JPH01187272A - Continuous shear aseismic wall - Google Patents

Continuous shear aseismic wall

Info

Publication number
JPH01187272A
JPH01187272A JP966688A JP966688A JPH01187272A JP H01187272 A JPH01187272 A JP H01187272A JP 966688 A JP966688 A JP 966688A JP 966688 A JP966688 A JP 966688A JP H01187272 A JPH01187272 A JP H01187272A
Authority
JP
Japan
Prior art keywords
wall
divided
shear
earthquake
shearing forces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP966688A
Other languages
Japanese (ja)
Other versions
JPH0749729B2 (en
Inventor
Kiyoshi Tanaka
清 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP966688A priority Critical patent/JPH0749729B2/en
Publication of JPH01187272A publication Critical patent/JPH01187272A/en
Publication of JPH0749729B2 publication Critical patent/JPH0749729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To improve an aseismic performance of wall, saving steel materials to be used, by a method in which the lowest floor part is divided into left and right-handed sections at the center, column forms are attached to both sides of each divided earthquake-resistant wall, and the legs are fixed to an extent that inverse shearing forces do not occur. CONSTITUTION:In a reinforced concrete tall structure of ten or more floors, the lowest floor portion is divided into two left and right-handed sections at the center, and column forms 2 are attached to both sides of each divided aseismic wall A. The fixing degree of leg is made smaller to an extent that inverse shearing forces as responding shearing forces during earthquake do not occur. The construction work can thus be made easier by saving steel materials to be used and the increase in the loading shearing force of other vertical parts can be suppressed by avoiding the occurrence of inverse shearing forces.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は10階程度以上の高層鉄筋コンクIJ−ト構造
物における連層耐震壁に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous shear wall in a high-rise reinforced concrete IJ-structure of about 10 stories or more.

(従来の技術) 鉄筋コンクリート構造物の高層化に伴ない、その耐震安
全性の確保が急務となってきている。現在施工されてい
る高層鉄筋コンクリート建造物の大半は、所謂純ラーメ
ン構造が主流であるが、風荷重、中小地震等に対して建
物の揺れを小さ(して、大地震時には層崩壊による落階
を防止する耐震壁を配置することが望ましい。
(Prior Art) As reinforced concrete structures become taller, ensuring their seismic safety has become an urgent need. The majority of high-rise reinforced concrete buildings currently being constructed are of the so-called pure rigid-frame structure, which reduces the shaking of the building against wind loads, small to medium earthquakes, etc. (and prevents floors from falling due to layer collapse in the event of a major earthquake). It is desirable to install shear walls to prevent this.

而して高層鉄筋コンクリート建造物に連層耐震壁を配置
した場合、その剛性が他の鉛直部材に比して可成り太き
いため、また一般にこのよ5な耐M全の最下階脚部での
支持条件は完全固足として設計される場合が多い。
When a multi-story shear wall is placed in a high-rise reinforced concrete building, its rigidity is considerably greater than that of other vertical members, and in general, the lowest floor leg of such a Support conditions are often designed as completely rigid.

(発明が解決しようとする職層) 従ってこのような場合、最下階において水平力による転
倒モーメントの大部分を負担しなくてはならず、最下階
の耐′j!Ma脚部での負担モーメントは非常に大きな
値となる。このためその断面設計に当っては多量の鋼材
を必要とし、その施工に際して多大の困難を伴なうとい
う問題点がある。
(Occupational class to be solved by the invention) Therefore, in such a case, the lowest floor must bear most of the overturning moment due to the horizontal force, and the lowest floor's toppling resistance ′j! The load moment on Ma's legs becomes a very large value. For this reason, there is a problem in that a large amount of steel is required in designing the cross section, and the construction is very difficult.

一方、この種の耐岸壁の基鏡(脚部)の固定度の相違に
よる建造物上部の挙動の差異はあまりみられない。
On the other hand, there is not much difference in the behavior of the upper part of the structure due to differences in the degree of fixation of the base mirrors (legs) of this type of quay wall.

