JP3725831B2 - Vibration control device in building - Google Patents

Vibration control device in building Download PDF

Info

Publication number
JP3725831B2
JP3725831B2 JP2002087926A JP2002087926A JP3725831B2 JP 3725831 B2 JP3725831 B2 JP 3725831B2 JP 2002087926 A JP2002087926 A JP 2002087926A JP 2002087926 A JP2002087926 A JP 2002087926A JP 3725831 B2 JP3725831 B2 JP 3725831B2
Authority
JP
Japan
Prior art keywords
vibration damping
building
slide
section
damping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002087926A
Other languages
Japanese (ja)
Other versions
JP2003278405A (en
Inventor
玄 荒川
雅 小川
博 中根
久哉 加村
茂樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002087926A priority Critical patent/JP3725831B2/en
Publication of JP2003278405A publication Critical patent/JP2003278405A/en
Application granted granted Critical
Publication of JP3725831B2 publication Critical patent/JP3725831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄筋コンクリート造あるいはプレスレスコンクリート造等の建物における制振装置に関する。
【0002】
【従来の技術】
耐震構造の建築物は従来からあるが、特に阪神大震災以後に構築される建築物は耐震構造のものが多くなっている。この構造物の耐震構造における耐震設計思想は種々あるが、以前は地震による構造物の振動免震のみを主対象とする方法が多かった。
【0003】
一方、最近では、構造物の振動応答を制御して地震による構造物の揺れを積極的に低減し、地震による恐怖や、構造物に付加された給水設備等の重要な機能を維持しようとする試みがなされ、この種の構造物は制振構造と呼ばれている。
【0004】
このような制振構造には、免震構造、エネルギー吸収機構その他があり、エネルギー吸収機構は、さらに、履歴減衰機構、摩擦減衰機構、塑性減衰機構、履歴減衰部材等の制振装置に分類される。
【0005】
制振装置の具体例として、アンボンドブレース、低降伏点鋼製の鋼板壁、低降伏点鋼製の鋼板間柱等があり、すでに鉄骨構造物に用いられている。鉄骨構造物にこれらの部材を用いる際には、大梁または柱にこれらの部材をボルト止め、あるいは溶接することで容易に制振躯体構造物を築造することができる。
【0006】
図13(A)、(B)によって従来例の制振装置を説明すると、同図の制振装置1では、上階梁2aと下階梁2bの間に低降伏点鋼製の制振部材3が配置されていて、この制振部材3の上下端が、接合壁4を介してアンカーボルト5により上階梁2と下階梁2aに固着されている。制振部材3の横断面構造は、例えば図10(B)に示すように、所定長、所定幅の低降伏点鋼製の面板6aに複数の縦リブ6bや、横リブ6cを溶接により固着して構成される。
【0007】
図13の制振装置は、建物に作用する水平力を減衰する機能は有しているが、上下梁2a、2bに加わる鉛直荷重を支持する耐荷機能を有していない。
【0008】
図14(A)、(B)には、従来例の制振装置が上下各階の梁2a、2b間に配設された建物7の全体側面が示されている。図14(A)では低降伏点鋼製の制振部材8が、側面で示される建物7の中間における上下階の梁10a、10bに配設され、かつ上下階の全体的にみて直列状に配置されている。この制振部材8は、梁2、2aに加わる建物の鉛直荷重を支持する耐荷機能を有していない。
【0009】
図14(B)の制振装置では、制振部材10が「ハ」の字に配置され、制振部材10の上端部が上階梁2の中間部下面に固着され、下端部が下階梁2bと柱11との接合部に固着されている。この制振部材10は、複数枚の鋼製プレートが粘弾性体を介して一体的に挟持されていて、地震時、鋼製プレートを介して力を受けて粘弾性体が変形する事により、当該複数枚の鋼製プレートが相互に長手方向に制振移動するように構成されてなるアンボンドブレース形式の制振装置である。この制振部材10にあっても、梁2a、2bに加わる建物の鉛直荷重を支持する耐荷機能を有していない。
【0010】
【発明が解決しようとする課題】
従来の建物の制振装置は、図14、図15に示した例その他種々あるが、上下階の梁に固定される何れの制振装置も、梁を介して伝わる建物の鉛直荷重を支持する構造とはなっていない。上下階の梁に固定される制振装置が、建物の鉛直荷重を支持できる構造であれば、その分柱の荷重負担分を分散できて好ましいのであるが、従来例の制振装置組込みの建物はそのような構造になっておらず、このため、建物の鉛直荷重は専ら柱で支えることになり、柱を太くするなど強固にする必要があるとともに、その分、建物の柔軟性が減殺される。
【0011】
ところで、低降伏点鋼などを利用した履歴型制振装置は、当該低降伏点鋼などが履歴による減衰効果と大変形時まで耐力を維持できる変形性能に優れていることを利用し、それにより、地震時の減衰性能を高めることで建物の揺れの制御/減衰や過大な変形の防止を実現するものであるが、この制振装置の組み込まれる建物は、ある程度の柔軟性を持たせた構造を前提に設計されている。
【0012】
つまり、低降伏点鋼等を使用の制振装置組み込みの建物において、制振機能を十分発揮させるには、当該建物が柔構造であることが必要である。しかし、建物において上方からの鉛直荷重の支持機能を付与しようとすれば、柱、梁、壁等の躯体要素に剛性を付与することにつながり、建物に水平力に対する柔軟性を付与することとは本来的に相反する機能を付与することであり、これらを調和するには構造的工夫が要求される。また、制振部材は、主要構造よりも優先的にエネルギーを吸収させるため、地震時の水平力により早期に降伏するものであるから、鉛直載荷能力を喪失する。
【0013】
前記から、低降伏点鋼を使用の制振装置組み込の建物を構築する場合、当該制振装置にも鉛直荷重の支持機能を負担させることができれば、その分、柱を細くできると共に壁も薄くでき、当該柱、壁を含む建物全体に柔軟性を付与することができ、しかも使用する鋼材も自ずから節約できるのでそのように構成したいところである。しかし、エネルギー吸収部材は地震時には荷重支持機能が乏しいので、図13、図14の従来例の制振装置でも、当該上下階の梁に取付ける制振装置は、建物の鉛直荷重を支持しない構成とされているのである。
【0014】
本発明は、前記従来の欠点に鑑みて提案されたもので、▲1▼柱と上下階の梁で囲まれる壁面空間には、RC造などのスライド壁体を配設し、▲2▼このスライド壁体と低降伏点鋼製等のせん断変形もしくは/および曲げ変形によりエネルギーを吸収する鋼製の制振部材を組み合わせて制振装置を構築し、▲3▼しかも、この制振装置に建物の鉛直荷重支持機能と、水平方向の柔軟性を付与した構造を実現したものである。従って、本発明によれば、地震時の水平力により降伏し、エネルギー吸収能力を発揮しても鉛直載荷能力を維持できる。
【0015】
【問題を解決するための手段】
前記の課題を解決するため、本発明は次のように構成する。
【0016】
第1の発明は、建物の上下階の梁と柱とで囲まれる面内に水平スライド分断面を介して分断された上下のスライド壁体をそれぞれ上下階の梁に固着すると共に、上下のスライド壁体を柱に対しては非固着にて設け、かつ前記水平スライド分断面の上下に跨って配置されるせん断変形もしくは/および曲げ変形によりエネルギーを吸収する鋼製の制振部材で上下の壁体が結合され、前記水平スライド分断面は低摩擦すべり支承面であり、上下階の梁に加わる建物の鉛直荷重を上下のスライド壁体で支持させて伝達するようにして、柱に掛る荷重を低減するようにしたことを特徴とする。
【0017】
第2の発明は、第1の発明において、前記スライド壁体はプレキャストコンクリート製であると共に、前記水平スライド分断面は低摩擦すべり支承面であり、前記制振部材は、前記水平スライド分断面の上下に跨って、かつ上下のスライド壁体の側面に配置された制振プレートで構成され、当該制振プレートは任意の固着手段により当該スライド壁体に固着されていることを特徴とする。
【0018】
第3の発明は、第2の発明において、前記制振プレートは、水平スライド分断面に沿って水平方向に伸びる制振プレートで構成され、または、上下方向に長い複数の制振小プレート片を水平スライド分断面の長手方向に所定間隔をあけて配設して構成されていることを特徴とする。
【0019】
第4の発明は、第2の発明において、前記スライド壁体はプレキャストコンクリート製であると共に、前記水平スライド分断面は低摩擦すべり支承面であり、前記制振部材は任意の断面に構成され、この制振部材を、開口部が水平スライド分断面に位置するようにして上下のスライド壁体に形成された凹部に配設したことを特徴とする。
