JP3314525B2 - Wavefront splitting element - Google Patents

Wavefront splitting element

Info

Publication number
JP3314525B2
JP3314525B2 JP09126294A JP9126294A JP3314525B2 JP 3314525 B2 JP3314525 B2 JP 3314525B2 JP 09126294 A JP09126294 A JP 09126294A JP 9126294 A JP9126294 A JP 9126294A JP 3314525 B2 JP3314525 B2 JP 3314525B2
Authority
JP
Japan
Prior art keywords
beam splitter
polarized light
light
polarizer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09126294A
Other languages
Japanese (ja)
Other versions
JPH07294419A (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP09126294A priority Critical patent/JP3314525B2/en
Publication of JPH07294419A publication Critical patent/JPH07294419A/en
Application granted granted Critical
Publication of JP3314525B2 publication Critical patent/JP3314525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はショ糖溶液や水晶などの
旋光性物質の旋光角を測定する際に用いられる波面分割
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavefront splitting element used for measuring the optical rotation angle of a rotatory substance such as a sucrose solution or quartz.

【0002】[0002]

【従来技術】従来の旋光計の旋光角測定原理を図1に示
す。まず、偏光子Pと検光子Nを直交ニコル配置にし
(図1(a) )、次にその間に測定したい旋光性物質Sを
そう入し、検光子が再び暗視野になる位置まで回転させ
る(図1(b) )。
2. Description of the Related Art FIG. 1 shows the principle of measuring the angle of rotation of a conventional polarimeter. First, the polarizer P and the analyzer N are arranged in a crossed Nicols arrangement (FIG. 1 (a)). Then, the optically rotating substance S to be measured is inserted between them, and the analyzer is rotated again to a position where the analyzer becomes a dark field (FIG. 1 (a)). FIG. 1 (b)).

【0003】このときの検光子の回転角αがSによる旋
光角となる。
The rotation angle α of the analyzer at this time is the rotation angle due to S.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来法
による旋光計では可動部分があるので、装置の寿命が短
かかった。検光子が回転運動をくり返すと磨耗がおこ
り、機械的精度の低下をまねき、最終的には故障に至
る。機械的な耐久性が装置の寿命を決定していた。
However, the polarimeter according to the conventional method has a movable part, so that the life of the apparatus is short. When the analyzer repeats the rotational movement, wear occurs, leading to a decrease in mechanical accuracy and ultimately to failure. Mechanical durability determined the life of the device.

【0005】また従来法では消光位置を正確に測定しな
くてはならないが、偏光子、検光子の消光比が悪いとき
には、どの回転角でも出力光強度はあまり変化しないた
め、最小強度になる位置を検出することはむつかしい。
In the conventional method, the extinction position must be accurately measured. However, when the extinction ratio of the polarizer and the analyzer is poor, the output light intensity does not change so much at any rotation angle. It is difficult to detect.

【0006】一方偏光子や検光子の消光比が良いときに
は、消光位置近辺では出力光強度は急激に変化し、消光
比によっては2けたから4けたも変化する。しかし光強
度と出力電流とのリニアリティーが確保できないため、
通常の光電検出器ではこれだけ急激な強度変化に追従す
ることは極めてむつかしい。
On the other hand, when the extinction ratio of the polarizer or the analyzer is good, the output light intensity changes abruptly near the extinction position, and changes by two to four digits depending on the extinction ratio. However, since linearity between light intensity and output current cannot be secured,
It is extremely difficult for an ordinary photoelectric detector to follow such a rapid change in intensity.

【0007】上記従来型旋光計の欠点は全て消光位置を
探すという動作原理から生じている。しかし、本発明で
は、波面分割素子を使用することにより、全く異なる測
定原理により、故障の原因となる可動部分を含まず、偏
光子、検光子の消光比に依存せず、高性能な光電検出器
も必要としない旋光角の高精度な測定を可能とする。
All the drawbacks of the conventional polarimeter stem from the operating principle of searching for the extinction position. However, in the present invention, by using a wavefront splitting element, by a completely different measurement principle, it does not include a movable part causing a failure, does not depend on the extinction ratio of a polarizer and an analyzer, and has a high-performance photoelectric detection. It enables high-precision measurement of the angle of rotation that does not require an instrument.

【0008】[0008]

【問題を解決するための手段】本発明は、上記課題を解
決するため無位相偏光ビームスプリッター2つと偏光子
の3つの素子から構成され、第1のビームスプリッター
の透過又は反射P偏光、透過又は反射S偏光がそれぞれ
第2のビームスプリッターの入射S偏光、入射P偏光に
なるように配置し、かつ偏光子を第2のビームスプリッ
ターの透過又は反射側に透過軸がP偏光やS偏光から4
5°回転した方位になるように配置することを特徴とす
る波面分割素子を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention comprises two elements of a phaseless polarizing beam splitter and a polarizer, and transmits or reflects P-polarized light, transmitted light or reflected light of a first beam splitter. The reflected S-polarized light is arranged so as to be the incident S-polarized light and the incident P-polarized light of the second beam splitter, respectively, and the polarizer is disposed on the transmission or reflection side of the second beam splitter so that the transmission axis is 4 from P-polarized light or S-polarized light.
Provided is a wavefront splitting element, which is arranged so as to be rotated by 5 °.

【0009】また、無位相無偏光ビームスプリッターと
偏光ビームスプリッターと偏光子の3つの素子から構成
され、無位相無偏光の第1のビームスプリッターの透過
又は反射P偏光、透過又は反射S偏光がそれぞれ第2の
偏光ビームスプリッターの入射P偏光、入射S偏光にな
るように配置し、かつ偏光子を第1のビームスプリッタ
ーの透過又は反射側に透過軸がP偏光やS偏光から45
°回転した方位になるように配置することを特徴とする
波面分割素子を提供する。
Further, the first beam splitter, which is a phaseless and non-polarized first beam splitter, is composed of three elements of a non-phase non-polarizing beam splitter, a polarizing beam splitter, and a polarizer. The second polarizing beam splitter is arranged so as to be incident P-polarized light and incident S-polarized light, and the polarizer is disposed on the transmission or reflection side of the first beam splitter such that the transmission axis is 45 degrees away from the P-polarized light or the S-polarized light.
Provided is a wavefront splitting element characterized in that the wavefront splitting element is arranged so as to be rotated by a degree.

【0010】なお、上記本発明の素子に用いるビームス
プリッター等は次の通りである。すなわち、P偏光透過
率をTp、P偏光反射率をRp、S偏光透過率をTs、
S偏光反射率をRs、反射前後、透過前後におけるP偏
光−S偏光間の位相差をずれをδとしたとき、以下で定
義されるような無位相偏光ビームスプリッターA、
A′、B、B′、無位相偏光ビームスプリッターC、偏
光ビームスプリッターPBSを用いる。
The beam splitter and the like used in the device of the present invention are as follows. That is, P-polarized light transmittance is Tp, P-polarized light reflectance is Rp, S-polarized light transmittance is Ts,
When the S-polarized light reflectance is Rs, the phase difference between the P-polarized light and the S-polarized light before and after reflection and before and after transmission is δ, a phase-free polarization beam splitter A as defined below,
A ', B, B', a phase-free polarizing beam splitter C, and a polarizing beam splitter PBS are used.

