JPH01186902A - Four-beam splitter prism - Google Patents

Four-beam splitter prism

Info

Publication number
JPH01186902A
JPH01186902A JP1114688A JP1114688A JPH01186902A JP H01186902 A JPH01186902 A JP H01186902A JP 1114688 A JP1114688 A JP 1114688A JP 1114688 A JP1114688 A JP 1114688A JP H01186902 A JPH01186902 A JP H01186902A
Authority
JP
Japan
Prior art keywords
light
rays
phase difference
polarized light
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1114688A
Other languages
Japanese (ja)
Other versions
JP2665917B2 (en
Inventor
Nobuhisa Asanuma
浅沼 信久
Yoshihiro Tokuchi
得地 淑博
Yasutaka Igarashi
五十嵐 康恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP63011146A priority Critical patent/JP2665917B2/en
Publication of JPH01186902A publication Critical patent/JPH01186902A/en
Application granted granted Critical
Publication of JP2665917B2 publication Critical patent/JP2665917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE:To simplify and miniaturize the constitution of an optical device by providing a multi-image prism so that it allows only the light, where ordinary and extraordinary rays are synthesized, emitted from a Wollaston prism to pass through and emits polarized light components having oscillation directions which are shifted from oscillation directions of respective rays by pi/8 and are orthogonal to each other. CONSTITUTION:Incident rays as the linear polarized light is separated to extraordinary rays E in the direction of the optical axis of a first crystal body 1 and ordinary rays O orthogonal to rays E when being emitted from the first crystal body 1, and these rays E and O are separated to three components of rays 6-8 when being emitted from a second crystal body 2. Only rays 8 where ordinary rays and extraordinary rays are synthesized out of rays obtained by a Wollaston prism 3 are made incident on a multi-image prism 5 in the succeeding stage to emit ordinary rays 9 and extraordinary rays 10 which are orthogonal to each other and are inclined at 45 deg. to the Y axis, and therefore, four kinds of linearly polarized light whose oscillation directions are shifted from polarization directions by pi/8 are obtained. Since a mobile part to obtain linearly polarity light different in angles is not required, the device is inexpensively constituted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明弁複像プリズム、殊に該プリズムへの光の入射に
よシ互いにπ/8づつ振動方向の異なりた4直線偏光を
出射する4ビームスプリッタプリズムに関する。
Detailed Description of the Invention (Industrial Application Field) The valve double-image prism of the present invention, in particular, the double-image prism of the present invention, which emits four linearly polarized lights whose vibration directions differ by π/8 from each other when light is incident on the prism. Regarding beam splitter prisms.

(従来技術) 従来、偏光を利用する光学装置9例えば偏光干渉計、光
波長計1位相差計等では偏光成分を抽出する為に複屈折
板又はウオーラストンプリズム等の複像プリズムが用い
られ、又、上記各測定装置のうち光波長計及び位相差計
では少なくとも2以上の振動方向の異なった直線偏光を
検出し測定するものが多く、更に測定精度を向上せしめ
る為には検出する振動方向の異なった直線偏光の数を増
加するものであって、その手段は複屈折板をステップモ
ーター等により回転させる方法が一般的であった。
(Prior Art) Conventionally, in an optical device 9 that uses polarized light, such as a polarization interferometer, an optical wavelength meter 1, and a phase difference meter, a birefringent plate or a double-image prism such as a Wallaston prism is used to extract polarized light components. Furthermore, among the above measurement devices, most of the optical wavelength meters and phase difference meters detect and measure linearly polarized light with at least two or more different vibration directions. The number of different linearly polarized lights is increased, and the common method for this purpose is to rotate a birefringent plate using a step motor or the like.

しかしながら、上記ステップモーターは高価でありて装
置として高コストになるばかシでなく装置全体が大型と
なってしまい又、該ステップモーターを必要としない手
段を用いたにしても複屈折板を所看の角度回転させなく
てはならずその為の機器が必要となる欠点があった。
However, the step motor is expensive, and not only does it increase the cost of the device, but it also makes the entire device large, and even if a method that does not require the step motor is used, a birefringent plate is not required. It had the disadvantage that it had to be rotated by an angle of 100 degrees, which required equipment for that purpose.