【0020】
第5の発明は、第1〜第4の何れかの発明において、前記制振部材は、低降伏点鋼製または、上下のスライド壁体との固着部および/または補強部を除く部分が低降伏点鋼からなることを特徴とする。
【0021】
【作用】
本発明によると、せん断変形もしくは/および曲げ変形によりエネルギーを吸収する鋼製の制振部材と上下に分断されている剛体であるRC造などのスライド壁体とを組み合わせることで、平常時は、上下の梁に加わる建物の鉛直荷重を前記RC造などのスライド壁体で支持できると共に、地震時、建物に水平力が作用した場合には、水平スライド分断面を介して上下のスライド壁体が横にずれ動くことで建物の柔軟性を阻害せず、かつ、このとき上下のスライド壁体を結合する制振部材にせん断力もしくは/および曲げ力を作用させることで、地震時、建物に作用する水平力を有効に減衰でき、また、一定値以上の振動に対しては制振部材が、せん断変形もしくは/および曲げ変形することで柱の損壊を防止できる。従って、本発明によれば、地震時の水平力により降伏し、エネルギー吸収能力を発揮しても鉛直載荷能力を維持できる。
【0022】
【発明の実施の形態】
以下、本発明に実施形態を図を参照して説明する。
【0023】
図1は、実施形態1の側面説明図、図2は、図1の縦断面図である。各図において、隣り合う柱11と上下階の梁2a,2bで囲まれる壁面空間に、実施形態1に係る制振装置12を配置した例を示す。柱11は、H形鋼または鋼管にコンクリートが充填されたCFT造などで構築され、梁2a,2bにはH形鋼が用いられ、その上にコンクリートスラブが打設される。
【0024】
制振装置12は、スライド分断面13を介して上下に分断されたプレキャストコンクリート(PCa)製の上部スライド壁体14aと、下部スライド壁体14bとの間をせん断変形もしくは/および曲げ変形によりエネルギーを吸収する鋼製の制振部材15で結合して構成される。この制振部材15の具体例としては、低降伏点鋼からなる制振部材または、上下のスライド壁体14a、14bとの固着部および/または補強部を除く部分が低降伏点鋼からなる制振部材等がある。
【0025】
本実施形態1において、上下部スライド壁体14a、14bとは、本来の壁体と同一の意味で用いるものではない。すなわち、壁本来の諸機能は、建物の内外遮蔽機能、内外装機能、鉛直荷重支持機能などの諸機能があるが、本実施形態1において、上下部スライド壁体14a、14bは、前記本来のRC造の壁体の諸機能のうち、本来の壁体と略同様の厚み、形状、鉛直荷重支持機能、部分的内外遮蔽機能などを有する意味で用いる。
【0026】
さらに説明すると、PCa製の上下部スライド壁体14a、14bの厚み(t1)は、図2に示すように、上下部の梁2a、2bの幅寸法(t)よりも厚みが若干薄く、かつ、上部スライド壁体14aの上端縁と、下部スライド壁体14bの下端縁は、それぞれ鋼製の上部梁2aの下面と下部梁2bの上面に、アンカーボルトその他の結合手段(図示省略する)で結合されている。また、水平スライド分断面13には、低摩擦すべり支承面であり、この低摩擦滑り支承を期待通りに構成するため、上下部スライド壁体14a、14bの相対する接合面に四フッ化エチレン(商品名、テフロン(登録商標))や、ステンレス鋼板などの低摩擦部材16を接合するとよい。さらに、上下部スライド壁体14a、14bの両側縁は、柱11との間で若干の空間17が形成されており、この点が、本来の意味での壁体と最も異なる点である。空間17を形成した理由は、地震時、上下部スライド壁体14a、14bを水平方向に柱11と非一体的にスライドさせるためで(詳細は後述する)、空間17の大きさ、幅寸法、形状等は適宜に設定してよい。
【0027】
さらに、上下部スライド壁体14a、14bの水平スライド分断面13の上下に跨って配置される低降伏点鋼等からなる制振部材15は、実施形態1では、水平スライド分断面13の上下に跨って、かつ上下の壁体の両側面に配置された低降伏点鋼製の制振プレートで構成されている。また、上下部スライド壁体14a、14bを厚み方向に貫通する連結ボルト18が、水平スライド分断面13に沿って所定間隔で複数設けられており、各連結ボルト18の両端部を両側面の制振部材15のボルト挿通孔19に挿通し、外側からナット20を締結することで、制振部材15が上下部スライド壁体14a、14bに一体的に固着されている。
【0028】
実施形態1の制振装置12の施工法を説明すると、柱11と梁2a、2bを溶接で組み立て鉄骨架構を構築した後、これらで囲まれた矩形の壁面に制振装置12を組み付ける。制振装置12は、予め工場で上下のスライド壁体14a、14bと制振部材15を連結ボルト18とナット20で締結することで壁板状にユニット化して一体に構成して現場に搬送する。そして、制振装置12をクレーンで吊上げて各階の壁面に配置し、上下階の梁2a、2bに固着する。なお、制振装置12の両側面には、図2に示すように適宜の材質からなる仕上げ板21を装着するとよい。
【0029】
実施形態1の作用を説明すると、制振装置12において、平常時は、上下の梁2a、2bに作用する建物の鉛直方向の荷重(図1矢印イで示す長期軸力)は、剛体である上下のスライド壁体14a、14bで支承でき、しかも、地震時、建物に水平力が作用した場合には、水平スライド分断面13を介して上下のスライド壁体14a、14bがせん断方向にずれ動くことで建物の柔軟性を阻害することがなく、かつ揺れを制振できる。さらに、建物の水平方向の振動に対しては、上下のスライド壁体14a、14bがせん断方向にずれ動き可能であることと相俟って、剛体である柱11に比べて先に降伏する極軟鋼である制振部材15が先に降伏することで建物に作用する振動を、当該建物が損壊する前に有効に減衰できる。
【0030】
次に、図3、図4は実施形態2を示す。この実施形態2では、制振部材15の構成が、実施形態1の水平方向に伸びる制振プレートと若干相違している。実施形態2では、上下方向に長い複数のいわゆる、リンク状の制振小プレート片15a、15a…を長手方向に所定間隔をあけて配設し、それぞれを連結ボルト18とナット20で、上下のスライド壁体14a、14bに固着して構成されている。その他の構成は実施形態1と同じであるので、同一要素には同一符号を付して重複説明を省略する。
【0031】
実施形態2においても、実施形態1と同様に、上下の梁2a、2bに加わる建物の鉛直荷重を剛体である上下のスライド壁体14a、14bで支承でき、また、建物の水平方向の振動に対しては、長手方向に所定間隔をあけて配設した極軟鋼である制振小プレート片15a、15b…が剛体である柱11に比べて先に降伏することで建物に作用する振動を、当該建物が損壊する前に有効に減衰できる。
【0032】
図5(A)、(B)、(C)は実施形態3を示す。この実施形態3は、図5(A)に示す既設の建物の柱11と上下の梁2a、2bで囲まれた壁面に構築された既設のスライド壁体22を取り換えて、図5(B)に示す制振装置12を組み込む例を示す。この場合は、既設の建物の壁面10に装着されているスライド壁体22を取り除いた後、工場で一体に製作された制振装置12を図5(B)のように組み込む。実施形態3では、上下のスライド壁体14a、14bの両側縁の中間側が短縮するように傾斜していて、柱10との間に形成される空間17の形状が横向き山形である点が実施形態1と若干相違するが、他の構成と作用は実施形態1と同じであるので、同一要素には同一符号を付して重複説明を省略する。
【0033】
図6(A)、(B)、図7(A)、(B)は実施形態4を示す。この実施形態4では、制振部材15の構成および、これと上下のスライド壁体14a、14bとの取付け態様が、実施形態1〜3の制振部材15と若干相違している。実施形態4では、上下のスライド壁体14a、14bに、開口部が水平スライド分断面13に位置し上下で向き合うようにするようにして凹部23が形成されており、上下の凹部23、23で囲まれた開口部内に、水平スライド分断面13を跨って、その上下に伸長して低降伏点鋼からなる制振部材15bが配設されている。制振部材15bの断面形状は任意であるが、上下に長い面板15cに両側縁と中間に縦リブ15dを設け、上下部と中間部に横リブ15eを設け、上下端に支圧プレート15fを固着して構成されている。制振部材15bの上下支圧プレート15fと上下の凹部10の底とはアンカーボルト24で固着される。また、この実施形態4でも、前記制振部材15bの両側縁と凹部23の両側面との間には、若干の間隙が形成されている。その他の構成は、実施形態1〜3と同じである。
【0034】
実施形態4においても、実施形態1〜3と同様に、上下の梁2a、2bに加わる建物の鉛直荷重を剛体である上下のスライド壁体14a、14bで支承できる。また、建物の水平方向の振動に対しては、上下のスライド壁体14a、14bが水平かつ反対方向にスライドし、このとき低降伏点鋼からなる制振部材15bにせん断力が作用することで地震により建物に加わる水平力を制振できる。さらに、水平力が設定値以上になったとき、制振部材15bが剛体である柱11よりも先にせん断破壊することで、柱11の損壊を防止するものである。
【0035】
図8は実施形態5を示す。この実施形態5では、制振部材15gの断面構造が実施形態4と相違している。図8の実施形態5の制振部材15gでは、2枚の面板15hが間隔をあけて平行に配置され、各面板15hの外側面に複数の縦リブ15jと横リブ15kが設けられた例が示されている。その他の構成と作用は実施形態4と同じであるので、同一要素には同一符号を付して重複説明を省略する。
【0036】