【0011】A:Tp=100%、Rp=0%、Ts=
Rs=50%、δ=0° A′:Tp=Rp=50%、Ts=100%、Rs=0
%、δ=0° B:Tp=0%、Rp=100%、Ts=Rs=50
%、δ=0° B′:Tp=Rp=50%、Ts=0%、Rs=100
%、δ=0° C:Tp=Rp=Ts=Rs=50%、δ=0° PBS:Tp=Rs=100%、Rp=Ts=0% 本発明の第1の波面分割系は図2に示したようにA、
A′、B、B′の無位相偏光ビームスプリッターのうち
2つと偏光子Pを組みあわせて構成される。図ではP偏
光、S偏光の振動方向をx軸方向、y軸方向のいずれか
で代表させている。 上記無位相偏光ビームスプリッタ
ーによって入射光は透過光と反射光の2光束に分割され
るが、等方的な光を入射させたとき、P偏光、S偏光が
両方とも出力する側をa側、片方しか出力しない側をb
側とする。
A: Tp = 100%, Rp = 0%, Ts =
A ': Tp = Rp = 50%, Ts = 100%, Rs = 0
%, Δ = 0 ° B: Tp = 0%, Rp = 100%, Ts = Rs = 50
%, Δ = 0 ° B ′: Tp = Rp = 50%, Ts = 0%, Rs = 100
%, Δ = 0 ° C: Tp = Rp = Ts = Rs = 50%, δ = 0 ° PBS: Tp = Rs = 100%, Rp = Ts = 0% The first wavefront splitting system of the present invention is shown in FIG. As shown in A,
It is configured by combining two of the non-phase polarizing beam splitters A ', B and B' with the polarizer P. In the drawing, the vibration directions of the P-polarized light and the S-polarized light are represented by either the x-axis direction or the y-axis direction. The incident light is split into two light fluxes of transmitted light and reflected light by the non-phase polarized beam splitter, and when isotropic light is incident, the side on which both P-polarized light and S-polarized light are output is a-side, The side that outputs only one side is b
Side.

【0012】第1プリズムのa側に第2プリズムを設置
し、第1プリズムのb側出力光と第2プリズムのb側出
力光とが互いに直交する直線偏光になり、かつ第2プリ
ズムのa側出力光が等方的な光になるように配置する。
さらに偏光子Pを第2プリズムのa側に、透過軸がP偏
光、S偏光から45°回転した方位に向くよう、設置す
る。
A second prism is installed on the a side of the first prism, and the b-side output light of the first prism and the b-side output light of the second prism become linearly polarized light orthogonal to each other, and It is arranged so that the side output light becomes isotropic light.
Further, the polarizer P is disposed on the a side of the second prism so that the transmission axis is oriented in a direction rotated by 45 ° from the P-polarized light and the S-polarized light.

【0013】光源からの光を旋光性物質Sを透過させず
直接上記の偏光分割素子に入射させたときの第1プリズ
ムのb側出力光強度I1 、第2プリズムのb側出力光強
度I2 偏光子の透過光強度I3 と、旋光性物質Sを透過
させた光を入射させたときの各々の出力光強度I1 ′、
2 ′、I3 ′を測定する。
The b-side output light intensity I 1 of the first prism and the b-side output light intensity I of the second prism when the light from the light source is directly incident on the polarization splitting element without passing through the optical rotatory substance S. The transmitted light intensity I 3 of the two polarizers and the respective output light intensity I 1 ′ when the light transmitted through the optical rotatory substance S is made incident,
Measure I 2 ′ and I 3 ′.

【0014】なお、図2(a)は旋光性物質Sを挿入し
ない状態、図2(b)は旋光性物質Sを挿入した状態を
現す。
FIG. 2A shows a state in which the optical rotatory substance S is not inserted, and FIG. 2B shows a state in which the optical rotatory substance S is inserted.

【0015】本発明の第2の波面分割系は図3に示した
ように無位相無偏光ビームスプリッターCと偏光ビーム
スプリッターPBSと偏光子Pを組みあわせて構成され
る。ビームスプリッターCの透過側、反射側のどちらか
にPBSを設置し他方に偏光子Pを設置する。PBSの
P偏光、S偏光はCのP偏光、S偏光のいずれかになる
ように設定し、偏光子Pは透過軸がCのP偏光、S偏光
から45°回転した方位に向くよう設定される。
As shown in FIG. 3, the second wavefront splitting system according to the present invention is configured by combining a phaseless non-polarizing beam splitter C, a polarizing beam splitter PBS, and a polarizer P. The PBS is installed on either the transmission side or the reflection side of the beam splitter C, and the polarizer P is installed on the other side. The P-polarized light and S-polarized light of PBS are set to be either P-polarized light or S-polarized light of C, and the polarizer P is set so that the transmission axis faces the azimuth rotated by 45 ° from the P-polarized light of C or S-polarized light. You.

【0016】光源からの光を旋光性物質Sを透過させず
に直接上記の偏光分割素子に入射させたときのPBSの
2つの出力光強度I1 、I2 偏光子Pの透過光強度I3
と旋光性物質Sを透過させた光を入射させたときの各々
の出力光強度I1 ′、I2 ′、I3 ′を測定する。
The two output light intensities I 1 and I 2 of the PBS and the transmitted light intensity I 3 of the PBS 2 when the light from the light source is directly incident on the polarization splitting element without passing through the optical rotatory substance S.
And the output light intensities I 1 ′, I 2 ′, and I 3 ′ when the light transmitted through the optical rotatory substance S is incident.

【0017】[0017]

【作用】図2や図3に示したように入射光をx軸方向か
ら角θだけ傾いた強度1の直線偏光とすると出力光強度
1 、I2 、I3 は次のようになる。
The output light intensities I 1 , I 2 , and I 3 are as follows when the incident light is linearly polarized light of intensity 1 inclined by an angle θ from the x-axis direction as shown in FIGS.

【0018】 I1 =1/2 cos2 θ (1) I2 =1/2 sin2 θ (2) I3 =1/2 sin2 (θ+45°) (3) これよりθは θ= cos-1√2I1 (4) θ= sin-1√2I2 (5) θ= sin-1√2I3 −45° (6) と求められる。[0018] I 1 = 1/2 cos 2 θ (1) I 2 = 1/2 sin 2 θ (2) I 3 = 1/2 sin 2 (θ + 45 °) (3) From this theta is theta = cos - 1 √2I 1 (4) obtained as θ = sin -1 √2I 2 (5 ) θ = sin -1 √2I 3 -45 ° (6).

