JPH01187989A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH01187989A
JPH01187989A JP63012863A JP1286388A JPH01187989A JP H01187989 A JPH01187989 A JP H01187989A JP 63012863 A JP63012863 A JP 63012863A JP 1286388 A JP1286388 A JP 1286388A JP H01187989 A JPH01187989 A JP H01187989A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
contact layer
junction
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63012863A
Other languages
Japanese (ja)
Inventor
Tetsuya Yagi
哲哉 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63012863A priority Critical patent/JPH01187989A/en
Publication of JPH01187989A publication Critical patent/JPH01187989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/2209GaInP based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser, in which a short-circuit does not occur even on junction-down assembly, by forming a p-conductivity type GaAs contact layer having a thickness larger than a specific value and a carrier concentration larger than a specific value as an uppermost layer in a semiconductor epitaxial layer. CONSTITUTION:In a buried ridge type self-alignment semiconductor laser shaped onto a GaAs substrate 1 having an n-type conductivity type, a p-type conductivity type GaAs contact layer 60 having thickness of 2mum or more and carrier concentration of 4X10<18>cm<-3> or more is formed as an uppermost layer in a semiconductor epitaxial layer. The buffer layer 2, a first clad layer 3, an active layer 4, a second clad layer 5 having a striped ridge section 8 and a current block layer 7 are shaped onto the substrate 1, and the p-type GaAs contact layer 60 is formed onto the layer 7 through the thermal decomposition method of an organometal by using dimethlzinc as a p-type dopant. Accordingly, the generation of a short circuit due to the protuberance of a solder material 10 can be inhibited on junction-down assembly.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高出力動作に不可欠のジャンクションダウ
ン組立が可能な半導体レーザおよびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser capable of junction-down assembly, which is essential for high-output operation, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第4図は、例えばElectronics、Lette
rs 26thSept、1985 P、903に記載
されたり、J、MAWST et alによる半導体レ
ーザを示す図であり、この図において、1はn型(以下
n−と略す)GaAsからなる基板、2は前記基板1上
に設けられたn−GaAsからなるバッファ層、3は前
記バッファ層2上に設けられたn  A J2 o、 
60G a o4oA Sからなる第1クラッド層、4
は前記第1クラッド層3上に設けられた真性(以下i−
と略す)GaAsからなる活性層、5は前記活性層4上
に設けられたp型(以下p−と略す) AJ2o、ao
Gao4゜Asからなる第2クラッド層で、ストライブ
状のリッジ部分8を有している。6はp −G a A
 s h)らなるコンタクト層で、第2クラッド層5の
ストライブ状のリッジ部分8上に設けられている。7は
n−GaAsからなる電流阻止層で、第2クラッド層5
のストライブ状のリッジ部分8以外の領域上に設けられ
ている。
FIG. 4 shows, for example, Electronics, Lette
rs 26thSept, 1985 P, 903 or by J. MAWST et al. In this figure, 1 is a substrate made of n-type (hereinafter abbreviated as n-) GaAs, and 2 is the substrate. 1 is a buffer layer made of n-GaAs provided on the buffer layer 2; 3 is an n A J2 o provided on the buffer layer 2;
A first cladding layer consisting of 60G ao4oA S, 4
is an intrinsic layer provided on the first cladding layer 3 (hereinafter referred to as i-
5 is a p-type (hereinafter abbreviated as p-) provided on the active layer 4 AJ2o, ao
The second cladding layer is made of Gao4°As and has a striped ridge portion 8. 6 is p-G a A
A contact layer consisting of s h) is provided on the striped ridge portion 8 of the second cladding layer 5 . 7 is a current blocking layer made of n-GaAs, and the second cladding layer 5
It is provided on a region other than the stripe-shaped ridge portion 8.

また、第5図は、第4図に示した半導体レーザをジャン
クショ・ンダウン組立した様子を示す断面図であり、こ
の図において、第4図と同一符号は同一のものを示し、
9はSiやダイヤモンド等で作られたサブマウント、1
0はダイボンド用のはんだ材である。
Further, FIG. 5 is a cross-sectional view showing the state in which the semiconductor laser shown in FIG. 4 is assembled in a junction-down manner. In this figure, the same reference numerals as in FIG. 4 indicate the same parts,
9 is a submount made of Si, diamond, etc., 1
0 is a solder material for die bonding.