図9は実施形態6を示す。この実施形態6では、制振部材15mの断面構造が実施形態4、5等と相違している。すなわち、実施形態6では、制振部材15mが横断面矩形の極軟鋼製の角管で構成されていて、その上下端がプレート15nを介して上下の凹部23の底にアンカーボルト24を介して固着されている。その他の構成と作用は実施形態4、5等と同じであるので、同一要素には同一符号を付して重複説明を省略する。なお、極軟鋼製の管体の横断面形状は矩形の例を示したが、これ以外に円形断面であっても構わない。
【0037】
図10、図11は実施形態7を示す。この実施形態7では、制振部材15bの上下の分割壁体14c、14d(図12参照)ヘの結合構造が先の実施形態と相違している。この実施形態7では、制振部材15bの基端部がいわゆる埋め込み型であって、該制振部材15bの上下端に境界鋼板24が一体に固着されている。境界鋼板24の背面側には、三角リブ25で補強されてH形断面の埋め込み固定プレート26が固着されていて、そのフランジにコンクリート廻り込み用の孔30が開設されていると共に、リブ26aには複数のスタッド27が固着されている。
【0038】
そして、境界鋼板24の背面側に位置する三角リブ25と埋め込み固定プレート26と複数のスタッド27が上下の分割壁体14c、14dの中に埋設されており、それにより制振部材15bと上下の分割壁体14c、14dが一体化されていて、地震時などに上下の分割壁体14c、14dの動きを制振部材15bに伝達できる。また、その際、分割壁体14c、14dと制振部材15bの境界部に抉り力が作用するとき、境界鋼板24によって壁体コンクリートが破壊する恐れを防止できる。分割壁体14c、14dは、図12で示す上下のスライド壁体14a、14bと結合するためのさし筋などの突起部材28を設けてある。
【0039】
図12は実施形態8を示す。この実施形態8では、図の中央部から右側に設けた制振装置12を分離型と称し、左側に設けた制振装置12を一体型と称する。
【0040】
図12の中央部から右側の分離型では、スライド分断面13で分離した上下のスライド壁体14a、14bが、制振装置12の左右の側で互いに分離している。そして制振装置12において、制振部材15bの上下部が図11と同じ埋め込み手段により上下の分割壁体14c、14dに結合されている。この分離型の制振装置を製作するには、制振部材15bと上下の分割壁体14c、14dを一体に製作した後、別途製作した左右の上下スライド壁体14a、14bの間に配置する。そして、分割壁体14c、14dと上下スライド壁体14a、14bの一方または両方からは、予めさし筋などの突起部材28(図11に例示する)を突出させておくことにより、両壁体の接合部(図12のロ部)において、前記さし筋等が埋設されるようにモルタル、コンクリート、グラウト等の充填材を充填することで両壁体を一体化する。
【0041】
実施形態8の分離型(図12の中央部右側)の制振装置は、一体型(図12の中央部左側に示し、実施形態1〜7に示す)の制振装置と同じ作用があることに加えて、さらに期待される作用として、互いに分離した左右の上下スライド壁体14a、14bにおけるスライド分断すべり面を確実にタッチさせることができるので、必要に応じてこの構成を実施すると良い。実施形態8において、その他の構成は、先の実施形態と同じであるので、同一要素には同一符号を付して説明を省略する。
【0042】
本発明者は、図6に示す実施形態4の制振装置について、エネルギー吸収性能の基礎資料を得るためにせん断試験を実施した。制振部材(極軟鋼パネル)15bには、降伏点160N/mm2クラスの低降伏点鋼を用いた。表1に使用材料のミルシート値を示す。低摩擦部材(低摩擦滑り支承)16はフッ素樹脂の微粒子を均一に分散共析させた複合メッキ被膜したものである。
【0043】
試験装置は合計3体(No.1、No.2、No.3)とし、No.1は、低摩擦滑り支承のみを設け、摩擦係数を確認するための試験体である。No.2は、極軟鋼パネルのみを設け、極軟鋼パネルの性状の把握と極軟鋼パネルとRC部との接合性状の把握を目的とした試験体である。試験体詳細図は図6(A)、(B)に示している。極軟鋼パネルの性能を十分発揮させるために極軟鋼パネルと上下のスライド壁体(RC部)14a、14bとの接合方法には、制振部材15bの固定度を十分確できるH鋼埋込み+スタット方式とし、H鋼埋込長さを1.0Dとした。また、極軟鋼パネルとRC部の支圧破壊による剛性抵下を防ぐため支圧プレート15fを設けた。
【0044】
【表1】

Figure 0003725831
【0045】
【表2】
Figure 0003725831
【0046】
No.1、No.3では、一定軸力を与えた後、加力用鉄骨を介して試験体中心部に直接せん断力を加え、No.2では、No.3の結果と軸方向変形を同じに保った状態で、せん断力を加えた。各試験体とも、水平変位1mm、3mm、6mm、10mmとなるように、変位制御して2回与えた。
【0047】
No.1(軸力70トンのグラフを外す)では、想定される軸力変動と繰り返しせん断変形に対して、摩擦係数が0.1から0.13程度で安定した数値を示すと共に、繰り返し履歴ループが概略矩形の典型的な摩擦・すべり挙動が認められる。No.2では、小さな変形時から降伏挙動を示し、座屈などによる耐力低下も見られなく、バイリニア−型の典型的な履歴挙動を示し、地震時のエネルギー吸収が確実になされることが示されている。No.1とNo.2の複合系であるNo.3(25mm振幅程度のグラフを示しつつ述べる)は、概略No.1とNo.2との重ね合わせが成立し、極めて小さなせん断変形で降伏が開始され、滑らかな滑りを伴いつつ(ぎくしゃくした挙動がない)、座屈などによる耐力低下も見られず、大変形時まで安定した履歴挙動とそれに伴うエネルギー吸収挙動が認められる。
【0048】
すなわち、本発明の主目的である、「鉛直荷重を壁体で支持できる、水平力が作用する場合にずれ動くことができる、一定以上の地震に効果を発揮する、建物に作用する水平力を有効に低減できる、」などを実現していることが確認された。
【0049】
なお、本発明は、図示の実施形態に限定されず、制振部材15bの構造や、制振部材15bと上下スライド壁体14a、14bとの結合構造は適宜変更してかまわないものである。例えば、図6の実施形態4における凹部23の形状は、上下対称でなくても構わなく、片側フラット+片側凹部付きでもよい。さらに、凹部23は、必ずしも開口部である必要はなく、制振部材15bを嵌め込んである部分のみ両側に若干の隙間があればよい。
【0050】
【発明の効果】
本発明によると、低降伏点鋼製の制振部材と上下に分断されている剛体であるRC造などのスライド壁体とを組み合わせることで、平常時は、上下の梁に加わる建物の鉛直荷重を前記RC造などのスライド壁体で支持でき、その分柱に掛かる荷重を低減できて、柱に要求される強度を低減できると共に、地震時建物に水平力が作用した場合には、低摩擦すべり支承面の水平スライド分断面を介して上下のスライド壁体が横にずれ動くことで建物の柔軟性を阻害せず、かつこのとき上下のスライド壁体を結合する低降伏点鋼製の制振部材にせん断力を作用させることで、地震時、建物に作用する水平力を有効に減衰でき、さらに、一定値以上の振動に対しては制振部材が塑性せん断変形して地震エネルギーを吸収することで柱の損壊を防止できる効果があり、またさらに構成が簡潔で、地震発生の後、制振部材の取換えも容易である。
【0051】
さらに、制振部材は上下の壁体を鉛直方向に一体化させると共に、塑性化によりエネルギー吸収を行うものである。また、スライド壁体は柔性を保つ上で低摩擦化とすることが望ましいが、柔性が損なわれない範囲で摩擦型ダンパーとして作用させることもできる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る制振装置の側断面図である。
【図2】図1の中央部縦断面図である。
【図3】本発明の実施形態2に係る制振装置の側断面図である。
【図4】図3の縦断面図である。
【図5】(A)は建物の既設の壁の側断面図、(B)はこの建物の既設の壁を取り換えて、に本発明の実施形態3に係る制振装置を取付けた側断面図、(C)は(B)の中央部縦断面図である。
【図6】(A)は本発明の実施形態4に係る制振装置の側断面図、(B)は(A)において、地震時制振装置に水平力が作用し、制振部材が変位した側断面図である。
【図7】図7(A)は、図6(A)の横断平面図、図(B)は、制振部材の斜視図である。
【図8】本発明の実施形態5に係る制振装置横断平面図である。
【図9】本発明の実施形態6に係る制振装置横断平面図である。
【図10】(A)、(B)は、本発明の実施形態7に係る制振装置の全体の正面図と側面図である。
【図11】(A)、(B)は、図10に示す制振装置の本体部の側面図と正面図である。
【図12】本発明の実施形態8に係る制振装置の全体の正面図である。
【図13】(A)は第1従来例に係る制振装置組み込みの建物の側面図、(B)は(A)におけるA−Aの横断平面図である。
【図14】(A)、(B)は、第2従来例と、第3従来例に係る制振装置組み込みの建物の全体側面図である。
【符号の説明】
1 制振装置
2a 上部梁
2b 下部梁
3 制振部材
4 接合壁
5 アンカーボルト
6 6a 面板
6b 縦リブ
6c 横リブ
7 建物
8 制振部材
10 制振部材
11 柱
12 制振装置
13 スライド分断面
14a 上部スライド壁体
14b 下部スライド壁体
14c 上部分割壁体
14d 下部分割壁体
15 制振部材
15a 制振小プレート片
16 低摩擦部材
17 空間
18 連結ボルト
19 ボルト挿通孔
20 ナット