【0019】一方旋光角αの旋光性物質Sを透過させた
光を入射させたときの出力光強度も同様にして I1 ′=1/2 cos2 (θ+α) (7) I2 ′=1/2 sin2 (θ+α) (8) I3 ′=1/2 sin2 (θ+α+45°) (9) α= cos-1√2I1 ′−θ (10) α= sin-1√2I2 ′−θ (11) α= sin-1√2I3 ′−θ−45° (12) となる。
On the other hand, the output light intensity when the light transmitted through the optical rotation material S having the optical rotation angle α is incident is similarly I 1 ′ = 1 / cos 2 (θ + α) (7) I 2 ′ = 1 / 2 sin 2 (θ + α) (8) I 3 ′ = 1/2 sin 2 (θ + α + 45 °) (9) α = cos −1 √2I 1 ′ −θ (10) α = sin −1 √2I 2 ′ − θ (11) α = sin −1 √2I 3 ′ −θ−45 ° (12)

【0020】θを(4) 〜(6) から求め、旋光角αは(10)
〜(12)から求められる。I1 、I2、I3 のうち最も強
い強度を示すものからθを求めてもかまわないし、2つ
の強度から求めたθを平均してもかまわないし、あるい
は3つの強度から求めたθを平均してもかまわない。
Θ is obtained from (4) to (6), and the optical rotation angle α is (10)
~ (12). It is also possible to determine θ from the one showing the strongest intensity among I 1 , I 2 , and I 3 , or to average θ obtained from two intensities, or to average θ obtained from three intensities. It does not matter.

【0021】x軸からそれぞれ角0°、90°、45°
をなす方向に振動する直線偏光の強度を測定するのだか
ら少なくとも3つとも測定が困難になるほど強度が弱く
なることはありえない。十分な強度を持つ光を選んで測
定すれば正確なθの値が得られる。θと同様にして旋光
角αも正確に求められる。
0 °, 90 °, 45 ° from x axis
Since the intensity of the linearly polarized light oscillating in the direction of is measured, it is unlikely that the intensity becomes weak enough to make it difficult to measure at least three. If the light having sufficient intensity is selected and measured, an accurate value of θ can be obtained. Similarly to θ, the optical rotation angle α can be accurately obtained.

【0022】[0022]

【実施例】図4に本発明の波面分割素子の実施例1を示
す。実施例1は無位相偏光ビームスプリッターA2つと
偏光子Pから構成され、第1ビームスプリッターAの透
過P偏光、透過S偏光がそれぞれ第2ビームスプリッタ
ーAの入射S偏光、入射P偏光になるように配置し、か
つ偏光子Pを第2ビームスプリッターの透過側に透過軸
がP偏光やS偏光から45°回転した方位になるように
配置する。第1ビームスプリッターの反射側には入射光
のS偏光成分E90の50%が出力され、第2ビームスプ
リッターの反射側にはP偏光成分E0 の50%が出力さ
れ、偏光子からは入射光の偏光角45°成分E45の50
%が出力される。
FIG. 4 shows a first embodiment of the wavefront splitting element according to the present invention. In the first embodiment, two non-phase polarized beam splitters A and a polarizer P are used. The transmitted P polarized light and the transmitted S polarized light of the first beam splitter A become incident S polarized light and incident P polarized light of the second beam splitter A, respectively. The polarizer P is disposed on the transmission side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light. The reflective side of the first beam splitter 50% of S-polarized light component E 90 of the incident light is outputted, the reflective side of the second beam splitter is output 50% of the P polarized light component E 0, incident from the polarizer Light polarization angle 45 ° component E 45 50
% Is output.

【0023】図5に実施例1の変形実施例2を示す。実
施例2では実施例1の第1ビームスプリッターと第2ビ
ームスプリッターの間に1/2波長板HWPを挿入し、
第1ビームスプリッターから出射してくるP偏光とS偏
光の振動方向を反転させることによって、入射光、第1
ビームスプリッターの反射光、第2ビームスプリッター
の反射光、偏光子の透過光の4本の光が同一平面内で進
行するようにする。
FIG. 5 shows a second modification of the first embodiment. In the second embodiment, a half-wave plate HWP is inserted between the first beam splitter and the second beam splitter of the first embodiment,
By inverting the oscillation directions of the P-polarized light and the S-polarized light emitted from the first beam splitter, the incident light, the first
The four lights of the reflected light of the beam splitter, the reflected light of the second beam splitter, and the transmitted light of the polarizer are made to travel in the same plane.

【0024】図6に実施例3を示す。実施例3は無位相
偏光ビームスプリッターA′2つと偏光子Pから構成さ
れ、第1ビームスプリッターA′の透過P偏光、透過S
偏光がそれぞれ第2ビームスプリッターA′の入射S偏
光、入射P偏光になるように配置し、かつ偏光子Pを第
2ビームスプリッターの透過側に透過軸がP偏光やS偏
光から45°回転した方位になるように配置する。第1
ビームスプリッターの反射側にはE0 の50%が出力さ
れ、第2ビームスプリッターの反射側にはE90の50%
が出力され、偏光子からはE45の50%が出力される。
FIG. 6 shows a third embodiment. Embodiment 3 is composed of two phase-free polarization beam splitters A 'and a polarizer P, and transmits P polarized light and transmitted S light of the first beam splitter A'.
The polarized light was arranged so as to be incident S-polarized light and incident P-polarized light of the second beam splitter A ′, respectively, and the transmission axis was rotated by 45 ° from the P-polarized light and the S-polarized light toward the transmission side of the second beam splitter. Arrange so that it becomes the direction. First
50% of E 0 is output to the reflection side of the beam splitter, and 50% of E 90 is output to the reflection side of the second beam splitter.
Is output, and 50% of E 45 is output from the polarizer.

【0025】図7に実施例3の変形実施例4を示す。実
施例4では実施例3の第1ビームスプリッターと第2ビ
ームスプリッターの間に1/2波長板HWPを挿入し、
第1ビームスプリッターから出射してくるP偏光とS偏
光の振動方向を反転させることによって、入射光、第1
ビームスプリッターの反射光、第2ビームスプリッター
の反射光、偏光子の透過光の4本の光が同一平面内で進
行するようにする。
FIG. 7 shows a fourth embodiment which is a modification of the third embodiment. In the fourth embodiment, a half-wave plate HWP is inserted between the first beam splitter and the second beam splitter of the third embodiment,
By inverting the oscillation directions of the P-polarized light and the S-polarized light emitted from the first beam splitter, the incident light, the first
The four lights of the reflected light of the beam splitter, the reflected light of the second beam splitter, and the transmitted light of the polarizer are made to travel in the same plane.

