JPH01188106A - Directivity variable device - Google Patents

Directivity variable device

Info

Publication number
JPH01188106A
JPH01188106A JP1209588A JP1209588A JPH01188106A JP H01188106 A JPH01188106 A JP H01188106A JP 1209588 A JP1209588 A JP 1209588A JP 1209588 A JP1209588 A JP 1209588A JP H01188106 A JPH01188106 A JP H01188106A
Authority
JP
Japan
Prior art keywords
prism
planar
angle
antenna
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1209588A
Other languages
Japanese (ja)
Inventor
Koichi Sato
甲一 佐藤
Akira Takahashi
章 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yagi Antenna Co Ltd
Original Assignee
Yagi Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yagi Antenna Co Ltd filed Critical Yagi Antenna Co Ltd
Priority to JP1209588A priority Critical patent/JPH01188106A/en
Publication of JPH01188106A publication Critical patent/JPH01188106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply vary the directivity by arranging a planar prism made of plastic constituted by multi-stage forming in terms of plane of triangular pyramids nearly in parallel with the front face of the planar antenna and providing an angle adjusting mechanism adjusting minutely the fitting angle of the planar prism. CONSTITUTION:Plural stages of prisms 15a whose cross sections are triangular prisms in the planar prism 15 are formed as a plane incorporatedly. Then the planar prism 15 in this way is fitted to the front face of the planar antenna 12 mounted perpendicularly to ground and in parallel with the supporting post 11 by an angle adjusting mechanism nearly in parallel. Then the angle adjusting mechanism 16 is adjusted minutely and a satellite broadcast radio wave 17 is refracted so as to be made incident perpendicularly to the planar antenna 12. Thus, excellent reception state is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、マイクロ波以上の周波数の高利得アンテナ
の指向性可変装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a directivity variable device for a high-gain antenna for frequencies higher than microwaves.

[従来の技術] 衛星放送受信用の平面アンテナは正確に放送衛星の方向
を対向させることが必要となるが、直接アンテナの取付
は角度を変えるには手間と労力とを必要とする。そこで
、該平面アンテナの取付は角度を一定としたままでその
指向性を変化させる方法として、アンテナの各素子に可
変位相器を取付け、これを使用して各素子へ給電する位
相を変えるというものが考えられている。
[Prior Art] A flat antenna for receiving satellite broadcasting requires that the direction of the broadcasting satellite be accurately faced, but direct mounting of the antenna requires time and effort to change the angle. Therefore, the method of installing the planar antenna to change the directivity while keeping the angle constant is to attach a variable phase shifter to each element of the antenna and use this to change the phase of power feeding to each element. is considered.

[発明が解決使用とする課題] しかしながら上記の方法の場合、アンテナが受信する電
波の周波数が約12[GHz]と非常に高いため、可変
位相器を設置する空間が狭く、且つ、可変位相器の制御
を行なうための制御装置を多数必要とするなど実現する
のは困難であり、現時点では位相の変色度を固定化し、
指向性を一定化している。
[Problems to be Solved by the Invention] However, in the case of the above method, the frequency of the radio waves received by the antenna is very high, approximately 12 [GHz], so the space in which the variable phase shifter is installed is narrow, and the variable phase shifter is difficult to install. It is difficult to realize this, as it requires a large number of control devices to control the phase.
Directivity is constant.

このように取付は角度を一定としたままで衛星放送用の
平面アンテナの指向性を変化させる方法はなく、結局、
アンテナの取付は角度を変えて放送衛星の方向に対向さ
せるより他なかった。
In this way, there is no way to change the directivity of a flat antenna for satellite broadcasting while keeping the mounting angle constant, and in the end,
The only way to install the antenna was to change its angle and face the broadcasting satellite.

この発明は上記のような実情に鑑みてなされたもので、
衛星放送用等のアンテナの取付は角度を一定としたまま
で簡単にその指向性を変化させることが可能な指向性可
変装置を提供することを目的とする。
This invention was made in view of the above circumstances,
An object of the present invention is to provide a directivity variable device that can easily change the directivity of an antenna for satellite broadcasting, etc., while keeping the angle constant.