次に動作について説明する。Next, the operation will be explained.

コンタクト層6と基板1の間にコンタクト層6が正とな
るようなバイアスを印加すると、ストライブ状のリッジ
部分8以外の領域においては、コンタクト層6、電流阻
止層7、第2クラッド層5によるpnp接合かあるため
に電流は流れず、ストライブ状のりッシ部分8のみに電
流が流れる。
When a bias is applied between the contact layer 6 and the substrate 1 so that the contact layer 6 becomes positive, the contact layer 6, the current blocking layer 7, and the second cladding layer 5 are removed in the region other than the striped ridge portion 8. Since there is a pnp junction, current does not flow, and current flows only through the striped ridge portion 8.

この電流の経路は第4図中に矢印で示しである。The path of this current is indicated by an arrow in FIG.

電流が流れることにより活性層4内に注入された電子お
よび正孔は再結合して光を輻射し、電流を大きくしてい
くと光の誘導放出が始まり、やがてレーザ発振に至る。
As the current flows, electrons and holes injected into the active layer 4 recombine to radiate light, and as the current increases, stimulated emission of light begins, eventually leading to laser oscillation.

レーザ光は素子の上下方向では活性層4と第1クラッド
層3および第2クラッド層5の間の実屈折率差により効
率良く活性層4近傍に閉じ込められ、また、素子の左右
方向では、レーザ光に対して吸収係数の大きな電流阻止
層7か存在することによるロスガイド型の導波機構によ
りストライブ状のリッジ部分8の直下に閉じ込められる
The laser light is efficiently confined near the active layer 4 in the vertical direction of the device due to the real refractive index difference between the active layer 4 and the first cladding layer 3 and the second cladding layer 5, and in the horizontal direction of the device, the laser light is confined in the vicinity of the active layer 4. The light is confined directly under the striped ridge portion 8 due to the loss guide type waveguide mechanism due to the presence of the current blocking layer 7 having a large absorption coefficient for light.

(発明が解決しようとする課題) 上記のような従来の半導体レーザは、高出力動作を目的
として発熱を小さくするために、いわゆるジャンクショ
ンダウン組立を行うと、第5図に示すような組立用のは
んだ材10のもつあがりによりコンタクト層6と基板1
あるいはバッファ層2あるいは第1クラッド層3がショ
ートしてしまい、装置が動作しなくなるという問題点が
あった。
(Problem to be Solved by the Invention) When the conventional semiconductor laser as described above is assembled by so-called junction down assembly in order to reduce heat generation for the purpose of high-output operation, the assembly as shown in FIG. The contact layer 6 and the substrate 1 are bonded together by the rising of the solder material 10.
Alternatively, there is a problem in that the buffer layer 2 or the first cladding layer 3 is short-circuited, and the device becomes inoperable.

一般に、はんだ材10の量を適正化すると、このもつあ
がりは小さくすることができるが、1〜2μm程度のも
つあがりは適正化しても避けることが困難である。
Generally, by optimizing the amount of solder material 10, this bulging can be reduced, but it is difficult to avoid bulging of about 1 to 2 μm even if the amount of solder material 10 is optimized.

この発明は、かかる課題を解決するためになされたもの
で、ジャンクションダウン組立を行ってもショートが発
生しない半導体レーザおよびその製造方法を得ることを
目的とする。
The present invention has been made in order to solve this problem, and an object of the present invention is to provide a semiconductor laser that does not cause short circuits even when junction-down assembly is performed, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザは、コンタクト層の厚さを
2μm以上としたものである。
In the semiconductor laser according to the present invention, the contact layer has a thickness of 2 μm or more.

また、この発明に係る半導体レーザの製造方法は、コン
タクト層を有機金属の熱分解法により形成するものであ
る。
Further, in the method for manufacturing a semiconductor laser according to the present invention, the contact layer is formed by an organic metal thermal decomposition method.

〔作用〕[Effect]

この発明の半導体レーザにおいては、装置をサブマウン
ト等にジャンクションダウンに組立てる際に発生するダ
イボンド用はんだ材のもつあがりがコンタクト層以外の
各層に接することがなくなる。
In the semiconductor laser of the present invention, the bulge of the die-bonding solder material that occurs when the device is assembled to a submount or the like in a junction-down manner does not come into contact with any layer other than the contact layer.