【0026】図8に実施例5を示す。実施例5は無位相
偏光ビームスプリッターB2つと偏光子Pから構成さ
れ、第1ビームスプリッターBの反射P偏光、反射S偏
光がそれぞれ第2ビームスプリッターBの入射S偏光、
入射P偏光になるように配置し、かつ偏光子Pを第2ビ
ームスプリッターの反射側に透過軸がP偏光やS偏光か
ら45°回転した方位になるように配置する。第1ビー
ムスプリッターの透過側にはE90の50%が出力され、
第2ビームスプリッターの透過側にはE0 の50%が出
力され、偏光子からはE45の50%が出力される。
FIG. 8 shows a fifth embodiment. The fifth embodiment includes two non-phase polarizing beam splitters B and a polarizer P, and the reflected P polarized light and the reflected S polarized light of the first beam splitter B are incident S polarized light of the second beam splitter B, respectively.
The polarizer P is disposed so as to be incident P-polarized light, and the polarizer P is disposed on the reflection side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light. The permeate side of the first beam splitter is output 50% of E 90,
50% of E 0 is output to the transmission side of the second beam splitter, and 50% of E 45 is output from the polarizer.

【0027】図9に実施例5の変形実施例6を示す。実
施例6では実施例5の第1ビームスプリッターと第2ビ
ームスプリッターの間に1/2波長板HWPを挿入し、
第1ビームスプリッターから出射してくるP偏光とS偏
光の振動方向を反転させることによって、入射光、第1
ビームスプリッターの透過光、第2ビームスプリッター
の透過光、偏光子の透過光の4本の光が同一平面内で進
行するようにする。
FIG. 9 shows a sixth modification of the fifth embodiment. In the sixth embodiment, a half-wave plate HWP is inserted between the first beam splitter and the second beam splitter of the fifth embodiment,
By inverting the oscillation directions of the P-polarized light and the S-polarized light emitted from the first beam splitter, the incident light, the first
Four lights, that is, light transmitted by the beam splitter, light transmitted by the second beam splitter, and light transmitted by the polarizer are made to travel in the same plane.

【0028】図10に実施例7を示す。実施例7は無位
相偏光ビームスプリッターB′2つと偏光子Pから構成
され、第1ビームスプリッターB′の反射P偏光、反射
S偏光がそれぞれ第2ビームスプリッターB′の入射S
偏光、入射P偏光になるように配置し、かつ偏光子Pを
第2ビームスプリッターの反射側に透過軸がP偏光やS
偏光から45°回転した方位になるように配置する。第
1ビームスプリッターの透過側にはE0 の50%が出力
され、第2ビームスプリッターの透過側にはE90の50
%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 10 shows a seventh embodiment. In the seventh embodiment, two non-phase polarizing beam splitters B 'and a polarizer P are used, and the reflected P-polarized light and the reflected S-polarized light of the first beam splitter B' are respectively incident on the second beam splitter B '.
Polarized light and incident P-polarized light, and the polarizer P is positioned such that the transmission axis is P-polarized light or S-polarized light on the reflection side of the second beam splitter.
They are arranged so as to be rotated by 45 ° from the polarized light. 50% of E 0 is output to the transmission side of the first beam splitter, and 50% of E 90 is output to the transmission side of the second beam splitter.
%, And 50% of E 45 is output from the polarizer.

【0029】図11に実施例7の変形実施例8を示す。
実施例8では実施例7の第1ビームスプリッターと第2
ビームスプリッターの間に1/2波長板HWPを挿入
し、第1ビームスプリッターから出射してくるP偏光と
S偏光の振動方向を反転させることによって、入射光、
第1ビームスプリッターの透過光、第2ビームスプリッ
ターの透過光、偏光子の透過光の4本の光が同一平面内
で進行するようにする。図12に実施例9を示す。実施
例9は無位相偏光ビームスプリッターA、Bと偏光子P
から構成され、第1ビームスプリッターAの透過P偏
光、透過S偏光がそれぞれ第2ビームスプリッターBの
入射S偏光、入射P偏光になるように配置し、かつ偏光
子Pを第2ビームスプリッターの反射側に透過軸がP偏
光やS偏光から45°回転した方位になるように配置す
る。第1ビームスプリッターの反射側にはE90の50%
が出力され、第2ビームスプリッターの透過側にはE0
の50%が出力され、偏光子からはE45の50%が出力
される。
FIG. 11 shows a modified embodiment 8 of the seventh embodiment.
In the eighth embodiment, the first beam splitter of the seventh embodiment and the second beam splitter
By inserting a half-wave plate HWP between the beam splitters and inverting the oscillation directions of the P-polarized light and the S-polarized light emitted from the first beam splitter, the incident light,
Four lights, that is, light transmitted by the first beam splitter, light transmitted by the second beam splitter, and light transmitted by the polarizer are made to travel in the same plane. FIG. 12 shows a ninth embodiment. The ninth embodiment is directed to the non-phase polarizing beam splitters A and B and the polarizer P.
And the transmission P-polarized light and the transmission S-polarized light of the first beam splitter A are arranged so as to be incident S-polarized light and incident P-polarized light of the second beam splitter B, respectively, and the polarizer P is reflected by the second beam splitter. It is arranged so that the transmission axis has an orientation rotated by 45 ° from the P-polarized light or the S-polarized light. The reflective side of the first beam splitter 50% E 90
Is output, and E 0 is provided on the transmission side of the second beam splitter.
Is output, and 50% of E 45 is output from the polarizer.

【0030】図13に実施例9の変形実施例10を示
す。実施例10では実施例9の第1ビームスプリッター
と第2ビームスプリッターの間に1/2波長板HWPを
挿入し、第1ビームスプリッターから出射してくるP偏
光とS偏光の振動方向を反転させることによって、入射
光、第1ビームスプリッターの反射光、第2ビームスプ
リッターの透過光、偏光子の透過光の4本の光が同一平
面内で進行するようにする。
FIG. 13 shows a tenth modification of the ninth embodiment. In the tenth embodiment, a half-wave plate HWP is inserted between the first beam splitter and the second beam splitter of the ninth embodiment to reverse the oscillation directions of the P-polarized light and the S-polarized light emitted from the first beam splitter. Thereby, the four lights of the incident light, the reflected light of the first beam splitter, the transmitted light of the second beam splitter, and the transmitted light of the polarizer are made to travel in the same plane.