[課題を解決するための手段及び作用]この発明は、三
角柱を平面的に多段形成して構成されるプラスチック製
の平面プリズムを平面アンテナの前面に略平行に配設し
、かつ、この平面プリズムの取付は角度を微調整する角
度調節機構を備えることにより、超高周波の電波を屈折
し、平面アンテナに対して垂直に入射させるようにした
ものである。
[Means and effects for solving the problem] The present invention provides a planar prism made of plastic made of triangular prisms formed in multiple stages in a plane and disposed substantially parallel to the front surface of a planar antenna. The installation is equipped with an angle adjustment mechanism that finely adjusts the angle so that the ultra-high frequency radio waves are refracted and incident perpendicularly to the planar antenna.

[実施例コ 以下図面を参照してこの発明の一実施例を説明する。[Example code] An embodiment of the present invention will be described below with reference to the drawings.

第1図はその構成を示すもので、11は地面に対して垂
直に配設された支持柱、12は平面アンテナ、13は支
持柱11に平面アンテナ12を平行に取付けるための取
付金具、14は平面アンテナ12へ給電する給電部、1
5は三角柱を平面的に多段形成して構成される透明プラ
スチック製の平面プリズム、16は平面プリズム15を
平面アンテナ12の前面にほぼ平行に取付けると共に、
平面プリズム15の取付は角度を矢印Pで示すように微
調整する角度調節機構、17は放送衛星(図示せず)か
ら送られてくる衛星放送電波である。
FIG. 1 shows its configuration, where 11 is a support column arranged perpendicular to the ground, 12 is a planar antenna, 13 is a mounting bracket for attaching the planar antenna 12 to the support column 11 in parallel, and 14 1 is a power feeding unit that feeds power to the planar antenna 12;
5 is a transparent plastic planar prism formed by forming triangular prisms in multiple stages; 16 is a planar prism 15 attached substantially parallel to the front surface of the planar antenna 12;
The planar prism 15 is attached with an angle adjustment mechanism that finely adjusts the angle as shown by arrow P, and 17 is a satellite broadcasting radio wave sent from a broadcasting satellite (not shown).

次に上記平面プリズム15の構成について説明する。Next, the configuration of the planar prism 15 will be explained.

平面プリズム15は、基本的には第2図に示すような断
面の三角柱のプリズム15aが複数段一体にして平面的
に形成されるものである。今、プリズム15aの頂角の
角度をα、屈折率をnとし、波面AA’の衛星放送電波
17が入射すると、衛星放送電波17は図示するふれ角
θだけ屈折され、波面BB’の波となって射出される。
The plane prism 15 is basically formed in a planar manner by integrating a plurality of stages of prisms 15a having a triangular prism cross section as shown in FIG. Now, when the apex angle of the prism 15a is α and the refractive index is n, and the satellite broadcasting radio wave 17 with the wavefront AA' is incident, the satellite broadcasting radio wave 17 is refracted by the deflection angle θ shown in the figure, and the wave with the wavefront BB' and is ejected.

これらの角度がすべて充分小さいと仮定すると、ABと
A’ B’との電気的距離は等しい。A′の波面はプリ
ズム15aの長さαノを通るのに対し、Aの波面は空気
中で長さノ(θ+α)を通る。したがって、プリズム1
5aの材料をプラスチックとし、その誘電率をεとする
と、屈折率nは nmF「 となる。したがって、 f丁αノーノ(θ+α)      ・・・(1)であ
り、ふれの角θは θ−((T” −1)α       ・・・(2)で
与えられる。
Assuming that all these angles are sufficiently small, the electrical distances between AB and A'B' are equal. The wavefront of A' passes through the length α of the prism 15a, whereas the wavefront of A passes through the length (θ+α) in the air. Therefore, prism 1
If the material of 5a is plastic and its dielectric constant is ε, then the refractive index n is nmF''. Therefore, the angle of deflection θ is θ-( (T"-1)α...It is given by (2).