第5図及び第6図はこの種の耐震壁の基礎固定度の違い
による耐震壁各層の地震時最大応答曲げモーメント並に
地震時最大応答剪断力の分布図を示し、前記各図からみ
られるよ5に、固定度が極端に小さくなった場合である
ピン支持状態の場合でも、建造物の上部の挙動には固定
度の違いによる差異はあまりみられない。
Figures 5 and 6 show distribution charts of the maximum response bending moment and the maximum response shear force during an earthquake of each layer of the shear wall due to differences in the degree of foundation fixation of this type of shear wall, and as can be seen from the above figures. 5. Even in the case of pin support, which is a case where the degree of fixation is extremely small, there is not much difference in the behavior of the upper part of the building due to the difference in the degree of fixation.

しかしながらピン支持状態では、耐震壁脚部に大きな逆
剪断力が作用するため、他の鉛直部材の負担剪断力が大
きくなる。
However, in the pin-supported state, a large reverse shearing force acts on the leg of the shear wall, which increases the shearing force borne by other vertical members.

以上より、前記連層耐′Js壁脚部の固定度として理想
的なものとして、壷下階の耐震壁に要求される耐震性能
は、 (1)最下層の耐震壁に逆剪断力を生起させない程度の
固定度、 (11)風荷重、中小地震時に降伏を生起しない断面性
能、 (+ii)  不慮の剪断入力に対しても安全な剪断耐
力、1ψ 上部耐震壁の水平変形による変動軸力を保持
することができる断面性能、 が挙げられる。
From the above, the seismic performance required for the shear wall on the lower floor of the urn is as follows: (11) Sectional performance that does not cause yielding during wind loads or small to medium earthquakes; (+ii) Shear strength that is safe even against unexpected shear input; Cross-sectional properties that can be maintained include:

本発明はこのような課題を解決し、耐震性能が優れた連
層耐震壁を提供することを目的として提案されたもので
ある。
The present invention was proposed with the aim of solving these problems and providing a multi-layer shear wall with excellent seismic performance.

(課題を解決するための手段) 前記目的を達成するため、本発明に係る連層耐震壁は最
下階の部分をその中央部において左右に2分割し、各分
割耐xiの両側に柱型を取付けるとともに、脚部を逆剪
断が生起しない程度に固定してなる構成をされて(ゐ。
(Means for Solving the Problems) In order to achieve the above object, the multi-story shear wall according to the present invention divides the lowest floor portion into left and right halves at the center, and has column-shaped shear walls on both sides of each divided shear wall. At the same time, the legs are fixed to such an extent that reverse shearing does not occur.

(作 用) 本発明に係る連層耐震壁においては前記したように、最
下階の部分がその中央部において左右に2分割され、同
各分割耐′S壁の両側に柱凰が取付けられることによっ
て、断面性能が向上され、風荷重、中小地震時に降伏を
生起することがなく、また前記各耐震壁の保有する剪断
強度を従来型の1枚壁と同程度の強度とすることができ
、層崩壊の危険性を伴なう不慮の剪断入力に対しても十
分な強度を確保することができる。
(Function) As described above, in the multi-story earthquake-resistant wall according to the present invention, the lowest floor part is divided into left and right parts at the center, and pillar hoods are installed on both sides of each divided ``S'' wall. As a result, the cross-sectional performance is improved, yielding does not occur during wind loads and small to medium earthquakes, and the shear strength of each of the above-mentioned shear walls can be made comparable to that of a conventional single wall. , it is possible to ensure sufficient strength even against unexpected shearing inputs that pose a risk of layer collapse.