【0031】図14に実施例11を示す。実施例11は
無位相偏光ビームスプリッターB、Aと偏光子Pから構
成され、第1ビームスプリッターBの反射P偏光、反射
S偏光がそれぞれ第2ビームスプリッターAの入射S偏
光、入射P偏光になるように配置し、かつ偏光子Pを第
2ビームスプリッターの透過側に透過軸がP偏光やS偏
光から45°回転した方位になるように配置する。第1
ビームスプリッターの透過側にはE90の50%が出力さ
れ、第2ビームスプリッターの反射側にはE0の50%
が出力され、偏光子からはE45の50%が出力される。
FIG. 14 shows an eleventh embodiment. In the eleventh embodiment, the non-phase polarizing beam splitters B and A and the polarizer P are used, and the reflected P polarized light and the reflected S polarized light of the first beam splitter B become the incident S polarized light and the incident P polarized light of the second beam splitter A, respectively. And the polarizer P is arranged on the transmission side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light. First
50% of E 90 is output on the transmission side of the beam splitter, and 50% of E 0 is output on the reflection side of the second beam splitter.
Is output, and 50% of E 45 is output from the polarizer.

【0032】図15に実施例11の変形実施例12を示
す。実施例12では実施例11の第1ビームスプリッタ
ーと第2ビームスプリッターの間に1/2波長板HWP
を挿入し、第1ビームスプリッターから出射してくるP
偏光とS偏光の振動方向を反転させることによって、入
射光、第1ビームスプリッターの透過光、第2ビームス
プリッターの反射光、偏光子の透過光の4本の光が同一
平面内で進行するようにする。
FIG. 15 shows a twelfth modification of the eleventh embodiment. In the twelfth embodiment, a half-wave plate HWP is provided between the first beam splitter and the second beam splitter of the eleventh embodiment.
Is inserted, and P coming out of the first beam splitter
By inverting the oscillation directions of the polarized light and the S-polarized light, four lights of incident light, transmitted light of the first beam splitter, reflected light of the second beam splitter, and transmitted light of the polarizer travel in the same plane. To

【0033】図16に実施例13を示す。実施例13は
無位相偏光ビームスプリッターA′、B′と偏光子Pか
ら構成され、第1ビームスプリッターA′の透過P偏
光、透過S偏光がそれぞれ第2ビームスプリッターB′
の入射S偏光、入射P偏光になるように配置し、かつ偏
光子Pを第2ビームスプリッターの反射側に透過軸がP
偏光やS偏光から45°回転した方位になるように配置
する。第1ビームスプリッターの反射側にはE0 の50
%が出力され、第2ビームスプリッターの透過側にはE
90の50%が出力され、偏光子からはE45の50%が出
力される。
FIG. 16 shows a thirteenth embodiment. The thirteenth embodiment includes phase-free polarization beam splitters A ′ and B ′ and a polarizer P, and the transmission P-polarized light and the transmission S-polarized light of the first beam splitter A ′ are respectively the second beam splitter B ′.
And the polarizer P is arranged such that the transmission axis is P on the reflection side of the second beam splitter.
It is arranged so as to be in an azimuth rotated by 45 ° from polarized light or S-polarized light. The reflective side of the first beam splitter 50 E 0
%, And E on the transmission side of the second beam splitter.
Output 50% of 90, from the polarizer output 50% of E 45.

【0034】図17に実施例13の変形実施例14を示
す。実施例14では実施例13の第1ビームスプリッタ
ーと第2ビームスプリッターの間に1/2波長板HWP
を挿入し、第1ビームスプリッターから出射してくるP
偏光とS偏光の振動方向を反転させることによって、入
射光、第1ビームスプリッターの反射光、第2ビームス
プリッターの透過光、偏光子の透過光の4本の光が同一
平面内で進行するようにする。
FIG. 17 shows a fourteenth embodiment which is a modification of the thirteenth embodiment. In the fourteenth embodiment, a half-wave plate HWP is provided between the first beam splitter and the second beam splitter of the thirteenth embodiment.
Is inserted, and P coming out of the first beam splitter
By inverting the oscillation directions of the polarized light and the S-polarized light, the four lights of incident light, reflected light of the first beam splitter, transmitted light of the second beam splitter, and transmitted light of the polarizer travel in the same plane. To

【0035】図18に実施例15を示す。実施例15は
無位相偏光ビームスプリッターB′、A′と偏光子Pか
ら構成され、第1ビームスプリッターB′の反射P偏
光、反射S偏光がそれぞれ第2ビームスプリッターA′
の入射S偏光、入射P偏光になるように配置し、かつ偏
光子Pを第2ビームスプリッターの透過側に透過軸がP
偏光やS偏光から45°回転した方位になるように配置
する。第1ビームスプリッターの透過側にはE0 の50
%が出力され、第2ビームスプリッターの反射側にはE
90の50%が出力され、偏光子からはE45の50%が出
力される。
FIG. 18 shows a fifteenth embodiment. In the fifteenth embodiment, the non-phase polarizing beam splitters B ′ and A ′ and the polarizer P are used, and the reflected P polarized light and the reflected S polarized light of the first beam splitter B ′ are respectively the second beam splitter A ′.
And the polarizer P is positioned such that the transmission axis is on the transmission side of the second beam splitter.
It is arranged so as to be in an azimuth rotated by 45 ° from polarized light or S-polarized light. E 0 of 50 is on the transmission side of the first beam splitter.
%, And E on the reflection side of the second beam splitter.
Output 50% of 90, from the polarizer output 50% of E 45.

【0036】図19に実施例15の変形実施例16を示
す。実施例16では実施例15の第1ビームスプリッタ
ーと第2ビームスプリッターの間に1/2波長板HWP
を挿入し、第1ビームスプリッターから出射してくるP
偏光とS偏光の振動方向を反転させることによって、入
射光、第1ビームスプリッターの透過光、第2ビームス
プリッターの反射光、偏光子の透過光の4本の光が同一
平面内で進行するようにする。
FIG. 19 shows a sixteenth modification of the fifteenth embodiment. In the sixteenth embodiment, a half-wave plate HWP is provided between the first beam splitter and the second beam splitter of the fifteenth embodiment.
Is inserted, and P coming out of the first beam splitter
By inverting the oscillation directions of the polarized light and the S-polarized light, four lights of incident light, transmitted light of the first beam splitter, reflected light of the second beam splitter, and transmitted light of the polarizer travel in the same plane. To