衛星放送電波■7のプリズム15aに対する入射波と射
出波とが頂角αの中線に対して対称となる状態では、波
面ABを通る距離は r 2J′TI s i n Ca/ 2) J 、波
面A’B’、を通る距離はr2.i’5in((θ+α
)/2)Jとなる。ここで、もしプリズム15aを上記
入射電波と射出電波とが対称となる状態から傾けた状態
に移動させると、波面ABを通る距離は変わらないが、
波面A’ B’を通る距離は逆余弦因子骨だけ増加する
。よって上記プリズム15aの入射電波と射出電波とが
対称となる状態で、電波が波面A’ B’を通る距離及
びふれの角θが最小となる。
In a state where the incident wave and the outgoing wave of the satellite broadcast radio wave 7 to the prism 15a are symmetrical with respect to the median of the apex angle α, the distance passing through the wave surface AB is r 2J′TI sin Ca/ 2) J , The distance passing through the wavefront A'B' is r2. i'5in((θ+α
)/2) J. Here, if the prism 15a is moved from a state where the incident radio wave and the emitted radio wave are symmetrical to an inclined state, the distance passing through the wave surface AB remains the same, but
The distance through the wavefront A'B' increases by the inverse cosine factor. Therefore, in a state where the incident radio wave and the emitted radio wave of the prism 15a are symmetrical, the distance that the radio wave passes through the wavefronts A' and B' and the deflection angle θ are minimized.

このときのふれ角θは、 J7sin(α/2) −5in((θ+a)/2) 
      −(3)で与えられる。ゆえに、上記(1
)式は(3)式の正弦を角で置換えたものとなる。
The deflection angle θ at this time is J7sin(α/2) −5in((θ+a)/2)
- given by (3). Therefore, the above (1
) is obtained by replacing the sine of equation (3) with an angle.

ここに、上記(3)式を用いてプリズム15aの材料を
アクリルとし、その誘電率ε−2,5CF/m]、頂角
α−45″とすると、角θ−29,5@となる。
Here, using the above equation (3), assuming that the material of the prism 15a is acrylic, its dielectric constant ε-2.5 CF/m], and the apex angle α-45'', the angle θ-29.5@ is obtained.

この対称の位置よりプリズムL5aに入射する電波衛星
放送電波17に対する角度をずらせると、角θの値は大
きくなる。ここで、波面BB’が地面に対して垂直であ
るとすると、プリズム15aを傾斜させることにより、
波面AA’の平面波の仰角を29.5度以上の範囲で調
整できることとなる。
If the angle with respect to the radio satellite broadcasting wave 17 incident on the prism L5a is shifted from this symmetrical position, the value of the angle θ becomes larger. Here, assuming that the wavefront BB' is perpendicular to the ground, by tilting the prism 15a,
This means that the elevation angle of the plane wave of the wave surface AA' can be adjusted within a range of 29.5 degrees or more.

ところで、放送衛星の受信用アンテナは、約12[GH
z]の周波数で良好な受信を行なうために0.4 [m
21以上の開口面積が必要となる。
By the way, the receiving antenna of a broadcasting satellite has a power of about 12 [GHH].
0.4 [m
An opening area of 21 or more is required.

そのアンテナの開口全面に対して上記第2図に示した形
状のプリズム15a単体で屈折した放送電波を照射する
ためには、プリズム15aの一辺の長さ)はノ/ s 
i n7以上の長さが必要となり、プリズム面は角度の
可変状態も考慮すると最低0.6〜0.7[m2]の面
積が必要となる。このような大きなプリズムは衛星放送
用アンテナの前面に取付けるには不向きであり、そこで
同様の機能を有する角度調節機構16を代わって取付け
るものである。
In order to irradiate the entire aperture of the antenna with broadcast radio waves refracted by the prism 15a having the shape shown in FIG. 2 above, the length of one side of the prism 15a) must be
A length of in7 or more is required, and the prism surface needs to have an area of at least 0.6 to 0.7 [m2], taking into consideration the variable state of the angle. Such a large prism is not suitable for mounting on the front surface of a satellite broadcasting antenna, so an angle adjustment mechanism 16 having a similar function is mounted instead.

角度調節機構16は、上述し、また、第3図にその具体
構成例をいくつか示すように三角柱を平面的に多段形成
して構成されるものである。
The angle adjustment mechanism 16 is constructed by forming triangular prisms in multiple stages on a plane, as described above and as shown in FIG.

第3図(a)は片面のみ鋸歯状とし、もう片面を平坦に
した場合の構成例である。同図では頂角αは45°であ
る。
FIG. 3(a) shows an example of a configuration in which only one side is serrated and the other side is flat. In the figure, the apex angle α is 45°.