更に前記耐震壁の脚部は逆剪断が生起しない程度に固定
されていることによって、他の鉛直部材の負担剪断力の
増大が抑止される。また上部構造の地震時の挙動は既述
のとおり、耐震壁脚部が完全固定の場合に比してほぼ同
等となるので、耐震性が良好なものとなる。
Furthermore, since the legs of the shear wall are fixed to such an extent that no reverse shear occurs, an increase in the shear forces borne by other vertical members is suppressed. Furthermore, as mentioned above, the behavior of the superstructure during an earthquake is almost the same as when the shear wall legs are completely fixed, so the earthquake resistance is good.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

高層鉄筋コンクリート建造物の最下階の耐震壁を中央部
において左右に2分割し、このように分割された各耐震
壁IA)の壁板(1)の両側に柱型(2)が−体に設け
られるとともに、左右側耐震壁の相隣る柱型(21(2
)間に石綿板(3)等の耐火材料が挾み込まれ、常時の
使用時には壁面としての一体性が確保される。
The shear wall on the lowest floor of a high-rise reinforced concrete building is divided into two left and right parts at the center, and pillars (2) are installed on both sides of the wall plate (1) of each shear wall (IA) divided in this way. At the same time, adjacent column types (21 (2
) A fireproof material such as an asbestos board (3) is inserted between the walls to ensure the integrity of the wall surface during regular use.

また前記各耐震壁(A)の脚部は逆剪断が生起しない程
度に固定される。
Further, the legs of each of the seismic walls (A) are fixed to such an extent that reverse shear does not occur.

なお前記耐震壁の設計に当っては、風荷重、□中小地震
時には最下階の夫々の耐震壁(A)が少なくとも曲げ降
伏を生起しないように断面設計を行ない、また大地震震
時には、最下階の前記各耐震壁内脚部が曲げ降伏を生起
し、連層壁の脚部に回転を生起させる。このようにする
ことによって最下階の耐震壁に入力される剪断力は直上
階に比して相対的に小さくなるが、その減少分を他の鉛
直部材が負担しなければならないので、同鉛直部材の剪
断耐力を増加させておく。
When designing the above-mentioned shear walls, the wind load, □ cross-sectional design is carried out so that each shear wall (A) on the lowest floor does not undergo bending yield at least in the event of a small to medium earthquake, and the maximum Each of the internal shear wall legs of the lower floor undergoes bending yielding, causing rotation in the continuous wall legs. By doing this, the shearing force input to the shear wall on the lowest floor becomes relatively smaller than that on the floor immediately above, but this reduction must be borne by other vertical members. Increase the shear strength of the member.

図示の実施例によれば、前記各分割耐震壁内における壁
板(1)の両側に柱型(2)が設けられたことによって
断面性能が向上され、また各耐震壁(A)の保有する剪
断強度を従来型の1枚壁と同程度の強度とし、不慮の剪
断入力に対しても十分な強度を保持することができる。
According to the illustrated embodiment, columnar shapes (2) are provided on both sides of the wall plates (1) in each of the divided shear walls, thereby improving cross-sectional performance, and each shear wall (A) has It has a shear strength comparable to that of a conventional single wall, and can maintain sufficient strength even against unexpected shear input.

また大地震時には最下階の各耐震壁(A)の脚部が曲げ
降伏を生じ、同脚部に回転を生起せしめる。
Furthermore, in the event of a major earthquake, the legs of each of the bottom floor shear walls (A) bend and yield, causing the legs to rotate.

第4図は前記実施例の場合を示し、第3図は従来の1枚
壁(B)の場合を示し、前記両図より明らかなように、
同一の回転量を得るために必要な圧縮柱の軸歪量CεC
は、実施例の場合、従来に比して約りで済む。前記分割
耐震壁(A)Kおける壁板(1)両側に設けられた柱型
(2)には十分な拘束筋が配筋されるが、このように図
示の実施例の場合には同一の回転量を得るために必要な
柱型(2)の軸歪量は約りで済むので、拘束筋の配筋が
十分配筋可能な範囲の量で済む。
FIG. 4 shows the case of the above embodiment, and FIG. 3 shows the case of the conventional single wall (B). As is clear from both figures,
The amount of axial strain of the compression column required to obtain the same amount of rotation CεC
In the case of the embodiment, compared to the conventional method, the amount of the difference can be reduced. Sufficient restraint reinforcement is arranged in the column type (2) provided on both sides of the wall plate (1) in the divided shear wall (A)K, but in the case of the illustrated example, the same Since the amount of axial strain of the column type (2) required to obtain the amount of rotation is approximately the same, the amount of constraint reinforcement can be within a sufficient range of reinforcement.

