiment, the glass material 3 is Nari, SF
Since the glass transition temperature of No. 7 is about 530°C, the glass material of the glass mold 5 is La5FO8 whose devarging temperature is about 700°C.

一方、成形品であるプレスレンズの光学的有効径が19
閣であるので、ガラス製成形型5の外径は20mmに形
成されている。また、ガラス製成形型5の長さは、30
mに形成されている。これは、調型2とのクリアランス
によってガラス製成形型5が偏芯を生じると成形品にも
偏芯を生じるので、この偏芯を防止するために、クリア
ランスを摺動に支障がない程度まで小さくするとともに
、嵌合長を長くすることが必要であり、プレスレンズの
偏芯精度を確保するためである。
On the other hand, the optical effective diameter of the press lens, which is a molded product, is 19
Since it is a cabinet, the outer diameter of the glass mold 5 is set to 20 mm. Moreover, the length of the glass mold 5 is 30
It is formed in m. This is because if the glass mold 5 becomes eccentric due to the clearance with the mold 2, the molded product will also become eccentric, so in order to prevent this eccentricity, the clearance should be adjusted to a level that does not interfere with sliding. It is necessary to make it small and to make the fitting length long, in order to ensure eccentricity accuracy of the press lens.

また、ガラス製成形型5の中心部には、直径10++u
aの白抜穴6が穿設されている。この白抜穴6は、ガラ
ス製成形型5の成形面と反対側からダイヤモンド砥石に
よって研削加工して形成される。
In addition, the center part of the glass mold 5 has a diameter of 10++ u.
A white hole 6 is drilled. The blank hole 6 is formed by grinding the glass mold 5 from the side opposite to the molding surface using a diamond grindstone.

白抜穴6を設けることにより、ガラス製成形型5の肉厚
は、全面にわたって5mとなり、はぼ均一となる深さに
加工されている。
By providing the blank holes 6, the wall thickness of the glass mold 5 is 5 m over the entire surface, and the depth is approximately uniform.

さらに、上記のようにして加工したガラス製成形型5の
表面には、微小な傷やクランク等の表面欠間が多数発生
しているので、これらを除去して表面を滑らかにすべく
、フッ酸または硝酸を用いて酸洗いを行った。これによ
り、ガラス製成形型5の成形面以外の表面粗さ(白抜穴
6の表面を含む)は、0.1#■以下に形成されている
Furthermore, the surface of the glass mold 5 processed as described above has many surface gaps such as minute scratches and cracks, so in order to remove these and make the surface smooth, Pickling was performed using acid or nitric acid. As a result, the surface roughness of the glass mold 5 other than the molding surface (including the surface of the white hole 6) is set to 0.1 #■ or less.

一方、ガラス製成形型5の成形面は、所望のプレスレン
ズ形状に加工されるとともに、酸化セリラム等によって
鏡面研磨されている0本実施例では、一方のガラス製成
形型5の成形面は球面状に形成され、他方のガラス製成
形型5の成形面は非球面状に形成されており、それぞれ
高い形状精度および表面粗さになっている。また、ガラ
ス製成形型5の成形面には、Affi103よりなる離
型被膜7が、真空蒸着法によって0.2μ■の膜厚で形
成されている。
On the other hand, the molding surface of the glass mold 5 is processed into a desired pressed lens shape and mirror-polished with cerium oxide or the like. In this embodiment, the molding surface of one glass mold 5 is spherical. The molding surface of the other glass mold 5 is formed into an aspherical shape, and each has high shape accuracy and surface roughness. Furthermore, on the molding surface of the glass mold 5, a release film 7 made of Affi103 is formed with a thickness of 0.2 μm by vacuum deposition.

次に、上記ガラス製成形型5によりレンズを成形する方
法について説明する。
Next, a method of molding a lens using the glass mold 5 will be described.

先ず、別型2内に一対のガラス製成形型5を嵌合すると
ともに、これらガラス製成形型5間にSr1のガラス素
材3を配置する。そして、この組立体を非酸化性雰囲気
の電気炉(図示省略)内で加熱する。加熱温度はガラス
素材3の軟化点付近の590°Cで、加熱時間は約1時
間とする。この間、上方のガラス製成形型5におもりW
をのせて50g/cdの圧力をガラス素材3に加える。
First, a pair of glass molds 5 are fitted into the separate mold 2, and a Sr1 glass material 3 is placed between these glass molds 5. This assembly is then heated in an electric furnace (not shown) in a non-oxidizing atmosphere. The heating temperature is 590°C near the softening point of the glass material 3, and the heating time is about 1 hour. During this time, a weight W is placed on the upper glass mold 5.
is placed on the glass material 3 and a pressure of 50 g/cd is applied to the glass material 3.