また第3図(b)は、上記第2図に示した断面二等辺三
角形の三角柱をその中心線に沿って直線状に配列した場
合の構成例である。この場合、平面プリズム15は表裏
両面とも対称な鋸歯状の形状となり、その頂角は60″
である。
Further, FIG. 3(b) shows a configuration example in which the triangular prisms having an isosceles triangular cross section shown in FIG. 2 are arranged linearly along their center lines. In this case, the plane prism 15 has a sawtooth shape that is symmetrical on both the front and back surfaces, and its apex angle is 60''.
It is.

さらに第3図(c)は、隣り合う2つの三角柱のそれぞ
れ1辺が共通な平面となるよう三角柱を互い違いに配列
した場合の構成例である。ここでは、平面プリズム15
はやはり表裏両面とも鋸歯状の形状となり、その頂角は
60°である。
Further, FIG. 3(c) shows an example of a configuration in which triangular prisms are alternately arranged so that one side of each of two adjacent triangular prisms forms a common plane. Here, the plane prism 15
After all, both the front and back sides have a sawtooth shape, and the apex angle is 60°.

以上にそのいくつかの構成例を示したが、頂角の角度及
びそれに対応する2つの居角それぞれの角は全く異なる
設計も可能であり、さらに三角柱の段数、すなわち、鋸
歯状の歯の数を多くすればするほど、平面プリズム15
の体積を小さくすることができる。この場合、入射波の
平面波が平面プリズム15のプリズム面を通過した際に
位相乱れのないように三角柱の各段結合部を充分注意し
て設計すれば、電波の通過効率をさほど低下させること
はない。なお、平面プリズム15を構成するプラスチッ
クとしては、ポリエチレン、テフロン、アクリル、ポリ
スチロールなどの電波通過の際の損失の少ないものを用
いる。
Although some configuration examples have been shown above, the angle of the apex angle and the corresponding corners of each of the two corner angles can be designed completely differently, and the number of steps of the triangular prism, that is, the number of serrated teeth. The more the plane prism 15
The volume of can be reduced. In this case, if the coupling portions of each stage of the triangular prism are carefully designed so that there is no phase disturbance when the plane wave of the incident wave passes through the prism surface of the plane prism 15, the radio wave passing efficiency will not be significantly reduced. do not have. Note that as the plastic constituting the planar prism 15, a material that causes little loss when passing radio waves, such as polyethylene, Teflon, acrylic, or polystyrene, is used.

以上に述べた構成の平面プリズム15を第1図に示すよ
うに地面と垂直、支持柱11と平行に取付けられた平面
アンテナ12の前面に、角度調節機構16によってほぼ
平行に取付けると共に、この角度調節機構1Gを微調整
して放送衛星からの衛星放送電波17を平面アンテナ1
2に垂直に入射するよう屈折させると、良好な受信状態
を得ることができる。
As shown in FIG. 1, the planar prism 15 having the above-mentioned configuration is attached almost parallel to the front surface of the planar antenna 12, which is attached perpendicular to the ground and parallel to the support column 11, by means of the angle adjustment mechanism 16. Finely adjust the adjustment mechanism 1G to transmit satellite broadcasting radio waves 17 from the broadcasting satellite to the flat antenna 1.
If the beam is refracted so as to be incident perpendicularly to the beam 2, good reception conditions can be obtained.