21 仕上げ板
22 壁体
23 凹部
24 境界鋼板
25 三角リブ
26 埋め込み固定板
27 スタッド
28 突起部材
30 孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration damping device in a building such as a reinforced concrete structure or a pressless concrete structure.
[0002]
[Prior art]
Buildings with earthquake-resistant structures have existed in the past, but many buildings built after the Great Hanshin Earthquake have earthquake-resistant structures. There are various seismic design ideas for the seismic structure of this structure, but in the past, there were many methods that mainly deal with the seismic isolation of the structure caused by an earthquake.
[0003]
On the other hand, recently, the vibration response of the structure is controlled to actively reduce the shaking of the structure due to the earthquake, thereby maintaining the important functions such as the fear of the earthquake and the water supply equipment added to the structure. Attempts have been made and this type of structure is called a damping structure.
[0004]
Such vibration control structures include seismic isolation structures, energy absorption mechanisms, and others. Energy absorption mechanisms are further classified into vibration control devices such as hysteresis damping mechanisms, friction damping mechanisms, plastic damping mechanisms, and hysteresis damping members. The
[0005]
Specific examples of the vibration damping device include an unbonded brace, a steel plate wall made of a low yield point steel, a steel plate column made of a low yield point steel, and are already used for a steel structure. When these members are used for the steel structure, the damping structure can be easily constructed by bolting or welding these members to the beam or column.
[0006]
13A and 13B, the vibration damping device of the conventional example will be described. In the vibration damping device 1 in the figure, a damping member made of low yield point steel is provided between the upper beam 2a and the lower beam 2b. 3 is arranged, and the upper and lower ends of the vibration damping member 3 are fixed to the upper floor beam 2 and the lower floor beam 2a by the anchor bolt 5 via the joining wall 4. For example, as shown in FIG. 10B, the cross-sectional structure of the damping member 3 is fixed by welding a plurality of vertical ribs 6b and horizontal ribs 6c to a face plate 6a made of low yield point steel having a predetermined length and width. Configured.
[0007]
The vibration damping device of FIG. 13 has a function of attenuating the horizontal force acting on the building, but does not have a load-bearing function for supporting a vertical load applied to the upper and lower beams 2a and 2b.
[0008]
FIGS. 14A and 14B show the entire side surface of the building 7 in which the vibration damping device of the conventional example is disposed between the beams 2a and 2b on the upper and lower floors. In FIG. 14 (A), the damping member 8 made of low yield point steel is disposed on the beams 10a and 10b on the upper and lower floors in the middle of the building 7 shown on the side surface, and is in series with the upper and lower floors as a whole. Has been placed. This damping member 8 does not have a load bearing function for supporting the vertical load of the building applied to the beams 2 and 2a.
[0009]
In the vibration damping device of FIG. 14 (B), the damping member 10 is arranged in a “C” shape, the upper end portion of the damping member 10 is fixed to the lower surface of the middle portion of the upper floor beam 2, and the lower end portion is the lower floor. It is fixed to the joint between the beam 2b and the column 11. In this vibration damping member 10, a plurality of steel plates are integrally sandwiched via a viscoelastic body, and during an earthquake, the viscoelastic body is deformed by receiving a force through the steel plate, This is an unbonded brace-type vibration damping device in which the plurality of steel plates are configured to perform vibration-damping movement in the longitudinal direction of each other. Even if it exists in this damping member 10, it does not have a load-bearing function which supports the vertical load of the building added to the beams 2a and 2b.