(発明の目的) 本発明は上述した如き測定機器の大型化、複雑化及びそ
れに伴なう高コストに鑑みてなされたものであって1つ
の光学部品で光源よりの光をお互いにπ/8づつ振動方
向の異った4直線偏5[K変換する4ビームスプリッタ
プリズムを提供することにより上記光学装置の構成を簡
単且つ小型化することを目的とする。
(Object of the Invention) The present invention was made in view of the increase in size and complexity of measuring instruments as described above, and the accompanying high costs. It is an object of the present invention to simplify and downsize the configuration of the optical device by providing four beam splitter prisms that perform four linear polarization 5[K conversions, each with a different vibration direction.

(発明の概要) 上述した目的を達成する為9本発明に係る4ビームスプ
リッタプリズムは一の結晶体の主断面と他の少なくとも
一の結晶体の主断面とが非直角である所定の角度を有す
るウオーラストンプリズムの後方入射光軸上であって、
前記ウォーラストンプリズムより出射する常光線及び異
常光線とが合成された光線のみ透過し、且つ該ウォーラ
ストンプリズムより出射する常光線或は異常光線の振動
方向とは夫々π/8づつ推移し互いに直交した振動方向
を有する偏光成分を出射しうるよう忙複像プリズムを接
合或は配置した4ビームスプリッタプリズムを用いて位
相差測定或は光波長測定を行なうものである。
(Summary of the Invention) In order to achieve the above-mentioned object, the four-beam splitter prism according to the present invention has a predetermined angle in which the main cross section of one crystal body and the main cross section of at least one other crystal body are non-perpendicular. on the rear incident optical axis of a Wallaston prism having
Only the combined light ray of the ordinary ray and extraordinary ray emitted from the Wollaston prism passes through, and the vibration directions of the ordinary ray and the extraordinary ray emitted from the Wollaston prism each move by π/8 and are orthogonal to each other. Phase difference measurement or optical wavelength measurement is performed using a four-beam splitter prism in which a double-image prism is joined or arranged so as to emit a polarized light component having a vibration direction.

(実施例) 以下1図面に示した実施例忙基づいて本発明の詳細な説
明する。
(Example) The present invention will be described in detail below based on an example shown in one drawing.

第1図は本発明に係る4ビームスプリッタプリズムを示
す斜視図である。
FIG. 1 is a perspective view showing a four-beam splitter prism according to the present invention.

同図に於て1及び2ti、3ビ一ムスブリツト機能を有
するウオーラストンプリズム3を構成する2個の結晶体
であって両者の光学軸の相対的関係は直線偏光の入射光
4の光線軸と一方の結晶体プリズム1の光学軸とな含む
面が前記光線軸と他の結晶体プリズム2の光学軸とを含
む面に対して非直角とし更に該ウオーラストンプリズム
の後段に複像プリズム5を接合或は配置したものである
In the same figure, there are two crystals constituting a Wollaston prism 3 having a 1, 2ti, and 3 beam blitz function, and the relative relationship of their optical axes is the ray axis of linearly polarized incident light 4. The plane containing the optical axis of one crystal prism 1 is non-perpendicular to the plane containing the optical axis and the optical axis of the other crystal prism 2, and a double-image prism is arranged after the Wallaston prism 2. 5 are joined or arranged.

前記ウオーラストンプリズムと′jIi像プリズムとの
相対的関係は第2図に示す如く、前記ウオーラストンプ
リズム3に入射した直線偏光4は常光線6.異常光線7
及び常光線と異常光線とが合成された光線8とに分離す
るが該光線8のみが次段の複像プリズム九入射し他の光
線6及び7は該複像プリズムに入射しないよう設定する
The relative relationship between the Wollaston prism and the 'jIi image prism is shown in FIG. 2, where the linearly polarized light 4 incident on the Wollaston prism 3 becomes an ordinary ray 6. extraordinary ray 7
The ordinary ray and the extraordinary ray are separated into a combined light ray 8, but only this ray 8 is set to enter the next stage double-image prism 9, and the other light rays 6 and 7 are set not to enter the double-image prism.