成形後、毎分3℃の速度でSr8の歪点以下の温度、例
えば485℃まで徐冷し、次いで熱衝撃応力によって破
壊が生じない範囲で冷却速度を適当に速めながら冷却を
行った0本実施例では、毎分20℃の冷却速度で冷却し
、約95°Cになったところでガラス成形品(プレスレ
ンズ)を取出した。第2図は、この成形工程における時
間と温度との関係を示すグラフである。
After molding, it was slowly cooled at a rate of 3°C per minute to a temperature below the strain point of Sr8, for example 485°C, and then cooled while increasing the cooling rate appropriately within a range that does not cause destruction due to thermal shock stress. In the example, cooling was performed at a cooling rate of 20° C. per minute, and when the temperature reached approximately 95° C., the glass molded product (pressed lens) was taken out. FIG. 2 is a graph showing the relationship between time and temperature in this molding process.

上記成形により、高い形状精度および表面粗さを有する
研磨不要のプレスレンズを得ることができた。
Through the above molding, it was possible to obtain a press lens that did not require polishing and had high shape accuracy and surface roughness.

また、ガラス製成形型5は、その中心部に肉抜穴6を形
成して型肉厚をほぼ均一に薄く設けであるので、冷却過
程における冷却速度を、ガラス素材3の歪点のやや下ま
ではゆっくりとし、その後はかなり速く冷却してもガラ
ス製成形型5にカンを発生させることがなく、従来では
240分要していた成形時間(第4図参照)を130分
に短縮することができた(第2図参照)、これにより、
プレスレンズを安価にして製造することができる。
In addition, the glass mold 5 has a hollow hole 6 formed in its center so that the mold wall thickness is thin and almost uniform, so that the cooling rate during the cooling process can be adjusted to be slightly below the strain point of the glass material 3. Even if the glass mold 5 is cooled slowly and then cooled very quickly, the molding time that conventionally required 240 minutes (see Fig. 4) can be shortened to 130 minutes. was created (see Figure 2), and as a result,
Press lenses can be manufactured at low cost.

なお、上記実施例においては、成形面以外の表面粗さを
0.IIII以下とするのに酸洗いを行ったが、本発明
はかかる実施例に限定されるものではな(、例えばパフ
により機械的に研磨したり、予め傷やクラック等の表面
欠陥のないガラス製成形型5を成形により製造してもよ
い。
In the above example, the surface roughness of the surfaces other than the molding surface was set to 0. Although pickling was carried out to reduce the surface roughness to below III, the present invention is not limited to such examples. The mold 5 may be manufactured by molding.

また、ガラス製成形型5の成形面形状は、球面状、非面
状の組合せに限定されず、平面も含めた任意の形状の組
合せが可能であり、プリズム製造用のガラス製成形型等
にあっては必ずしも丸形である必要はない。
In addition, the shape of the molding surface of the glass mold 5 is not limited to a combination of spherical and non-spherical shapes, but any combination of shapes including flat surfaces is possible, and it can be used as a glass mold for manufacturing prisms, etc. However, it does not necessarily have to be round.

さらに、本発明は、レンズ径が大きくなればなるほど、
換言すればガラス製成形型の直径、長さが大きくなれば
なるほど、レンズの偏芯が高精度なものが要求されるほ
ど、効果が有効に発揮される。
Furthermore, in the present invention, the larger the lens diameter, the more
In other words, the larger the diameter and length of the glass mold, and the more accurate the eccentricity of the lens is required, the more effectively the effect will be exhibited.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の光学素子のガラス製成形型によ
れば、成形型中心部に肉抜穴を設けて型肉厚をほぼ均一
にするとともに、成形面以外の表面粗さを0.1μ鋼以
下としているので、被成形品の歪点以下の温度からの冷
却速度を著しく速くしても熱衝撃応力によって破壊を生
じることがない。
As described above, according to the glass mold for an optical element of the present invention, the lightening hole is provided in the center of the mold to make the mold wall thickness almost uniform, and the surface roughness of the surfaces other than the molding surface is reduced to 0. Since the steel is made of 1μ or less, even if the cooling rate from the temperature below the strain point of the molded product is significantly increased, no breakage will occur due to thermal shock stress.