また、この発明の半導体レーザの製造方法においては、
表面状態が良好で、高濃度のコンタクト層を2μm以上
の厚さで形成することが可能になる。
Further, in the method for manufacturing a semiconductor laser of the present invention,
It becomes possible to form a highly concentrated contact layer with a thickness of 2 μm or more with a good surface condition.

〔実施例) 以下、この発明の一実施例を図面について説明する。〔Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の半導体レーザの一実施例を示す断面
図であり、この図において、第4図と同一符号は同一の
ものを示し、60は厚さ2μm以上のp−GaAsから
なるコンタクト層で、第2クラッド層5のストライブ状
のリッジ部分8および電流阻止層7上に設けられている
。11はp側電極、12はn側電極である。
FIG. 1 is a cross-sectional view showing an embodiment of the semiconductor laser of the present invention. In this figure, the same reference numerals as in FIG. This layer is provided on the striped ridge portion 8 of the second cladding layer 5 and the current blocking layer 7 . 11 is a p-side electrode, and 12 is an n-side electrode.

また、第2図は、第1図に示した半導体レーザをジャン
クションダウン組立した様子を示す断面図である。
Further, FIG. 2 is a cross-sectional view showing how the semiconductor laser shown in FIG. 1 is assembled in a junction-down manner.

次に動作について説明する。Next, the operation will be explained.

この発明の半導体レーザにおいても、p IIJ Z極
11とn側電極12の間にp側電極11が正となるよう
なバイアスを印加すると、ストライブ状のリッジ部分8
以外の領域においてはコンタクト層60、電流阻止層7
、第2クラッド層5によるpnp接合が存在するために
電流は流れず、ストライブ状のリッジ部分8のみに流れ
る。この電流の経路は第1図中に矢印で示しである。電
流が流れることにより活性層4内に注入された電子およ
び正孔は再結合して光を輻射し、電流を大きくしていく
と、光の誘導放出が始まり、やがてレーザ発振に至る。
Also in the semiconductor laser of the present invention, when a bias is applied between the p IIJ Z pole 11 and the n side electrode 12 so that the p side electrode 11 becomes positive, the striped ridge portion 8
In other regions, the contact layer 60 and the current blocking layer 7
, because of the presence of the pnp junction formed by the second cladding layer 5, no current flows, but only in the striped ridge portion 8. The path of this current is indicated by an arrow in FIG. Electrons and holes injected into the active layer 4 as a result of current flow recombine to radiate light, and as the current increases, stimulated emission of light begins, eventually leading to laser oscillation.

ところで、放熱を改良して高出力動作させるためには、
第2図に示すように、ジャンクションダウン方式で組立
てる必要があるが、この発明の半導体レーザはコンタク
ト層60を2μm以上としているので、ジャンクション
ダウン組立を施す際に、サブマウント9と素子を接着す
るダイボンド用のはんだ材10が素子の端でもつあがっ
ても、ショートの発生を抑えることができる。
By the way, in order to improve heat dissipation and operate at high output,
As shown in FIG. 2, it is necessary to assemble the semiconductor laser using the junction-down method, but since the semiconductor laser of the present invention has a contact layer 60 of 2 μm or more, the submount 9 and the device must be bonded together when performing the junction-down assembly. Even if the solder material 10 for die bonding rises at the ends of the element, it is possible to suppress the occurrence of short circuits.

また、第4図に示したような従来の半導体レーザではコ
ンタクト層6を成長中のドーピングによりそのキャリア
密度をf X f 019cm−3以上としているが、
本発明者等の実験によると、p側電極11としてT i
 / A u電極を用いた場合、コンタクト層60のキ
ャリア密度が4x 10” cm”−3以上であれは実
用上問題がないことがわかった。
Further, in the conventional semiconductor laser shown in FIG. 4, the carrier density of the contact layer 6 is set to be f x f 019 cm-3 or more by doping during growth.
According to experiments by the present inventors, as the p-side electrode 11, T i
/Au electrode, it was found that there is no practical problem as long as the carrier density of the contact layer 60 is 4 x 10"cm"-3 or more.

次に、第1図に示した半導体レーザの製造方法を第3図
(a)〜(C)を参照して説明する。
Next, a method for manufacturing the semiconductor laser shown in FIG. 1 will be explained with reference to FIGS. 3(a) to 3(C).