【0037】図20に実施例17を示す。実施例17は
無位相偏光ビームスプリッターA、A′と偏光子Pから
構成され、第1ビームスプリッターAの透過P偏光、透
過S偏光がそれぞれ第2ビームスプリッターA′の入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの透過側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの反射側にはE90の50%が出
力され、第2ビームスプリッターの反射側にはE0 の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 20 shows a seventeenth embodiment. Example 17 is composed of phase-free polarization beam splitters A and A ′ and a polarizer P, and the transmission P polarization and transmission S polarization of the first beam splitter A are respectively incident P polarization and incident S polarization of the second beam splitter A ′. And the polarizer P
Are arranged on the transmission side of the second beam splitter so that the transmission axis is rotated by 45 ° from P-polarized light or S-polarized light.
50% of E 90 is output to the reflection side of the first beam splitter, and 5% of E 0 is output to the reflection side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0038】図21に実施例18を示す。実施例18は
無位相偏光ビームスプリッターA′、Aと偏光子Pから
構成され、第1ビームスプリッターA′の透過P偏光、
透過S偏光がそれぞれ第2ビームスプリッターAの入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの透過側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの反射側にはE0 の50%が出
力され、第2ビームスプリッターの反射側にはE90の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 21 shows an eighteenth embodiment. Example 18 is composed of phase-free polarization beam splitters A ′, A and a polarizer P, and transmits P-polarized light of the first beam splitter A ′,
The transmission S-polarized light is arranged so as to be incident P-polarized light and incident S-polarized light of the second beam splitter A, respectively, and the polarizer P
Are arranged on the transmission side of the second beam splitter so that the transmission axis is rotated by 45 ° from P-polarized light or S-polarized light.
50% of E 0 is output to the reflection side of the first beam splitter, and 5% of E 90 is output to the reflection side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0039】図22に実施例19を示す。実施例19は
無位相偏光ビームスプリッターB、B′と偏光子Pから
構成され、第1ビームスプリッターBの反射P偏光、反
射S偏光がそれぞれ第2ビームスプリッターB′の入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの反射側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの透過側にはE90の50%が出
力され、第2ビームスプリッターの透過側にはE0 の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 22 shows a nineteenth embodiment. Embodiment 19 In Embodiment 19, the P-polarized light and the S-polarized light of the first beam splitter B are respectively composed of the P-polarized light and the S-polarized light of the second beam splitter B '. And the polarizer P
Are arranged on the reflection side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light.
50% of E 90 is output to the transmission side of the first beam splitter, and 5% of E 0 is output to the transmission side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0040】図23に実施例20を示す。実施例20は
無位相偏光ビームスプリッターB′、Bと偏光子Pから
構成され、第1ビームスプリッターB′の反射P偏光、
反射S偏光がそれぞれ第2ビームスプリッターBの入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの反射側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの透過側にはE0 の50%が出
力され、第2ビームスプリッターの透過側にはE90の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 23 shows a twentieth embodiment. The twentieth embodiment includes the non-phase polarization beam splitters B ′ and B and the polarizer P, and the reflection P polarization of the first beam splitter B ′,
Arranged so that the reflected S-polarized light becomes the incident P-polarized light and the incident S-polarized light of the second beam splitter B, respectively, and the polarizer P
Are arranged on the reflection side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light.
50% of E 0 is output on the transmission side of the first beam splitter, and 5% of E 90 is output on the transmission side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0041】図24に実施例21を示す。実施例21は
無位相偏光ビームスプリッターA、B′と偏光子Pから
構成され、第1ビームスプリッターAの透過P偏光、透
過S偏光がそれぞれ第2ビームスプリッターB′の入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの反射側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの反射側にはE90の50%が出
力され、第2ビームスプリッターの透過側にはE0 の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 24 shows a twenty-first embodiment. Example 21 is composed of the non-phase polarized beam splitters A and B 'and the polarizer P, and the transmitted P polarized light and transmitted S polarized light of the first beam splitter A are incident P polarized light and incident S polarized light of the second beam splitter B', respectively. And the polarizer P
Are arranged on the reflection side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light.
50% of E 90 is output to the reflection side of the first beam splitter, and 5% of E 0 is output to the transmission side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0042】図25に実施例22を示す。実施例22は
無位相偏光ビームスプリッターB′、Aと偏光子Pから
構成され、第1ビームスプリッターB′の反射P偏光、
反射S偏光がそれぞれ第2ビームスプリッターAの入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの透過側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの透過側にはE0 の50%が出
力され、第2ビームスプリッターの反射側にはE90の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 25 shows a twenty-second embodiment. Embodiment 22 is composed of the non-phase polarization beam splitters B ′ and A and the polarizer P, and the reflection P polarization of the first beam splitter B ′,
Arranged so that the reflected S-polarized light becomes the incident P-polarized light and the incident S-polarized light of the second beam splitter A, respectively.
Are arranged on the transmission side of the second beam splitter so that the transmission axis is rotated by 45 ° from P-polarized light or S-polarized light.
50% of E 0 is output to the transmission side of the first beam splitter, and 5% of E 90 is output to the reflection side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0043】図26に実施例23を示す。実施例23は
無位相偏光ビームスプリッターA′、Bと偏光子Pから
構成され、第1ビームスプリッターA′の透過P偏光、
透過S偏光がそれぞれ第2ビームスプリッターBの入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの反射側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの反射側にはE0 の50%が出
力され、第2ビームスプリッターの透過側にはE90の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 26 shows a twenty-third embodiment. Example 23 is composed of phase-free polarization beam splitters A ′ and B and a polarizer P, and transmits P-polarized light of the first beam splitter A ′.
The transmission S-polarized light is arranged so as to be incident P-polarized light and incident S-polarized light of the second beam splitter B, respectively, and the polarizer P
Are arranged on the reflection side of the second beam splitter such that the transmission axis is rotated by 45 ° from the P-polarized light or the S-polarized light.
50% of E 0 is output to the reflection side of the first beam splitter, and 5% of E 90 is output to the transmission side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0044】図27に実施例24を示す。実施例24は
無位相偏光ビームスプリッターB、A′と偏光子Pから
構成され、第1ビームスプリッターBの反射P偏光、反
射S偏光がそれぞれ第2ビームスプリッターA′の入射
P偏光、入射S偏光になるように配置し、かつ偏光子P
を第2ビームスプリッターの透過側に透過軸がP偏光や
S偏光から45°回転した方位になるように配置する。
第1ビームスプリッターの透過側にはE90の50%が出
力され、第2ビームスプリッターの反射側にはE0 の5
0%が出力され、偏光子からはE45の50%が出力され
る。
FIG. 27 shows a twenty-fourth embodiment. In the twenty-fourth embodiment, the reflection P-polarized light and the reflected S-polarized light of the first beam splitter B are incident P-polarized light and incident S-polarized light of the second beam splitter A ', respectively. And the polarizer P
Are arranged on the transmission side of the second beam splitter so that the transmission axis is rotated by 45 ° from P-polarized light or S-polarized light.
50% of E 90 is output on the transmission side of the first beam splitter, and 5% of E 0 is output on the reflection side of the second beam splitter.
0% is output, and 50% of E 45 is output from the polarizer.

【0045】図28〜31に実施例25〜28を示す。
実施例25〜28は全て無位相無偏光ビームスプリッタ
ーC、偏光ビームスプリッターPBSと偏光子Pから構
成されている。
FIGS. 28 to 31 show Embodiments 25 to 28.
Embodiments 25 to 28 all include a non-phase and non-polarization beam splitter C, a polarization beam splitter PBS and a polarizer P.