[0010]
[Problems to be solved by the invention]
Although there are various other conventional vibration damping devices shown in FIGS. 14 and 15, any vibration damping device fixed to the beams on the upper and lower floors supports the vertical load of the building transmitted through the beams. It is not a structure. If the vibration control device fixed to the beams on the upper and lower floors is a structure that can support the vertical load of the building, it is preferable to distribute the load share of the pillars, but the building with built-in vibration control device of the conventional example As a result, the vertical load of the building is supported exclusively by the pillars, and it is necessary to make the pillars thicker, and the flexibility of the building is reduced accordingly. The
[0011]
By the way, the hysteretic vibration damping device using low yield point steel, etc. utilizes the fact that the low yield point steel etc. is excellent in the damping effect due to history and the deformation performance that can maintain the proof strength until large deformation, thereby In order to control the vibration / damping of buildings and prevent excessive deformation by enhancing the damping performance during earthquakes, the building incorporating this vibration control device has a structure with a certain degree of flexibility. It is designed on the assumption.
[0012]
That is, in a building incorporating a vibration damping device using low yield point steel or the like, it is necessary that the building has a flexible structure in order to fully exhibit the vibration damping function. However, if it is intended to give a vertical load support function from above in a building, it will lead to giving rigidity to the frame elements such as columns, beams, walls, etc., and giving the building flexibility to horizontal force This is inherently contradictory functions, and structural ingenuity is required to harmonize these functions. In addition, since the vibration damping member absorbs energy preferentially over the main structure, it yields early due to the horizontal force during the earthquake, and thus loses the vertical loading capacity.
[0013]
From the above, when building a building incorporating a damping device using low yield point steel, if the damping device can also bear the support function of the vertical load, the column can be made thinner and the wall can be reduced accordingly. It is possible to reduce the thickness, to give flexibility to the entire building including the pillars and walls, and to save the steel material used naturally. However, since the energy absorbing member has a poor load supporting function in the event of an earthquake, the vibration damping device attached to the upper and lower floor beams does not support the vertical load of the building even in the conventional vibration damping device of FIGS. It has been done.
[0014]
The present invention has been proposed in view of the above-mentioned conventional drawbacks. (1) A slide wall body such as RC structure is disposed in the wall surface space surrounded by the pillar and the upper and lower floor beams. A vibration control device is constructed by combining a slide wall body and a steel vibration suppression member that absorbs energy by shear deformation and / or bending deformation such as low yield point steel. The structure which provided the vertical load support function of this and the softness | flexibility of the horizontal direction was implement | achieved. Therefore, according to the present invention, it is possible to maintain the vertical loading capacity even if it yields due to the horizontal force at the time of the earthquake and exhibits the energy absorption capacity.
[0015]
[Means for solving problems]
In order to solve the above problems, the present invention is configured as follows.
[0016]
In the first invention, the upper and lower slide walls separated by a horizontal slide section are fixed to the upper and lower floor beams in a plane surrounded by the beams and columns on the upper and lower floors of the building, and the upper and lower slides The upper and lower walls are made of steel damping members that are provided non-adhering to the column and absorb energy by shearing deformation and / or bending deformation arranged across the horizontal slide section. The body is joined, The horizontal slide section is a low-friction sliding bearing surface, and the vertical load of the building applied to the beams on the upper and lower floors is supported and transmitted by the upper and lower slide walls to reduce the load on the column. It is characterized by that.
[0017]
According to a second invention, in the first invention, the slide wall body is made of precast concrete, the horizontal slide section is a low-friction sliding bearing surface, and the damping member is formed of the horizontal slide section. The vibration control plate is composed of vibration control plates arranged on the side surfaces of the upper and lower slide wall bodies, and the vibration control plates are fixed to the slide wall bodies by an arbitrary fixing means.
[0018]
In a third aspect based on the second aspect, the vibration damping plate is composed of a vibration damping plate extending in a horizontal direction along a horizontal slide sectional surface, or a plurality of vibration damping small plate pieces that are long in the vertical direction. It is characterized by being arranged with a predetermined interval in the longitudinal direction of the horizontal slide section.
[0019]
In a fourth aspect based on the second aspect, the slide wall body is made of precast concrete, the horizontal slide sectional surface is a low friction sliding bearing surface, and the vibration damping member is configured in an arbitrary cross section, The vibration damping member is disposed in a recess formed in the upper and lower slide wall bodies so that the opening is positioned on the horizontal slide dividing section.
[0020]
According to a fifth invention, in any one of the first to fourth inventions, the damping member is made of low-yield-point steel or has a low portion excluding a fixing portion and / or a reinforcing portion with the upper and lower slide wall bodies. It is made of yield point steel.
[0021]
[Action]
According to the present invention, by combining a steel damping member that absorbs energy by shear deformation and / or bending deformation and a slide wall body such as RC structure that is a rigid body divided vertically, The vertical load of the building applied to the upper and lower beams can be supported by the slide wall such as the RC structure, and when a horizontal force acts on the building during the earthquake, the upper and lower slide walls are It does not impede the flexibility of the building by moving laterally, and at this time it acts on the building during an earthquake by applying a shearing force and / or bending force to the damping member that joins the upper and lower slide walls. The horizontal force is effectively damped, and the columnar member can be prevented from being damaged by shearing deformation and / or bending deformation of the damping member against vibration of a certain value or more. Therefore, according to the present invention, it is possible to maintain the vertical loading capacity even if it yields due to the horizontal force at the time of the earthquake and exhibits the energy absorption capacity.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is an explanatory side view of the first embodiment, and FIG. 2 is a longitudinal sectional view of FIG. In each figure, the example which has arrange | positioned the damping device 12 which concerns on Embodiment 1 in the wall surface space enclosed by the adjacent pillar 11 and the beams 2a and 2b of an up-and-down floor is shown. The column 11 is constructed of H-section steel or CFT structure in which a steel pipe is filled with concrete, H-section steel is used for the beams 2a and 2b, and a concrete slab is placed thereon.
[0024]
The vibration damping device 12 has energy by shearing deformation and / or bending deformation between the upper slide wall body 14a made of precast concrete (PCa) and the lower slide wall body 14b, which are divided up and down via the slide dividing section 13. It is constituted by being coupled by a steel damping member 15 that absorbs the above. Specific examples of the vibration damping member 15 include a vibration damping member made of low yield point steel, or a portion excluding the fixing portion and / or the reinforcing portion with the upper and lower slide wall bodies 14a and 14b, made of low yield point steel. There are vibration members.
[0025]
In the first embodiment, the upper and lower slide wall bodies 14a and 14b are not used in the same meaning as the original wall body. That is, the functions inherent to the wall include various functions such as a building interior / exterior shielding function, an interior / exterior function, and a vertical load support function. In the first embodiment, the upper and lower slide wall bodies 14a, 14b Among the various functions of the RC wall, it is used in the sense that it has substantially the same thickness, shape, vertical load support function, partial inside / outside shielding function, and the like as the original wall.
[0026]
More specifically, the thickness of the upper and lower slide wall bodies 14a, 14b made of PCa (t 1 2) is slightly thinner than the width dimension (t) of the upper and lower beams 2a, 2b, as shown in FIG. 2, and the upper edge of the upper slide wall 14a and the lower edge of the lower slide wall 14b Are respectively coupled to the lower surface of the steel upper beam 2a and the upper surface of the lower beam 2b by anchor bolts or other coupling means (not shown). Further, the horizontal slide dividing section 13 has a low friction sliding bearing surface. In order to construct the low friction sliding bearing as expected, the tetrafluoroethylene ( A low friction member 16 such as a trade name, Teflon (registered trademark), or a stainless steel plate may be joined. Furthermore, a slight space 17 is formed between both side edges of the upper and lower slide wall bodies 14a and 14b with the pillar 11, and this is the most different point from the original wall body. The reason why the space 17 is formed is that the upper and lower slide walls 14a and 14b are slid non-integrally with the pillar 11 in the horizontal direction during an earthquake (details will be described later). The shape and the like may be set as appropriate.