更に上部構造の地震挙動は、前記したよ5に耐N壁脚部
が完全固定の場合に比してほぼ同等となるので、その耐
震性能は良好なものとなる。
Furthermore, the seismic behavior of the superstructure is almost the same as in the case where the N-resistant wall legs are completely fixed as described in 5 above, so the seismic performance is good.

(発明の効果) 本発明に係る連層耐震壁は前記したように、連層耐震壁
の最下階の部分を中央部において左右に2分割し、同分
割耐震壁の両側に枕型を取付けたことによって、耐震壁
脚部が同一の回転量を得るために必要な枕型の軸歪量を
従来型の1枚壁の場合に比して約りとし、間柱型におけ
る拘束筋のI筋が十分可能な範囲の量で済む。
(Effects of the Invention) As described above, in the multi-layer shear wall according to the present invention, the lowest floor part of the multi-layer shear wall is divided into left and right parts at the center, and pillow-shaped parts are installed on both sides of the divided seismic wall. By doing so, the amount of axial strain required for the pillow-shaped wall to obtain the same amount of rotation of the shear wall leg is reduced compared to the case of a conventional single wall, and the I-reinforcement of the restraint reinforcement in the stud type The amount is within the range that is sufficient.

また本発明の耐震壁の保有する剪断強度を従来型の1枚
壁と同等にすることができるので、層崩壊の危険性を伴
な5不慮の剪断力入力に対しても、十分に安全な強度を
確保することができる。
In addition, since the shear strength of the shear wall of the present invention can be made equivalent to that of a conventional single wall, it is sufficiently safe even against unexpected shear force inputs that pose a risk of layer collapse. Strength can be ensured.

更に本発明によれば前記分割耐jl!壁の壁板、枕型の
断面積を十分大きく確保できるので、落階現象を防止す
ることができる。
Furthermore, according to the present invention, the division resistance jl! Since the cross-sectional area of the wall plate and pillow shape of the wall can be ensured sufficiently large, the falling phenomenon can be prevented.

更にまた本発明によれば、前記分割耐震壁0脚部が逆剪
断を生起しない程度に固定されているので、同脚部にお
ける負担モーメントを軽減し、使用鋼材を節減し、施工
を容易ならしめるとともに1逆剪断力の発生による他の
鉛直部材の負担剪断力の増大を抑止しうるものである。
Furthermore, according to the present invention, the divided shear wall zero leg portion is fixed to such an extent that no reverse shear occurs, which reduces the load moment on the leg portion, reduces the amount of steel used, and facilitates construction. At the same time, it is possible to suppress an increase in the shearing forces borne by other vertical members due to the generation of one reverse shearing force.

また上部構造の地震時挙動は、耐壁脚部が完全固定の場
合に比してほぼ同等となるので、その耐震性が良好なも
のとなる。
Furthermore, the behavior of the superstructure during an earthquake is almost the same as when the wall legs are completely fixed, so its earthquake resistance is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る連層耐震壁の一実施例を具えた架
構の正面図、第2図は第1図の矢視■−■図、第3図及
び第4図は夫々従来の耐震壁並に本発明の耐′S壁の各
脚部の固定性状の比較説明図、第5図及び第6図は夫々
基礎の固定度の違いにょる耐′S壁各層の地震時最大応
答曲げモーメント並に地震時最大応答剪断力の分布図で
ある。 (A)・・・分割耐震壁、  (1)・・・壁板、(2
)・・・枕型
Fig. 1 is a front view of a frame including an embodiment of the multi-layer shear wall according to the present invention, Fig. 2 is a view taken along the arrows ■-■ in Fig. 1, and Figs. 3 and 4 are respectively the conventional A comparative explanatory diagram of the fixing properties of each leg of the earthquake-resistant wall and the S-resistant wall of the present invention, and Figures 5 and 6 show the maximum response during an earthquake of each layer of the S-resistant wall due to the difference in the degree of fixation of the foundation, respectively. It is a distribution map of bending moment and maximum response shear force during an earthquake. (A)...Divided earthquake-resistant wall, (1)...Wall plate, (2
)・・・Pillow type