[発明の効果] 以上詳記したようにこの発明によれば、三角柱を平面的
に多段形成して構成されるプラスチック製の平面プリズ
ムを平面アンテナの前面に略平行に配設し、かつ、この
平面プリズムの取付は角度を微調整する角度調節機構を
備えることにより、超高周波の電波を屈折し、平面アン
テナに対して垂直に入射させるようにしたので、軽量な
プラスチック製の平面プリズムの取付は角度を微調整さ
せるのみの作業で、アンテナの取付は角度は一定とした
まま簡単にその指向性を変化させることが可能な指向性
可変装置を提供することができる。
[Effects of the Invention] As detailed above, according to the present invention, a plastic planar prism formed by forming triangular prisms in multiple planar stages is disposed approximately parallel to the front surface of a planar antenna, and The planar prism is equipped with an angle adjustment mechanism that finely adjusts the angle so that the ultra-high frequency radio waves are refracted and incident perpendicularly to the planar antenna. It is possible to provide a directivity variable device that can easily change the directivity of the antenna while keeping the angle fixed by only making minor adjustments to the angle.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示すもので、第1図は全体
の外観構成を示す図、第2図はプリズムの屈折原理を示
す図、第3図は平面プリズムの構成例を示す図である。 11・・・支持柱、12・・・平面アンテナ、13・・
・取付金具、14・・・給電部、15・・・平面プリズ
ム、1B・・・角度調節機構、17・・・衛星放送電波
。 第1図
The drawings show one embodiment of the present invention, with Fig. 1 showing the overall external configuration, Fig. 2 showing the principle of refraction of a prism, and Fig. 3 showing an example of the configuration of a plane prism. be. 11... Support column, 12... Planar antenna, 13...
・Mounting bracket, 14...Power supply part, 15...Plane prism, 1B...Angle adjustment mechanism, 17...Satellite broadcast radio wave. Figure 1

Claims (1)

【特許請求の範囲】 三角柱を平面的に多段形成して構成される透明プラスチ
ック製の平面プリズムと、 この平面プリズムを平面アンテナの前面にほぼ平行に取
付けると共に、平面プリズムの平面アンテナに対する取
付け角度を微調整する角度調整機構と を具備したことを特徴とする指向性可変装置。
[Claims] A planar prism made of transparent plastic constituted by triangular prisms formed in multiple stages in a planar manner, and the planar prism is mounted substantially parallel to the front surface of a planar antenna, and the mounting angle of the planar prism with respect to the planar antenna is adjusted. A directivity variable device characterized by comprising an angle adjustment mechanism for fine adjustment.
JP1209588A 1988-01-22 1988-01-22 Directivity variable device Pending JPH01188106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209588A JPH01188106A (en) 1988-01-22 1988-01-22 Directivity variable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209588A JPH01188106A (en) 1988-01-22 1988-01-22 Directivity variable device

Publications (1)

Publication Number Publication Date
JPH01188106A true JPH01188106A (en) 1989-07-27

Family

ID=11796014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209588A Pending JPH01188106A (en) 1988-01-22 1988-01-22 Directivity variable device

Country Status (1)

Country Link
JP (1) JPH01188106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271383A (en) * 2006-03-30 2007-10-18 Toyoda Gosei Co Ltd Radar apparatus for mobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271383A (en) * 2006-03-30 2007-10-18 Toyoda Gosei Co Ltd Radar apparatus for mobile

Similar Documents

Publication Publication Date Title
US6473049B2 (en) Antenna device
US3755815A (en) Phased array fed lens antenna
CN109302851B (en) Reflective array antenna and communication equipment
US9531081B2 (en) Reflector antenna for a synthetic aperture radar
US4187507A (en) Multiple beam antenna array
US4348678A (en) Antenna with a curved lens and feed probes spaced on a curved surface
US7688268B1 (en) Multi-band antenna system
CN105552573A (en) Dual-polarized waveguide slot feed source lens antenna with symmetric dielectric filling columns
CN113013638A (en) Broadband folding type plane reflection array antenna
CN105428821A (en) Dual polarization circular cone medium feed source asymmetrical medium packing column lens antenna
US20220158356A1 (en) Wireless transceiver having a high gain antenna arrangement
JPH01188106A (en) Directivity variable device
US20200328523A1 (en) Wide band log periodic reflector antenna for cellular and wifi
CN108281795B (en) Frequency selection surface type curved surface medium and Cassegrain antenna system
US4479129A (en) Directive antenna system employing a paraboloidal main dish and ellipsoidal subdish
KR101408070B1 (en) Relflectarray Antenna
CN105470658A (en) Dual-polarized waveguide slit feed asymmetric medium packed column lens antenna
JPH03178204A (en) Fresnel lens type antenna
US11888228B2 (en) Prism for repointing reflector antenna main beam
KR200366457Y1 (en) Satallite broadcasting antenna equipped plane-reflex-arrangement-plate
GB2231445A (en) Aerial system
JP3751529B2 (en) antenna
KR200216206Y1 (en) Tunable Yagi Antenna
JPS61157105A (en) Antenna system
JP4905535B2 (en) Waveguide slot array antenna device