更に前記複像プリズムは第1図及び第3図からも明らか
な如(X、Y、Z軸直交座標系に於て2軸を中心にY方
向VC45°傾斜させる。
Further, as is clear from FIGS. 1 and 3, the double-image prism is tilted at VC45° in the Y direction about two axes in the X, Y, and Z axes orthogonal coordinate system.

斯くして構成した4ビームスプリッタプリズムの理論を
以下詳細に説明する。
The theory of the four-beam splitter prism constructed in this way will be explained in detail below.

第4図(atは前記ウオーラストンプリズム3の第1の
結晶体1を出射する際の光線の分離状態を、又同図(b
)は第2の結晶体2を出射する際のそれを説明する図で
ある。
FIG. 4 (at shows the separation state of the light beam when exiting the first crystal body 1 of the Wallaston prism 3, and FIG. 4 (b)
) is a diagram illustrating the emission of light from the second crystal body 2.

即ち、直線偏光たる入射光線は前記第1の結晶体IY出
射する際その光学軸方向の異常光線E及びこれを直交す
る常光線0に分離し、これが第2の結晶体2を出射する
際同図(c)に示す如く3成分の光線に分離するもので
ある。
That is, when an incident ray of linearly polarized light exits the first crystal body IY, it is separated into an extraordinary ray E in the direction of its optical axis and an ordinary ray 0 perpendicular to this, and when it exits the second crystal body 2, the same As shown in Figure (c), the beam is separated into three components.

更に該ウオーラストンプリズムで得た光線のうち常光線
及び異常光線が合成した光線8のみを後段の複像プリズ
ムに入射させると、第5図に示す如く互いに直交し且つ
X軸方向に対して45°傾斜した常光線9及び異常光線
10が出射するので前記第2図右方(イ)より見た偏光
方向は第6図に示す如く互いにx /f3づつ振動方向
が推移した4直線偏光を得ることができる。
Furthermore, when only the light ray 8, which is a combination of the ordinary ray and the extraordinary ray obtained by the Wallaston prism, is incident on the subsequent double-image prism, the light rays are perpendicular to each other and relative to the X-axis direction, as shown in Since the ordinary ray 9 and the extraordinary ray 10 tilted by 45 degrees are emitted, the polarization direction as seen from the right side (A) of FIG. Obtainable.

次に上述した如き4ビームスプリッタプリズムを用いた
光学装置について説明する。
Next, an optical device using the above-mentioned four-beam splitter prism will be explained.

先づ2本発明の光学装置を説明する前に本発明の理w4
を助ける為に従来用いられていた位相差測定装置を第7
図を用いて少しく説明する。
First, before explaining the optical device of the present invention, the principle of the present invention w4
The 7th phase difference measurement device, which was conventionally used to help
This will be explained briefly using figures.

同図に於て1は光源、2は偏光子であって前記光源11
よシ発した光が前記偏光子を通過し直線偏光となり、該
直線偏光の振動ベクトルの方向がx、y、z軸直交座標
系のX軸方向且つ前記直線偏光の進行方向がZ軸方向と
なるように前記光源11及び偏光子12を配置する。該
偏光子の出射面側に位相板13 ”kZ軸に対して直交
するように配置し、該位相板13に入射する直線偏光は
円或は楕円偏光となって出射し1次段の試料14に入射
する。該試料に入射する円或は楕円偏光は試料を透過及
び反射するがこれらのうち透過する楕円偏光を検光子1
5を通過させ光検出器16に入射し光強度を測定するも
のである。
In the figure, 1 is a light source, 2 is a polarizer, and the light source 11
The emitted light passes through the polarizer and becomes linearly polarized light, and the direction of the vibration vector of the linearly polarized light is the X-axis direction of the x, y, and z-axis orthogonal coordinate system, and the traveling direction of the linearly polarized light is the Z-axis direction. The light source 11 and polarizer 12 are arranged so that A phase plate 13 is disposed on the exit surface side of the polarizer so as to be orthogonal to the kZ axis, and the linearly polarized light incident on the phase plate 13 is output as circularly or elliptically polarized light, and is emitted to the sample 14 at the primary stage. The circularly or elliptically polarized light incident on the sample is transmitted and reflected by the sample, and the transmitted elliptically polarized light is detected by the analyzer 1.
5 and enters the photodetector 16 to measure the intensity of the light.