まず、基板上1に第1回目のMOCVD法による結晶成
長でバッファ層2.第1クラッド層3、活性層4、第2
クラッド層5、コンタクト層6゜の一部60aを順次エ
ピタキシャル成長させる(第3図(a))。
First, a buffer layer 2 is grown on a substrate 1 by the first MOCVD method. First cladding layer 3, active layer 4, second
The cladding layer 5 and a portion 60a of the contact layer 6° are epitaxially grown in sequence (FIG. 3(a)).

次に、ウェハ上の全面にSi3N4膜13を成長させ、
写真製版技術およびドライエツチング技術を用いて、S
i3N4膜13をストライブ状に成形する。この後、こ
のストライブ状の813N4膜13をエツチングマスク
として、第2クラッド層5のなかばまで硫酸系のエツチ
ング液等を用いてエツチングし、ストライブ状のリッジ
部分8を形成する(第3図(b))。
Next, a Si3N4 film 13 is grown on the entire surface of the wafer,
Using photolithography technology and dry etching technology, S
The i3N4 film 13 is formed into a stripe shape. Thereafter, using the striped 813N4 film 13 as an etching mask, the second cladding layer 5 is etched halfway up to the middle using a sulfuric acid-based etching solution to form a striped ridge portion 8 (Fig. 3). (b)).

次に、第2回目のMOCVD法による結晶成長でストラ
イブ状のリッジ部分8上を除いて電流阻止層7を成長さ
せる(第3図(C))。
Next, in a second crystal growth process using the MOCVD method, the current blocking layer 7 is grown except on the striped ridge portion 8 (FIG. 3(C)).

次に、ウニ八表面のストライブ状のSi3N4膜13を
HFなどにより除去した後、3回目のMOCVD法によ
る結晶成長でコンタクト層60を成長させ、さらに、p
側電極11およびn側電極12を形成すれば第1図に示
した半導体レーザが得られる。一般にレーザの製作に用
いられている液相成長法においては、p型のドーパント
を高濃度にドーピングすることは困難であり、また、表
面状態も悪化することが知られている。これに対して、
この発明のように第3回目のMOCVD法によるコンタ
クト層60の成長において、p型ドーパントとしてジメ
チルジンク(以下、DMZnと略す)を用い、Ga源と
してトリメチルガリウム(以下TMGと略す)を用いた
場合、容易に4x 1018cm−3以上のドーピング
を行うことができ、また、平坦性の良好な表面を得るこ
とが可能である。
Next, after removing the striped Si3N4 film 13 on the surface of the sea urchin eight using HF or the like, the contact layer 60 is grown by the third MOCVD method, and then the p
By forming the side electrode 11 and the n-side electrode 12, the semiconductor laser shown in FIG. 1 can be obtained. In the liquid phase growth method generally used for manufacturing lasers, it is difficult to dope a p-type dopant at a high concentration, and it is also known that the surface condition deteriorates. On the contrary,
When the contact layer 60 is grown by the third MOCVD method as in this invention, dimethyl zinc (hereinafter abbreviated as DMZn) is used as a p-type dopant and trimethyl gallium (hereinafter abbreviated as TMG) is used as a Ga source. , it is possible to easily perform doping of 4×10 18 cm −3 or more, and to obtain a surface with good flatness.

〔発明の効果〕〔Effect of the invention〕

この発明の半導体レーザは以上説明したとおり、コンタ
クト層の厚さを2μm以上としたので、ダイボンド用は
んだ材のもつあがりによるショートを発生させることな
く、ジャンクションダウン組立を行うことができ、高出
力化が可能になるという効果がある。
As explained above, in the semiconductor laser of the present invention, since the contact layer has a thickness of 2 μm or more, junction-down assembly can be performed without causing short circuits due to the swelling of the die-bonding solder material, and high output can be achieved. This has the effect of making it possible.