【0046】実施例25はCの透過P偏光、透過S偏光
がそれぞれPBSの入射P偏光、入射S偏光になるよう
に配置し、かつ偏光子PをCの反射側に透過軸がP偏光
やS偏光から45°回転した方位になるように配置す
る。PBSの透過側にはE0 の50%が出力され、反射
側にはE90の50%が出力され、偏光子からはE45の5
0%が出力される。
In the twenty-fifth embodiment, the transmission P-polarized light and the transmission S-polarized light of C are arranged so as to be the incident P-polarized light and the incident S-polarized light of the PBS, respectively. They are arranged so as to be rotated by 45 ° from the S-polarized light. 50% of E 0 is output on the transmission side of the PBS, 50% of E 90 is output on the reflection side, and 5% of E 45 is output from the polarizer.
0% is output.

【0047】実施例26はCの反射P偏光、反射S偏光
がそれぞれPBSの入射P偏光、入射S偏光になるよう
に配置し、かつ偏光子PをCの透過側に透過軸がP偏光
やS偏光から45°回転した方位になるように配置す
る。PBSの透過側にはE0 の50%が出力され、反射
側にはE90の50%が出力され、偏光子からはE45の5
0%が出力される。
In Embodiment 26, the reflected P-polarized light and the reflected S-polarized light of C are arranged so as to become the incident P-polarized light and the incident S-polarized light of the PBS, respectively. They are arranged so as to be rotated by 45 ° from the S-polarized light. 50% of E 0 is output on the transmission side of the PBS, 50% of E 90 is output on the reflection side, and 5% of E 45 is output from the polarizer.
0% is output.

【0048】実施例27はCの透過P偏光、透過S偏光
がそれぞれPBSの入射S偏光、入射P偏光になるよう
に配置し、かつ偏光子PをCの反射側に透過軸がP偏光
やS偏光から45°回転した方位になるように配置す
る。PBSの透過側にはE90の50%が出力され、反射
側にはE0 の50%が出力され、偏光子からはE45の5
0%が出力される。
In the embodiment 27, the transmitted P-polarized light and the transmitted S-polarized light of C are arranged so as to become the incident S-polarized light and the incident P-polarized light of the PBS, respectively. They are arranged so as to be rotated by 45 ° from the S-polarized light. 50% of E 90 is output on the transmission side of the PBS, 50% of E 0 is output on the reflection side, and 5% of E 45 is output from the polarizer.
0% is output.

【0049】実施例28はCの反射P偏光、反射S偏光
がそれぞれPBSの入射S偏光、入射P偏光になるよう
に配置し、かつ偏光子PをCの透過側に透過軸がP偏光
やS偏光から45°回転した方位になるように配置す
る。PBSの透過側にはE90の50%が出力され、反射
側にはE0 の50%が出力され、偏光子からはE45の5
0%が出力される。
In the embodiment 28, the reflected P-polarized light and the reflected S-polarized light of C are arranged so as to become the incident S-polarized light and the incident P-polarized light of the PBS, respectively, and the polarizer P is disposed on the transmission side of the C with the transmission axis of the P-polarized light. They are arranged so as to be rotated by 45 ° from the S-polarized light. 50% of E 90 is output on the transmission side of the PBS, 50% of E 0 is output on the reflection side, and 5% of E 45 is output from the polarizer.
0% is output.

【0050】[0050]

【発明の効果】本発明の波面分割素子を用いて旋光角を
測定すると可動部分がないので従来法にくらべて装置の
機械的な寿命はかなり増大する。
When the angle of rotation is measured using the wavefront splitting element of the present invention, the mechanical life of the apparatus is considerably increased as compared with the conventional method because there is no movable part.

【0051】本発明の方法を用いると消光位置を検出す
る必要がないので光電検出器が検出光の急激な強度変化
に追従する必要はない。おまけに十分な強度を持つ光を
選択できるので、微弱光を検出する必要はなく、旋光角
の測定精度は従来法にくらべて飛躍的に向上する。
Since it is not necessary to detect the extinction position by using the method of the present invention, it is not necessary for the photoelectric detector to follow a sudden change in the intensity of the detection light. Since light having a sufficient intensity can be selected as a bonus, there is no need to detect weak light, and the measurement accuracy of the optical rotation angle is dramatically improved as compared with the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の旋光計の測定原理を表わした図で、(a)
は旋光物質を挿入していない状態を表わし、(b) は旋光
物質を挿入した状態を表わす。
FIG. 1 is a diagram showing the measurement principle of a conventional polarimeter, and FIG.
Represents a state in which no optical rotation substance is inserted, and (b) represents a state in which an optical rotation substance is inserted.

【図2】本発明の波面分割素子のうち、無位相偏光ビー
ムスプリッター2つと偏光子を用いる方の光学系の原理
を表わし、(a) は旋光物質を挿入していない状態を表わ
し、(b) は旋光物質を挿入した状態を表わす。
FIG. 2 shows the principle of an optical system that uses two phase-free polarization beam splitters and a polarizer among the wavefront splitting elements of the present invention. FIG. 2 (a) shows a state in which no optical rotation substance is inserted, and FIG. ) Indicates a state in which the optical rotation substance is inserted.

【図3】本発明の波面分割素子のうち、無位相無偏光ビ
ームスプリッターと偏光ビームスプリッターと偏光子を
用いる方の光学系の原理を表わし、(a) は旋光物質を挿
入していない状態を表わし、(b) は旋光物質を挿入した
状態を表わす。
FIG. 3 shows the principle of an optical system that uses a phaseless non-polarizing beam splitter, a polarizing beam splitter, and a polarizer among the wavefront splitting elements of the present invention. (B) shows the state where the optical rotation substance is inserted.

【図4】本発明の波面分割素子の実施例1を表わし、A
2つとPを用いる。
FIG. 4 shows a first embodiment of a wavefront splitting element according to the present invention,
Two and P are used.

【図5】本発明の波面分割素子の実施例1の変形実施例
2を表わし、A2つとPの他にHWPを用いる。
FIG. 5 illustrates a second modification of the first embodiment of the wavefront splitting device according to the present invention, in which HWP is used in addition to A2 and P;

【図6】本発明の波面分割素子の実施例3を表わし、
A′2つとPを用いる。
FIG. 6 shows a wavefront splitting element according to a third embodiment of the present invention;
Two A's and P are used.

【図7】本発明の波面分割素子の実施例3の変形実施例
4を表わし、A′2つとPの他にHWPを用いる。
FIG. 7 shows a fourth modification of the third embodiment of the wavefront splitting element of the present invention, in which HWP is used in addition to two A's and P's.

【図8】本発明の波面分割素子の実施例5を表わし、B
2つとPを用いる。
FIG. 8 shows a fifth embodiment of the wavefront splitting element of the present invention,
Two and P are used.