したがって、成形時間を大幅に短縮することができ、生
産性が著しく向上する。これにより、同一生産数を成形
するための成形機台数を減少でき、また成形型数も削減
できるので、結局安価にして光学素子を得ることができ
る。
Therefore, molding time can be significantly shortened, and productivity is significantly improved. As a result, the number of molding machines for molding the same production quantity can be reduced, and the number of molds can also be reduced, so that optical elements can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る光学素子のガラス製成
形型を備えた成形機の要部縦断面図、第2図は第1図に
示す成形機により成形を行う場合の時間と温度との関係
を示すグラフ、第3図は従来の光学素子のガラス製成形
型を備えた成形機の要部縦断面図、第4図は第3図に示
す成形機により成形を行う場合の時間と温度との関係を
示すグラフである。 3・・・ガラス素材   5・・・ガラス製成形型6・
・・肉抜穴     7・・・離型被膜特許出願人  
オリンパス光学工業株式会社1    辷・Z El      餡 昭和63年 3月16日 1.事件の表示 昭和63年 特 許 願 第9243号2、発明の名称 光学素子のガラス製成形型 3、補正をする者 事件との関係  特許出願人 住 所 東京都渋谷区幡ケ谷2丁目43番2号名 称 
(037)オリンパス光学工業株式会社代表者  下 
 山  敏  部 4、代理人〒105 住 所 東京都港区浜松町2丁目2番15号浜松町ダイ
ヤハイツ706号 明細書の「発明の詳細な説明」の憫 7、補正の内容 (1)明細書第7頁第12行目に記載する「遅く」を「
速く」と補正する。
FIG. 1 is a vertical cross-sectional view of a main part of a molding machine equipped with a glass mold for an optical element according to an embodiment of the present invention, and FIG. A graph showing the relationship with temperature. Figure 3 is a longitudinal sectional view of the main parts of a molding machine equipped with a conventional glass mold for optical elements. Figure 4 is a graph showing the relationship between molding and temperature when molding is performed using the molding machine shown in Figure 3. It is a graph showing the relationship between time and temperature. 3...Glass material 5...Glass mold 6.
... Lightening hole 7 ... Mold release coating patent applicant
Olympus Optical Industry Co., Ltd. 1. Z. El. March 16, 1988 1. Indication of the case 1988 Patent Application No. 9243 2 Name of the invention Glass molding mold for optical elements 3 Person making the amendment Relationship to the case Patent applicant address 2-43-2 Hatagaya, Shibuya-ku, Tokyo Name
(037) Representative of Olympus Optical Industry Co., Ltd.
Satoshi Yama, Department 4, Agent 105 Address: 706 Hamamatsucho Dia Heights, 2-2-15 Hamamatsucho, Minato-ku, Tokyo 706 "Detailed Description of the Invention" Contents of Amendment (1) Specification "Late" written on page 7, line 12 of the book is "late".
"Fast," he corrected.

Claims (1)

【特許請求の範囲】[Claims] (1)成形保持温度よりも高いデーバージング温度を有
するガラスよりなり、成形型中心部に成形型直径の20
〜80%の直径である肉抜穴を設けるとともに、成形面
以外の表面粗さを0.1μm以下としたことを特徴とす
る光学素子のガラス製成形型。
(1) Made of glass with a devarging temperature higher than the molding holding temperature, the center of the mold is
A glass mold for an optical element, characterized in that it has a hollow hole with a diameter of ~80% and has a surface roughness other than the molding surface of 0.1 μm or less.
JP924388A 1988-01-19 1988-01-19 Molding die made of glass for optical element Pending JPH01188436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP924388A JPH01188436A (en) 1988-01-19 1988-01-19 Molding die made of glass for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP924388A JPH01188436A (en) 1988-01-19 1988-01-19 Molding die made of glass for optical element

Publications (1)

Publication Number Publication Date
JPH01188436A true JPH01188436A (en) 1989-07-27

Family

ID=11714965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP924388A Pending JPH01188436A (en) 1988-01-19 1988-01-19 Molding die made of glass for optical element

Country Status (1)

Country Link
JP (1) JPH01188436A (en)

Similar Documents

Publication Publication Date Title
US4481023A (en) Process to mold precision glass articles
JPS60127246A (en) Mold for direct compression molding of optical glass lens
US4969944A (en) Process to mold precision glass articles
US4854958A (en) Process to mold precision glass articles
JP2011157258A (en) Glass preform and method for manufacturing the same
JPH01188436A (en) Molding die made of glass for optical element
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPH0421608B2 (en)
JPS6227334A (en) Method for forming optical element
JP4133309B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JPH0146453B2 (en)
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP3219460B2 (en) Optical element mold and method of manufacturing the same
JPH0455134B2 (en)
JPH0572336B2 (en)
JPS60176930A (en) Mold for press molding glass lens
JP3199825B2 (en) Optical element molding method
JP2004203698A (en) Glass blank, its manufacturing method, method of manufacturing substrate for information recording medium, and method of manufacturing information recording medium
JP3045433B2 (en) Method for manufacturing optical glass element
JPH01264937A (en) Press-forming method for optical glass element
JPS60176928A (en) Mold for press molding glass lens
JPS63134527A (en) Method for forming optical glass element
JP2010254514A (en) Method for manufacturing glass base material, method for manufacturing preform for precision press-molding, and method for manufacturing optical element
JPH1067523A (en) Press forming die for optical glass element and its production
JP2002080227A (en) Method of manufacturing optical element