また、この発明の半導体レーザの製造方法は、コンタク
ト層を有機金属の熱分解法により形成するので、表面状
態が良好で、4x 1016cm−3以上のキャリア濃
度のコンタクト層を2μm以上の厚さで容易に形成する
ことができ、上記発明の半導体レーザを容易に得ること
ができるという効果がある。
In addition, in the method for manufacturing a semiconductor laser of the present invention, the contact layer is formed by an organic metal thermal decomposition method, so that the contact layer has a good surface condition and has a carrier concentration of 4 x 1016 cm-3 or more and a thickness of 2 μm or more. This has the advantage that it can be easily formed and the semiconductor laser of the above invention can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの一実施例を示す断面
図、第2図は、第1図に示した半導体レーザをジャンク
ションダウン組立した様子を示す断面図、第3図はこの
発明の半導体レーザの製造方法の一実施例を説明するた
めの断面図、第4図は従来の半導体レーザを示す断面図
、第5図は従来の半導体レーザをジャンクションダウン
組立した様子を示す断面図である。 図において、1は基板、2はバッファ層、3は第1クラ
ッド層、4は活性層、5は第2クラッド層、7は電流阻
止層、9はサブマウント、10はぽんだ材、60はコン
タクト層、60aはコンタクト層の一部である。 なお、各図中の同一符号は同一または相当部分を示す。 第1図 60 コンタクト層 第2図 第3図 第3図(C) 第4図 第5図 手続補正書(自発) (i3 :; ”5 昭和  年  月  日
FIG. 1 is a sectional view showing an embodiment of the semiconductor laser of the present invention, FIG. 2 is a sectional view showing the semiconductor laser shown in FIG. FIG. 4 is a cross-sectional view showing a conventional semiconductor laser; FIG. 5 is a cross-sectional view showing a conventional semiconductor laser assembled in a junction-down manner. In the figure, 1 is a substrate, 2 is a buffer layer, 3 is a first cladding layer, 4 is an active layer, 5 is a second cladding layer, 7 is a current blocking layer, 9 is a submount, 10 is a popper material, and 60 is a The contact layer 60a is part of the contact layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Fig. 1 60 Contact layer Fig. 2 Fig. 3 Fig. 3 (C) Fig. 4 Fig. 5 Procedural amendment (voluntary) (i3:; ”5 Showa year, month, day

Claims (2)

【特許請求の範囲】[Claims] (1)基板と、この基板の反対側に設けられたコンタク
ト層上にそれぞれp、nの電極を有する半導体レーザに
おいて、前記コンタクト層の厚さを2μm以上としたこ
とを特徴とする半導体レーザ。
(1) A semiconductor laser having p and n electrodes on a substrate and a contact layer provided on the opposite side of the substrate, wherein the contact layer has a thickness of 2 μm or more.
(2)コンタクト層を有機金属の熱分解法により形成す
ることを特徴とする請求項(1)記載の半導体レーザの
製造方法。
(2) The method for manufacturing a semiconductor laser according to claim (1), wherein the contact layer is formed by an organic metal thermal decomposition method.
JP63012863A 1988-01-22 1988-01-22 Semiconductor laser and manufacture thereof Pending JPH01187989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012863A JPH01187989A (en) 1988-01-22 1988-01-22 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012863A JPH01187989A (en) 1988-01-22 1988-01-22 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01187989A true JPH01187989A (en) 1989-07-27

Family

ID=11817251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012863A Pending JPH01187989A (en) 1988-01-22 1988-01-22 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01187989A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200786A (en) * 1986-02-28 1987-09-04 Toshiba Corp Semiconductor laser device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200786A (en) * 1986-02-28 1987-09-04 Toshiba Corp Semiconductor laser device and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
US4366568A (en) Semiconductor laser
US4514896A (en) Method of forming current confinement channels in semiconductor devices
US4377865A (en) Semiconductor laser
JP2616185B2 (en) Semiconductor laser
US4447905A (en) Current confinement in semiconductor light emitting devices
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
US4592061A (en) Transverse junction stripe laser with steps at the end faces
JPH01187989A (en) Semiconductor laser and manufacture thereof
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPS58207690A (en) Buried type semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2542570B2 (en) Method for manufacturing optical integrated device
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JP2973215B2 (en) Semiconductor laser device
JP2804533B2 (en) Manufacturing method of semiconductor laser
JP2814124B2 (en) Embedded semiconductor light emitting device
JPS60132381A (en) Semiconductor laser device
JPH0462883A (en) Visible radiation semiconductor laser
JPS622720B2 (en)
JPH03120775A (en) Embedded structure semiconductor and its manufacture
JPS6112399B2 (en)
JPS6076184A (en) Semiconductor laser
JPH03203283A (en) Semiconductor laser device