上述した如き構成に於いて前記光検出器16に入射する
光強度工と試料14の光学的位相差δとの関係は検光子
15の2軸を基準とした回転角度なθ9位相板13に於
ける光学軸のX軸に対するX軸方向への偏差角fj!:
A、試料のP偏光及びS偏光に対する反射率をr、、r
5とし。
In the above configuration, the relationship between the light intensity incident on the photodetector 16 and the optical phase difference δ of the sample 14 is determined by the rotation angle θ9 of the phase plate 13 with respect to the two axes of the analyzer 15. The deviation angle fj of the optical axis in the X-axis direction with respect to the X-axis! :
A, the reflectance of the sample for P-polarized light and S-polarized light is r, , r
5.

更に試料の反射による位相差をδ2位相板の位相差をΔ
とすると光検出器16に入射する光強度工はジ1−ンズ
ベクトルの解析方法よシI(θ 、A)=rp  (X
LS   θ−(rp cos  θ−rs   5i
ll  θ)Sill   2A・5lIIΔ/2十三
5in2θ(sin 4 As1nΔ/2ωSδ+si
n 2 A e sinΔ−5inδ)   −・−・
・−・・(1)で表される。今9位相板の光学軸の偏差
角Aを45°とすると(1)式は ■(θ)=rpCO3(j−(rp cos  θ−r
s 811!θ)sin tJ2+ ”” sin 2
θ” 51flΔ” 3141δ ・−・−・・(21
となる。
Furthermore, the phase difference due to reflection from the sample is δ2, and the phase difference of the phase plate is Δ
Then, the intensity of the light incident on the photodetector 16 is determined by the analysis method of the jeans vector as I(θ, A)=rp(X
LS θ-(rp cos θ-rs 5i
ll θ)Sill 2A・5lIIΔ/2ju35in2θ(sin 4 As1nΔ/2ωSδ+si
n 2 A e sinΔ−5inδ) −・−・
...It is expressed as (1). Now, assuming that the deviation angle A of the optical axis of the 9 phase plate is 45°, the equation (1) is ■(θ)=rpCO3(j-(rp cos θ-r
s 811! θ) sin tJ2+ ”” sin 2
θ” 51flΔ” 3141δ ・−・−・(21
becomes.

更に検光子5の回転角度θを01=π/2.θ2=π/
4.θ8=0.θ4=−π/4と設定しく2)式に夫々
代入すると、各回転時に於いて得られる光強度It、I
2.Is、I4は 11=I(θx)=rs stnΔ/2  −・・・・
・−(3)I 2 = I (θ2)=1/2rp −
1/2(rp −rs )su 7¥/2+ ”’si
nΔ・sinδ ・・・・・・・・・(4)l5=I(
0g ) = r p cos Δ/ 2 − (5)
I a = I (θ4)=1/2rp −1/2(r
p −rs )sin A/2−二sinΔ* sin
δ ・・・・・・・・・(6)となるので(31、f4
) 、 (51、(61式より試料の位相差δは で表される。
Furthermore, the rotation angle θ of the analyzer 5 is set to 01=π/2. θ2=π/
4. θ8=0. By setting θ4=-π/4 and substituting them into equation 2), the light intensities It and I obtained at each rotation are obtained.
2. Is, I4 is 11=I(θx)=rs stnΔ/2 −・・・・
・−(3)I 2 = I (θ2)=1/2rp −
1/2(rp-rs)su 7¥/2+ ”'si
nΔ・sinδ ・・・・・・・・・(4) l5=I(
0g ) = r p cos Δ/2 − (5)
I a = I (θ4) = 1/2rp -1/2(r
p-rs) sin A/2-2 sinΔ* sin
δ ・・・・・・・・・(6), so (31, f4
), (51, (From equation 61, the phase difference δ of the sample is expressed as.