[0027]
Further, in the first embodiment, the vibration damping member 15 made of low yield point steel or the like disposed across the horizontal slide section 13 of the upper and lower slide walls 14a and 14b is provided above and below the horizontal slide section 13 in the first embodiment. It is composed of a damping plate made of low-yield-point steel that is disposed across both sides of the upper and lower wall bodies. A plurality of connecting bolts 18 penetrating the upper and lower slide wall bodies 14a, 14b in the thickness direction are provided along the horizontal slide dividing section 13 at predetermined intervals, and both ends of each connecting bolt 18 are controlled on both sides. The damping member 15 is integrally fixed to the upper and lower slide wall bodies 14a and 14b by being inserted into the bolt insertion hole 19 of the vibration member 15 and fastening the nut 20 from the outside.
[0028]
The construction method of the vibration damping device 12 of the first embodiment will be described. After the steel frame is assembled by assembling the columns 11 and the beams 2a and 2b, the vibration damping device 12 is assembled to a rectangular wall surface surrounded by these. The vibration damping device 12 is united into a wall plate by fastening the upper and lower slide wall bodies 14a and 14b and the vibration damping member 15 with connecting bolts 18 and nuts 20 at a factory in advance and transported to the site. . And the damping device 12 is lifted with a crane, arrange | positioned on the wall surface of each floor, and adheres to the beams 2a and 2b of an upper and lower floor. Note that a finish plate 21 made of an appropriate material may be attached to both side surfaces of the vibration damping device 12 as shown in FIG.
[0029]
Explaining the operation of the first embodiment, in the vibration damping device 12, the load in the vertical direction of the building acting on the upper and lower beams 2a and 2b (the long-term axial force indicated by the arrow A in FIG. 1) is a rigid body. The upper and lower slide wall bodies 14a and 14b can be supported by the upper and lower slide wall bodies 14a and 14b, and when a horizontal force is applied to the building during an earthquake, the upper and lower slide wall bodies 14a and 14b are displaced in the shear direction via the horizontal slide dividing section 13. Therefore, the flexibility of the building is not hindered, and the vibration can be controlled. Furthermore, with respect to the horizontal vibration of the building, coupled with the fact that the upper and lower slide wall bodies 14a and 14b can move in the shear direction, the pole that yields earlier than the pillar 11 that is a rigid body. The vibration acting on the building by the damping member 15 made of mild steel first yielding can be effectively damped before the building is damaged.
[0030]
Next, FIGS. 3 and 4 show the second embodiment. In the second embodiment, the configuration of the damping member 15 is slightly different from the damping plate extending in the horizontal direction of the first embodiment. In the second embodiment, a plurality of so-called link-shaped vibration-damping small plate pieces 15a, 15a,... That are long in the vertical direction are arranged at predetermined intervals in the longitudinal direction. It is configured to be fixed to the slide wall bodies 14a and 14b. Since other configurations are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0031]
In the second embodiment, as in the first embodiment, the vertical load of the building applied to the upper and lower beams 2a and 2b can be supported by the upper and lower slide wall bodies 14a and 14b, which are rigid bodies. On the other hand, the vibrations acting on the building by the vibration-damping small plate pieces 15a, 15b, ..., which are extremely mild steel arranged at a predetermined interval in the longitudinal direction, yielded earlier than the pillar 11 which is a rigid body, It can be effectively attenuated before the building is destroyed.
[0032]
5A, 5B, and 5C show the third embodiment. In the third embodiment, the existing slide wall body 22 constructed on the wall surface surrounded by the pillar 11 of the existing building and the upper and lower beams 2a and 2b shown in FIG. 5A is replaced, and FIG. An example in which the vibration damping device 12 shown in FIG. In this case, after removing the slide wall body 22 attached to the wall surface 10 of the existing building, the vibration damping device 12 manufactured integrally at the factory is incorporated as shown in FIG. In the third embodiment, the embodiment is that the middle side of both side edges of the upper and lower slide wall bodies 14a, 14b is inclined so that the shape of the space 17 formed between the column 10 and the pillar 10 is a horizontal mountain shape. Although slightly different from 1, the other configurations and operations are the same as those of the first embodiment, and therefore, the same elements are denoted by the same reference numerals and redundant description is omitted.
[0033]
6A, 6B, 7A, and 7B show the fourth embodiment. In the fourth embodiment, the configuration of the damping member 15 and the manner in which it is attached to the upper and lower slide wall bodies 14a, 14b are slightly different from the damping member 15 of the first to third embodiments. In the fourth embodiment, the upper and lower slide wall bodies 14a and 14b are formed with the recesses 23 so that the openings are positioned on the horizontal slide section 13 and face each other in the vertical direction. In the enclosed opening, a vibration damping member 15b made of low yield point steel is disposed extending across the horizontal slide dividing section 13 and extending up and down. Although the cross-sectional shape of the vibration damping member 15b is arbitrary, a vertical plate 15d is provided on both sides of the upper and lower side plates 15c, a horizontal rib 15e is provided on the upper and lower sides and the middle, and a support plate 15f is provided on the upper and lower ends. It is configured to be fixed. The upper and lower support plates 15f of the vibration damping member 15b and the bottoms of the upper and lower recesses 10 are fixed with anchor bolts 24. Also in the fourth embodiment, a slight gap is formed between both side edges of the vibration damping member 15 b and both side surfaces of the recess 23. Other configurations are the same as those of the first to third embodiments.
[0034]
In the fourth embodiment, as in the first to third embodiments, the vertical load of the building applied to the upper and lower beams 2a and 2b can be supported by the upper and lower slide wall bodies 14a and 14b which are rigid bodies. Moreover, with respect to the vibration in the horizontal direction of the building, the upper and lower slide wall bodies 14a and 14b slide in the horizontal and opposite directions, and at this time, a shearing force acts on the damping member 15b made of low yield point steel. The horizontal force applied to the building by an earthquake can be controlled. Furthermore, when the horizontal force becomes equal to or greater than the set value, the vibration damping member 15b is sheared before the column 11 which is a rigid body, thereby preventing the column 11 from being damaged.
[0035]
FIG. 8 shows a fifth embodiment. In the fifth embodiment, the cross-sectional structure of the damping member 15g is different from that of the fourth embodiment. In the vibration damping member 15g of the fifth embodiment of FIG. 8, two face plates 15h are arranged in parallel with a space therebetween, and a plurality of vertical ribs 15j and horizontal ribs 15k are provided on the outer surface of each face plate 15h. It is shown. Since other configurations and operations are the same as those of the fourth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0036]
FIG. 9 shows a sixth embodiment. In the sixth embodiment, the cross-sectional structure of the damping member 15m is different from the fourth and fifth embodiments. That is, in the sixth embodiment, the damping member 15m is composed of a rectangular tube made of ultra-soft steel having a rectangular cross section, and the upper and lower ends thereof are connected to the bottom of the upper and lower recesses 23 via the anchor bolt 24 via the plate 15n. It is fixed. Since other configurations and operations are the same as those of the fourth and fifth embodiments, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, although the cross-sectional shape of the tube body made of ultra mild steel has shown the example of a rectangle, you may have a circular cross section other than this.
[0037]
10 and 11 show the seventh embodiment. In the seventh embodiment, the coupling structure of the damping member 15b to the upper and lower divided wall bodies 14c and 14d (see FIG. 12) is different from the previous embodiment. In the seventh embodiment, the base end portion of the damping member 15b is a so-called embedded type, and the boundary steel plate 24 is integrally fixed to the upper and lower ends of the damping member 15b. On the back side of the boundary steel plate 24, an embedding fixing plate 26 having a H-shaped cross section is reinforced by a triangular rib 25, and a concrete wrapping hole 30 is formed in the flange. A plurality of studs 27 are fixed.