Claims (1)

【特許請求の範囲】[Claims] 連層耐震壁の最下階の部分をその中央部において左右に
2分割し、各分割耐震壁の両側に柱型を取付けるととも
に、脚部を逆剪断が生起しない程度に固定してなること
を特徴とする連層耐震壁。
The lowest floor of the multi-story shear wall is divided into two left and right parts at the center, pillars are installed on both sides of each divided shear wall, and the legs are fixed to the extent that reverse shearing does not occur. Features a multi-layer earthquake-resistant wall.
JP966688A 1988-01-21 1988-01-21 Multi-layered earthquake resistant wall Expired - Lifetime JPH0749729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP966688A JPH0749729B2 (en) 1988-01-21 1988-01-21 Multi-layered earthquake resistant wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP966688A JPH0749729B2 (en) 1988-01-21 1988-01-21 Multi-layered earthquake resistant wall

Publications (2)

Publication Number Publication Date
JPH01187272A true JPH01187272A (en) 1989-07-26
JPH0749729B2 JPH0749729B2 (en) 1995-05-31

Family

ID=11726538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP966688A Expired - Lifetime JPH0749729B2 (en) 1988-01-21 1988-01-21 Multi-layered earthquake resistant wall

Country Status (1)

Country Link
JP (1) JPH0749729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088736A (en) * 2018-01-16 2018-05-29 中国地震局工程力学研究所 Sub-structural test loading device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088736A (en) * 2018-01-16 2018-05-29 中国地震局工程力学研究所 Sub-structural test loading device
CN108088736B (en) * 2018-01-16 2024-04-30 中国地震局工程力学研究所 Substructure test loading device

Also Published As

Publication number Publication date
JPH0749729B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
EP1882797A2 (en) Composite energy absorbing structure
JP3804904B2 (en) Bracing structure of bearing wall in three-story house
JPH01187272A (en) Continuous shear aseismic wall
Guo et al. Static behavior of buckling-restrained steel plate shear walls
JP3725831B2 (en) Vibration control device in building
JP3306226B2 (en) Attached column base structure of multi-story shear wall
JP4923641B2 (en) Column-beam joints, steel frames and steel structures with excellent seismic performance
Hossen et al. Seismic performance of concrete flat slabs
JP2001140497A (en) Earthquake-resistant house
JPH01271565A (en) Ferro-concrete composite column covered with steel pipe
JP2514839B2 (en) Seismic structure of high-rise buildings
JPH06167074A (en) Steel framed reinforced concrete column base and steel column base
JP7438154B2 (en) vibration damping building
CN217150621U (en) Embedded steel braced frame conversion post connection structure and beam column connected node
JPH09264050A (en) Building structure
JP6905927B2 (en) How to build a seismic isolated building and a seismic isolated structure
JPH09228391A (en) Earthquake proof underground wall
JP3023709B2 (en) Frame structure
Bush et al. Seismic Analysis of RCC Building with Different Shape of Shear Wall and Without Shear Wall
JP2802113B2 (en) Bearing wall structure
JPH02274947A (en) Structural material for earthquake proofing structure
JPS5824576B2 (en) structure of structure
JPS647193B2 (en)
JPH0742805B2 (en) Steel bar truss built-in rebar concrete column
JPH10292664A (en) Multistory building