即ち前記検光子5’kZ軸を基準とした回転角度θをπ
/2.π/4 、 O、−π/4と回転移動すること罠
よって得られる光強度11.It、Is、Inを検出し
く7)式に於ける演算処理を行なうことによシ位相板の
位相差Δを知ることなしに試料の位相差δを求めること
ができるものでおるが前記検光子を回転せしめる為にモ
ーター等が必要となυ装置が大型及び高価な本のとなっ
てしまう欠点のあったこと前述の通シである。
That is, the rotation angle θ with respect to the analyzer 5'kZ axis is π
/2. Light intensity obtained by rotating the trap with π/4, O, -π/4 11. It is possible to calculate the phase difference δ of the sample without knowing the phase difference Δ of the phase plate by performing the arithmetic processing in Equation 7) to detect It, Is, and In. As mentioned above, the υ device, which requires a motor etc. to rotate, has the disadvantage of being large and expensive.

本発明に係る位相差測定装置は上記欠点を除去する為に
第8図に示す如く上述した位相差測定手段に於て回転さ
せる検光子15を前述の4ビームスプリッタプリズム2
0に置換え、該4ビームスプリッタプリズム20より出
射する夫々の光に対応して光検出器16を設置したもの
であシ、それに伴ない前記(1)式の回転角度0はO9
π/8.−π/8.π/2となる。
In order to eliminate the above-mentioned drawbacks, the phase difference measuring device according to the present invention has a rotating analyzer 15 in the above-mentioned phase difference measuring means as shown in FIG.
0, and photodetectors 16 are installed corresponding to the respective lights emitted from the four beam splitter prisms 20. Accordingly, the rotation angle 0 in equation (1) above is O9.
π/8. −π/8. It becomes π/2.

斯く如く構成した位相差測定装置は可動部を必要しない
為簡易で安価な構成で位相差を測定することができる。
The phase difference measuring device configured in this manner does not require any moving parts, and therefore can measure phase differences with a simple and inexpensive configuration.

更に同図忙於ける試料14 fj!:、その発生する位
相差が波長依存性をもつ位相差発生素子に置換え検出し
た光強度に基づいて前記位相差発生素子の位相差を測定
し、該位相差に基づいて光源の波長を測定する光波長測
定装置にも適応することができる。
Furthermore, sample 14 fj! :, replacing the phase difference with a phase difference generating element whose generated phase difference is wavelength dependent, measuring the phase difference of the phase difference generating element based on the detected light intensity, and measuring the wavelength of the light source based on the phase difference. It can also be applied to optical wavelength measuring devices.

伺1本発明に於ける4ビームスプリッタプリズムのうち
後段に設ける複像プリズムはウオーラストン、0−シ1
ン或はセナルモン等のいずれを用いてもよく、又ガラス
プリズムに防電体を蒸着した偏光ビームスプリッタプリ
ズムでも食いことは明らかである。
1. Among the four beam splitter prisms of the present invention, the double-image prism provided at the latter stage is manufactured by Wollaston, 0-Si1.
It is clear that a polarizing beam splitter prism made of a glass prism with a vapor-deposited electrical shield may also be used.