[0038]
The triangular rib 25, the embedded fixing plate 26, and the plurality of studs 27 located on the back side of the boundary steel plate 24 are embedded in the upper and lower divided wall bodies 14c and 14d. The divided wall bodies 14c and 14d are integrated, and the movement of the upper and lower divided wall bodies 14c and 14d can be transmitted to the damping member 15b during an earthquake or the like. Further, at that time, when the turning force acts on the boundary portion between the divided wall bodies 14c and 14d and the vibration damping member 15b, it is possible to prevent the wall concrete from being destroyed by the boundary steel plate 24. The dividing wall bodies 14c and 14d are provided with projecting members 28 such as scissors for coupling to the upper and lower slide wall bodies 14a and 14b shown in FIG.
[0039]
FIG. 12 shows an eighth embodiment. In the eighth embodiment, the damping device 12 provided on the right side from the center of the drawing is referred to as a separation type, and the damping device 12 provided on the left side is referred to as an integral type.
[0040]
In the separation type on the right side from the center in FIG. 12, the upper and lower slide wall bodies 14 a and 14 b separated by the slide dividing section 13 are separated from each other on the left and right sides of the vibration damping device 12. In the vibration damping device 12, the upper and lower portions of the vibration damping member 15b are coupled to the upper and lower divided wall bodies 14c and 14d by the same embedding means as in FIG. In order to manufacture the separable vibration damping device, the vibration damping member 15b and the upper and lower divided wall bodies 14c and 14d are manufactured integrally, and then disposed between the separately manufactured left and right upper and lower slide wall bodies 14a and 14b. . And by projecting projecting members 28 (illustrated in FIG. 11) such as scissors in advance from one or both of the divided wall bodies 14c, 14d and the upper and lower slide wall bodies 14a, 14b, The two wall bodies are integrated by filling a filler such as mortar, concrete, grout, etc. so that the above-mentioned reinforcing bars and the like are embedded in the joint portion (b) in FIG.
[0041]
The separated type damping device of the eighth embodiment (right side of the central portion in FIG. 12) has the same action as the integrated type damping device (shown on the left side of the central portion of FIG. 12 and shown in the first to seventh embodiments). In addition to this, as an expected action, it is possible to surely touch the slide-sliding sliding surfaces on the left and right upper and lower slide wall bodies 14a and 14b separated from each other. In the eighth embodiment, the other configurations are the same as those of the previous embodiment, so the same elements are denoted by the same reference numerals and description thereof is omitted.
[0042]
The inventor conducted a shear test on the vibration damping device of Embodiment 4 shown in FIG. 6 in order to obtain basic data on energy absorption performance. The damping member (extreme mild steel panel) 15b has a yield point of 160 N / mm. 2 Class low yield point steel was used. Table 1 shows the mill sheet values of the materials used. The low-friction member (low-friction sliding bearing) 16 is a composite plating film in which fine particles of fluororesin are uniformly dispersed and co-deposited.
[0043]
A total of three test apparatuses (No. 1, No. 2, and No. 3) are used. 1 is a test body for providing a low friction sliding bearing and confirming a friction coefficient. No. No. 2 is a test body provided with only an ultra mild steel panel and for the purpose of grasping the properties of the ultra mild steel panel and the properties of joining between the ultra mild steel panel and the RC portion. Detailed test specimens are shown in FIGS. 6 (A) and 6 (B). In order to fully exhibit the performance of the ultra mild steel panel, the joining method of the ultra mild steel panel and the upper and lower slide wall bodies (RC parts) 14a and 14b is embedded in H steel + stat that can sufficiently secure the fixing degree of the vibration damping member 15b. The H steel embedded length was 1.0D. Further, a bearing plate 15f is provided in order to prevent a rigid subsidence due to bearing fracture of the ultra mild steel panel and the RC portion.
[0044]
[Table 1]
Figure 0003725831
[0045]
[Table 2]
Figure 0003725831
[0046]
No. 1, no. In No. 3, after a constant axial force was applied, a shearing force was applied directly to the center of the test body through the steel for applying force. In No. 2, no. A shearing force was applied while maintaining the same axial deformation as the result of 3. Each test specimen was subjected to displacement control twice so that the horizontal displacement was 1 mm, 3 mm, 6 mm, and 10 mm.
[0047]
No. 1 (excludes the graph of 70 tons of axial force) shows a stable numerical value with a friction coefficient of about 0.1 to 0.13 with respect to the assumed axial force fluctuation and repeated shear deformation, and a repeated history loop A typical rectangular friction / slip behavior is observed. No. No. 2 shows yield behavior from the time of small deformation, no decrease in yield strength due to buckling, etc., shows typical behavioral behavior of bilinear type, and shows that energy absorption during earthquakes is ensured. Yes. No. 1 and No. No. 2 which is a composite system of No. 2. 3 (described while showing a graph with an amplitude of about 25 mm) is roughly No. 1 and No. Overlapping with 2 was established, yielding started with extremely small shear deformation, accompanied by smooth sliding (no jerky behavior), no decrease in yield strength due to buckling, etc., and stable until large deformation Hysteretic behavior and accompanying energy absorption behavior are observed.
[0048]
That is, the main object of the present invention is “the horizontal force acting on the building that can support a vertical load with a wall, can move when a horizontal force acts, exerts an effect on an earthquake of a certain level or more,” It has been confirmed that it can be effectively reduced.
[0049]
The present invention is not limited to the illustrated embodiment, and the structure of the damping member 15b and the coupling structure of the damping member 15b and the upper and lower slide wall bodies 14a and 14b may be changed as appropriate. For example, the shape of the recessed part 23 in Embodiment 4 of FIG. 6 may not be vertically symmetrical, and may be one-sided flat + one-sided recessed part. Furthermore, the recessed part 23 does not necessarily need to be an opening part, and it is sufficient that there is a slight gap on both sides of only the part into which the damping member 15b is fitted.
[0050]
【The invention's effect】
According to the present invention, by combining a vibration damping member made of low yield point steel and a slide wall such as RC structure which is a rigid body divided vertically, the vertical load of the building applied to the upper and lower beams is normal. Can be supported by a slide wall such as the RC structure, the load applied to the column can be reduced, the strength required for the column can be reduced, and when a horizontal force acts on the building during an earthquake, Low friction sliding bearing surface The upper and lower slide walls move sideways through the horizontal slide section, so that the flexibility of the building is not hindered, and at this time, shear is applied to the damping member made of low yield point steel that joins the upper and lower slide walls. By applying force, the horizontal force acting on the building can be effectively damped during an earthquake, and for vibrations above a certain value, the vibration damping member plastically deforms to absorb the earthquake energy. The damage can be prevented, and the structure is further simple. After the occurrence of the earthquake, the vibration damping member can be easily replaced.
[0051]
Further, the vibration damping member integrates the upper and lower wall bodies in the vertical direction and absorbs energy by plasticization. In addition, the slide wall body preferably has low friction in order to maintain flexibility, but it can also be made to act as a friction damper within a range where flexibility is not impaired.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a vibration damping device according to Embodiment 1 of the present invention.
FIG. 2 is a longitudinal sectional view of a central portion of FIG.
FIG. 3 is a side sectional view of a vibration damping device according to Embodiment 2 of the present invention.
4 is a longitudinal sectional view of FIG. 3. FIG.
5A is a side sectional view of an existing wall of a building, and FIG. 5B is a side sectional view in which the existing wall of the building is replaced and the vibration damping device according to Embodiment 3 of the present invention is attached. , (C) is a longitudinal sectional view of the central part of (B).
6A is a side sectional view of a vibration damping device according to Embodiment 4 of the present invention, and FIG. 6B is a horizontal force acting on the vibration damping device during an earthquake in FIG. It is a sectional side view.
7A is a cross-sectional plan view of FIG. 6A, and FIG. 7B is a perspective view of a vibration damping member.