(発明の効果) “本発゛明は上述した如く構成し且つ機能するものでお
るから、一つの光学部品に一直線偏光を入射することに
より4つの直線偏光に変換することができ、又偏光を利
用する光学装置に於ては振動方向の角度の異なる直線偏
光を得るために必要なステップモーター等の可動部を必
要としない為、安価に、構成し得ると共にこれらの調整
を容易にする上で著−しい効果がある。
(Effects of the Invention) “Since the present invention is constructed and functions as described above, it is possible to convert linearly polarized light into four linearly polarized lights by inputting it into one optical component, and also convert polarized light into four linearly polarized lights. The optical device used does not require moving parts such as step motors that are necessary to obtain linearly polarized light with different angles of vibration direction, so it can be constructed at low cost and can be easily adjusted. It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明に係る4ビームスプリッタプ
リズムを示す図、第4図は本発明に係る3ビ一ムスプリ
ツタ機能を有するウオーラストンプリズムを示す図、第
5図は本発明に係る複像プリズムの機能を示す図、第6
図は本発明に係る4ビームスプリッタプリズムの出射光
の偏光方向を示す図、第7図は従来の位相差測定装置を
示す図、第8図は本発明に係る位相差測定装置を示す図
である。 1.2・・・・・・・・・結晶体、   3・・・・・
・・・・ウオーラストンプリズム、   4・・・・・
・・・・直線偏光。 5・・・・・・・・・複像プリズム、   6,9・・
・・・・・・・異光線、    7.10・・・・・・
・・・異常光線。 8・・・・・・・・・常光線及び異常光線が合成された
光線、   11・・・・・・・・・光源、   12
・−・・・・・・・偏光子、   13・・・・・・・
・・位相板。 14・・・・・・・・・試料、   15・・・・・・
・・・検光子。 16・・・・・・・・・光検出器、    20・・・
・・・・・・4ビームスプリッタプリズム。
1 to 3 are diagrams showing a four-beam splitter prism according to the present invention, FIG. 4 is a diagram showing a Wollaston prism having a three-beam splitter function according to the present invention, and FIG. Diagram 6 showing the functions of such a double-image prism
The figure shows the polarization direction of the output light of the four-beam splitter prism according to the present invention, FIG. 7 shows a conventional phase difference measuring device, and FIG. 8 shows a phase difference measuring device according to the present invention. be. 1.2...Crystal, 3...
...Wollaston Prism, 4...
...Linearly polarized light. 5......Double image prism, 6,9...
・・・・・・Different rays, 7.10・・・・・・
...Anomalous rays. 8......Light ray that is a combination of ordinary ray and extraordinary ray, 11...Light source, 12
・-・・・・・・Polarizer, 13・・・・・・・・・
...Phase plate. 14... Sample, 15...
...Analyzer. 16......Photodetector, 20...
...4 beam splitter prism.

Claims (1)