FIG. 8 is a cross-sectional plan view of a vibration damping device according to Embodiment 5 of the present invention.
FIG. 9 is a cross-sectional plan view of a vibration damping device according to Embodiment 6 of the present invention.
FIGS. 10A and 10B are a front view and a side view of the entire vibration damping device according to Embodiment 7 of the present invention. FIGS.
11A and 11B are a side view and a front view of the main body of the vibration damping device shown in FIG.
FIG. 12 is an overall front view of a vibration damping device according to an eighth embodiment of the present invention.
13A is a side view of a building incorporating a vibration damping device according to a first conventional example, and FIG. 13B is a cross-sectional plan view taken along line AA in FIG.
14A and 14B are overall side views of a building incorporating a vibration damping device according to a second conventional example and a third conventional example.
[Explanation of symbols]
1 Vibration control device
2a Upper beam
2b Lower beam
3 Damping members
4 joint walls
5 Anchor bolt
6 6a Face plate
6b Vertical rib
6c Horizontal rib
7 Building
8 Damping member
10 Damping member
11 pillars
12 Vibration control device
13 slide cross section
14a Upper slide wall
14b Lower slide wall
14c Upper divided wall
14d Lower split wall
15 Damping member
15a Damping small plate
16 Low friction material
17 space
18 Connecting bolt
19 Bolt insertion hole
20 nuts
21 Finishing board
22 Wall
23 recess
24 Boundary steel plate
25 triangle ribs
26 Embedded fixing plate
27 Stud
28 Protruding member
30 holes

Claims (5)

上下階の梁と柱とで囲まれる面内に水平スライド分断面を介して分断された上下のスライド壁体をそれぞれ上下階の梁に固着すると共に、上下のスライド壁体を柱に対しては非固着にて設け、かつ前記水平スライド分断面の上下に跨って配置されるせん断変形もしくは/および曲げ変形によりエネルギーを吸収する鋼製の制振部材で上下の壁体が結合され、前記水平スライド分断面は低摩擦すべり支承面であり、上下階の梁に加わる建物の鉛直荷重を上下のスライド壁体で支持させて伝達するようにして、柱に掛る荷重を低減するようにしたことを特徴とする建物における制振装置。The upper and lower slide walls separated by the horizontal slide section are fixed to the upper and lower floor beams in the plane surrounded by the upper and lower floor beams and columns, and the upper and lower slide wall bodies are attached to the columns. provided in a non-sticking, and the horizontal slide partial cross-section of the shearing deformation or are disposed across the upper and lower / and bending the upper and lower walls with steel of the damping member that absorbs energy by deformation is coupled, said horizontal slide The sectional surface is a low friction sliding bearing surface, and the vertical load of the building applied to the beams on the upper and lower floors is supported and transmitted by the upper and lower slide walls to reduce the load on the column. Vibration control device in the building. 前記スライド壁体はプレキャストコンクリート製であると共に、前記水平スライド分断面は低摩擦すべり支承面であり、前記制振部材は、前記水平スライド分断面の上下に跨って、かつ上下のスライド壁体の側面に配置された制振プレートで構成され、当該制振プレートは任意の固着手段により当該スライド壁体に固着されていることを特徴とする請求項1記載の建物における制振装置。  The slide wall body is made of precast concrete, the horizontal slide section is a low-friction sliding bearing surface, and the vibration control member extends over and below the horizontal slide section, and includes upper and lower slide wall bodies. 2. The vibration damping device for a building according to claim 1, comprising a vibration damping plate arranged on a side surface, and the vibration damping plate is fixed to the slide wall body by an arbitrary fixing means. 前記制振プレートは、水平スライド分断面に沿って水平方向に伸びる制振プレートで構成され、または、上下方向に長い複数の制振小プレート片を水平スライド分断面の長手方向に所定間隔をあけて配設して構成されていることを特徴とする請求項2記載の建物における制振装置。  The vibration damping plate is composed of a vibration damping plate extending in the horizontal direction along the horizontal slide section, or a plurality of damping small plate pieces that are long in the vertical direction are spaced apart in the longitudinal direction of the horizontal slide section. The vibration damping device for a building according to claim 2, wherein the vibration damping device is arranged and arranged. 前記スライド壁体はプレキャストコンクリート製であると共に、前記水平スライド分断面は低摩擦すべり支承面であり、前記制振部材は任意の断面に構成され、この制振部材を、開口部が水平スライド分断面に位置するようにして上下のスライド壁体に形成された凹部に配設したことを特徴とする請求項2記載の建物における制振装置。  The slide wall body is made of precast concrete, the horizontal slide section is a low-friction sliding bearing surface, and the damping member is configured to have an arbitrary cross section. 3. The vibration damping device for a building according to claim 2, wherein the vibration damping device is disposed in a recess formed in the upper and lower slide wall bodies so as to be positioned in a cross section. 前記制振部材は、低降伏点鋼または、上下のスライド壁体との固着部および/または補強部を除く部分が低降伏点鋼からなることを特徴とする請求項1〜4の何れか1項記載の建物における制振装置。  5. The vibration damping member according to claim 1, wherein a portion other than a low yield point steel or a fixing portion and / or a reinforcing portion with the upper and lower slide wall bodies is made of a low yield point steel. Damping device in the building described in the section.
JP2002087926A 2002-03-27 2002-03-27 Vibration control device in building Expired - Lifetime JP3725831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087926A JP3725831B2 (en) 2002-03-27 2002-03-27 Vibration control device in building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087926A JP3725831B2 (en) 2002-03-27 2002-03-27 Vibration control device in building

Publications (2)

Publication Number Publication Date
JP2003278405A JP2003278405A (en) 2003-10-02
JP3725831B2 true JP3725831B2 (en) 2005-12-14

Family

ID=29233953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087926A Expired - Lifetime JP3725831B2 (en) 2002-03-27 2002-03-27 Vibration control device in building

Country Status (1)

Country Link
JP (1) JP3725831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718676B2 (en) * 2015-12-24 2020-07-08 大成建設株式会社 Seismic control stud structure
CN108915081B (en) * 2018-08-10 2023-09-12 北京建筑大学 Wooden energy dissipation and shock absorption device and wooden structure system with same
KR102033054B1 (en) * 2019-03-13 2019-10-16 김인종 Installation method for vibration control column consists of joint reinforcing system and wall type friction damper
CN113338478B (en) * 2021-06-23 2022-11-01 重庆大学 A assembled building wallboard for build fast
CN115853163A (en) * 2022-12-07 2023-03-28 石河子大学 Dry-type connection assembly type shear wall structure based on horizontal seam friction-energy consumption

Also Published As

Publication number Publication date
JP2003278405A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
KR100798457B1 (en) Vibration control structure
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP3725831B2 (en) Vibration control device in building
JP4070117B2 (en) Vibration control device
JP2009047193A (en) Damper device and structure
KR102122028B1 (en) Column type vibration isolation apparatus
JP5147007B2 (en) Damper device and structure
JP4812463B2 (en) Base-isolated floor structure
JP3931944B2 (en) Damping damper and its installation structure
JPH11159010A (en) Brace
JP4040408B2 (en) Damping device built-in wall unit and building wall construction method
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
KR101921864B1 (en) Seismic resistant reinforcement assembly for building
JP6033574B2 (en) Seismic reinforcement structure with compression braces
JP6905927B2 (en) How to build a seismic isolated building and a seismic isolated structure
JP3392027B2 (en) Braces
JP6240420B2 (en) Seismic reinforcement structure
JP2005188035A (en) Vibration control structure for building structure
JP3020089B2 (en) Damping structure beam
JP6439978B2 (en) Joining member
JP2001140497A (en) Earthquake-resistant house
KR102300605B1 (en) Seismic resistance structure for preventing falldown of masonry partition walls
JP4030576B1 (en) Wooden shear wall
JP6834206B2 (en) Building reinforcement structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3725831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term