【特許請求の範囲】 一の結晶体の主断面と他の少なくとも一の結晶体の主断
面とが非直角である所定の角度を有するウォーラストン
プリズムの後方入射光軸上であって、前記ウォーラスト
ンプリズムより出射する常光線及び異常光線とが合成さ
れた光線のみ透過し、且つ該ウォーラストンプリズムよ
り出射する常光線或は異常光線の振動方向とは夫々π/
8づつ推移し互いに直交した振動方向を有する偏光成分
を出射しうるように複像プリズムを接合或は配置したこ
とを特徴とする4ビームスプリッタプリズム。 (2)試料に対して偏光を照射した際に生ずるP偏光と
S偏光との ずれ(以下位相差と記す)を求める方法であって、X、
Y、Z軸直交座標系に於けるZ軸方向に進行し且つその
振動ベクトルの方向がX軸方向なる直線偏光を前記Z軸
に対して設置された位相板に入射し、該入射により得ら
れる円或は楕円偏光を試料に照射し、該照射によって得
た前記試料の反射光或は透過光を上記4ビームスプリッ
タプリズムに入射し、該4ビームスプリッタプリズムの
出射光の光強度を測定することにより前記試料の位相差
を求めたことを特徴とする位相差測定装置。 (3)光の波長を測定する方法であって、光源よりの光
を偏光する手段と、該手段により得た偏光をその発生す
る位相差が波長依存性をもつ位相差発生素子に照射し、
該照射によって得た前記発生素子よりの反射光或は透過
光を前記4ビームスプリッタプリズムに入射させ、該4
ビームスプリッタプリズムから出射した光強度に基づい
て前記位相差発生素子の位相差を求め、該位相差より光
源の波長を測定したことを特徴とする光波長測定装置。
[Scope of Claims] The main cross section of one crystal body and the main cross section of at least one other crystal body are on the rear incident optical axis of a Wollaston prism having a predetermined angle such that the main cross section of at least one other crystal body is a non-perpendicular angle, Only the combined light ray of the ordinary ray and extraordinary ray emitted from the Wollaston prism passes through, and the vibration direction of the ordinary ray or extraordinary ray emitted from the Wollaston prism is π/
1. A four-beam splitter prism characterized in that double-image prisms are joined or arranged so as to emit polarized light components whose vibration directions are perpendicular to each other and whose vibration directions are perpendicular to each other. (2) A method for determining the shift (hereinafter referred to as phase difference) between P-polarized light and S-polarized light that occurs when a sample is irradiated with polarized light, the method comprising:
Linearly polarized light that travels in the Z-axis direction in the Y, Z-axis orthogonal coordinate system and whose vibration vector direction is in the X-axis direction is incident on the phase plate installed with respect to the Z-axis, and is obtained by the input. Irradiating a sample with circularly or elliptically polarized light, inputting reflected light or transmitted light from the sample obtained by the irradiation into the four-beam splitter prism, and measuring the light intensity of the light emitted from the four-beam splitter prism. A phase difference measuring device characterized in that the phase difference of the sample is determined by: (3) A method for measuring the wavelength of light, comprising: means for polarizing light from a light source; and irradiating the polarized light obtained by the means onto a phase difference generating element whose generated phase difference is wavelength dependent;
The reflected light or transmitted light from the generating element obtained by the irradiation is made incident on the four beam splitter prism,
An optical wavelength measuring device characterized in that the phase difference of the phase difference generating element is determined based on the light intensity emitted from the beam splitter prism, and the wavelength of the light source is measured from the phase difference.
JP63011146A 1988-01-21 1988-01-21 4-beam splitter prism Expired - Lifetime JP2665917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011146A JP2665917B2 (en) 1988-01-21 1988-01-21 4-beam splitter prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011146A JP2665917B2 (en) 1988-01-21 1988-01-21 4-beam splitter prism

Publications (2)

Publication Number Publication Date
JPH01186902A true JPH01186902A (en) 1989-07-26
JP2665917B2 JP2665917B2 (en) 1997-10-22

Family

ID=11769882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011146A Expired - Lifetime JP2665917B2 (en) 1988-01-21 1988-01-21 4-beam splitter prism

Country Status (1)

Country Link
JP (1) JP2665917B2 (en)

Also Published As

Publication number Publication date
JP2665917B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JPS62172203A (en) Method for measuring relative displacement
US4702603A (en) Optical phase decoder for interferometers
JPH05119284A (en) Polarization device
JPS6183924A (en) Optical rotary power property measuring apparatus
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
JPH0712576A (en) Optical fiber ring interferometer
JPH01186902A (en) Four-beam splitter prism
RU2676835C1 (en) Optical radiation mixer with application of prisms of optical active materials
JPS6344136A (en) Heterodyne michelson interferometer related to polarimetry
JPS58196416A (en) Optical fiber laser gyroscope
JPH02298804A (en) Interferometer
JPH01161124A (en) Light wavelength measuring method
US7130053B2 (en) Device for measuring a non-reciprocal effect, in particular fiber-optic gyro
JPS6221016A (en) Optical fiber gyroscope
JPH11101739A (en) Ellipsometry apparatus
JPH04155260A (en) Rotational speed measuring apparatus
JP2723977B2 (en) Rotation speed measurement method
JPS62229004A (en) Heterodyne type optical fiber displacement meter
JP2514756B2 (en) Prism device
JP3314525B2 (en) Wavefront splitting element
JP2505823Y2 (en) Laser displacement meter
JPH0326321B2 (en)
SU1640530A1 (en) Optical interferometer
JPH05264687A (en) Optical magnetic field sensor
JPS6326326B2 (en)