【図9】本発明の波面分割素子の実施例5の変形実施例
6を表わし、B2つとPの他にHWPを用いる。
FIG. 9 shows a modification 6 of the fifth embodiment of the wavefront splitting element of the present invention, wherein HWP is used in addition to B2 and P;

【図10】本発明の波面分割素子の実施例7を表わし、
B′2つとPを用いる。
FIG. 10 shows a seventh embodiment of the wavefront splitting element of the present invention;
Two B's and P are used.

【図11】本発明の波面分割素子の実施例7の変形実施
例8を表わし、B′2つとPの他にHWPを用いる。
FIG. 11 shows a modification 8 of the seventh embodiment of the wavefront dividing element of the present invention, in which HWP is used in addition to two B's and P's.

【図12】本発明の波面分割素子の実施例9を表わし、
A、B、Pを用いる。
FIG. 12 shows a wavefront splitting element according to a ninth embodiment of the present invention;
A, B, and P are used.

【図13】本発明の波面分割素子の実施例9の変形実施
例10を表わし、A、B、Pの他にHWPを用いる。
FIG. 13 shows a tenth modification of the ninth embodiment of the wavefront splitting element of the present invention, in which HWP is used in addition to A, B, and P.

【図14】本発明の波面分割素子の実施例11を表わ
し、B、A、Pを用いる。
FIG. 14 shows an eleventh embodiment of the wavefront splitting element of the present invention, in which B, A, and P are used.

【図15】本発明の波面分割素子の実施例11の変形実
施例12を表わし、B、A、Pの他にHWPを用いる。
15 shows a twelfth modified example of the eleventh embodiment of the wavefront splitting element of the present invention, in which HWP is used in addition to B, A and P. FIG.

【図16】本発明の波面分割素子の実施例13を表わ
し、A′、B′、Pを用いる。
FIG. 16 shows a wavefront splitting element according to a thirteenth embodiment of the present invention, in which A ′, B ′, and P are used.

【図17】本発明の波面分割素子の実施例13の変形実
施例14を表わし、A′、B′、Pの他にHWPを用い
る。
FIG. 17 shows a modification 14 of the thirteenth embodiment of the wavefront splitting element of the present invention, in which HWP is used in addition to A ′, B ′ and P.

【図18】本発明の波面分割素子の実施例15を表わ
し、B′、A′、Pを用いる。
FIG. 18 illustrates a wavefront splitting element according to a fifteenth embodiment of the present invention, in which B ′, A ′, and P are used.

【図19】本発明の波面分割素子の実施例15の変形実
施例16を表わし、B′、A′、Pの他にHWPを用い
る。
FIG. 19 shows a modification 16 of the fifteenth embodiment of the wavefront dividing element of the present invention, in which HWP is used in addition to B ′, A ′, and P.

【図20】本発明の波面分割素子の実施例17を表わ
し、A、A′、Pを用いる。
FIG. 20 illustrates a seventeenth embodiment of the wavefront splitting element according to the present invention, in which A, A ′, and P are used.

【図21】本発明の波面分割素子の実施例18を表わ
し、A′、A、Pを用いる。
FIG. 21 shows an eighteenth embodiment of the wavefront splitting element of the present invention, in which A ′, A, and P are used.

【図22】本発明の波面分割素子の実施例19を表わ
し、B、B′、Pを用いる。
FIG. 22 shows a wavefront splitting element according to a nineteenth embodiment of the present invention, in which B, B ′, and P are used.

【図23】本発明の波面分割素子の実施例20を表わ
し、B′、B、Pを用いる。
FIG. 23 shows a wavefront splitting element according to a twentieth embodiment of the present invention, in which B ′, B, and P are used.

【図24】本発明の波面分割素子の実施例21を表わ
し、A、B′、Pを用いる。
FIG. 24 shows an embodiment 21 of the wavefront splitting element of the present invention, in which A, B ′, and P are used.

【図25】本発明の波面分割素子の実施例22を表わ
し、B′、A、Pを用いる。
FIG. 25 shows a wavefront splitting element according to a twenty-second embodiment of the present invention, in which B ′, A, and P are used.

【図26】本発明の波面分割素子の実施例23を表わ
し、A′、B、Pを用いる。
FIG. 26 shows a wavefront splitting element according to a twenty-third embodiment of the present invention, in which A ′, B, and P are used.

【図27】本発明の波面分割素子の実施例24を表わ
し、B、A′、Pを用いる。
FIG. 27 shows a twenty-fourth embodiment of the wavefront splitting element according to the present invention, in which B, A ′, and P are used.

【図28】本発明の波面分割素子の実施例25を表わ
し、C、PBS、Pを用いる。
FIG. 28 illustrates a wavefront splitting element according to a twenty-fifth embodiment of the present invention, in which C, PBS, and P are used.

【図29】本発明の波面分割素子の実施例26を表わ
し、C、PBS、Pを用いる。
FIG. 29 illustrates a wavefront splitting element according to a twenty-sixth embodiment of the present invention, in which C, PBS, and P are used.

【図30】本発明の波面分割素子の実施例27を表わ
し、C、PBS、Pを用いる。
FIG. 30 shows a twenty-seventh embodiment of the wavefront splitting element of the present invention, in which C, PBS, and P are used.

【図31】本発明の波面分割素子の実施例28を表わ
し、C、PBS、Pを用いる。
FIG. 31 shows an embodiment 28 of the wavefront splitting element of the present invention, in which C, PBS, and P are used.

【符号の説明】[Explanation of symbols]

P 偏光子 N 検光子 S 旋光物質 A、A′、B、B′ 無位相偏光ビームスプリッター C 無位相無偏光ビームスプリッター PBS 偏光ビームスプリッター P Polarizer N Analyzer S Optical rotation substance A, A ', B, B' Phase-free polarization beam splitter C Phase-free non-polarization beam splitter PBS Polarization beam splitter

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01J 4/00 - 4/04 G01B 9/00 - 9/10 G01B 11/00 - 11/30 JICSTファイル(JOIS) 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01J 4/00-4/04 G01B 9/00-9 / 10 G01B 11/00-11/30 JICST file (JOIS) Practical file (PATOLIS) Patent file (PATOLIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無位相偏光ビームスプリッター2つと偏
光子の3つの素子から構成され、第1のビームスプリッ
ターの透過又は反射P偏光、透過又は反射S偏光がそれ
ぞれ第2のビームスプリッターの入射S偏光、入射P偏
光になるように配置し、かつ偏光子を第2のビームスプ
リッターの透過又は反射側に透過軸がP偏光やS偏光か
ら45°回転した方位になるように配置することを特徴
とする波面分割素子。
1. A first beam splitter comprising two elements, a phaseless polarization beam splitter and a polarizer, wherein transmitted or reflected P-polarized light and transmitted or reflected S-polarized light of a first beam splitter are respectively incident S-polarized light of a second beam splitter. , And the polarizer is arranged on the transmission or reflection side of the second beam splitter such that the transmission axis is rotated by 45 ° from P-polarized light or S-polarized light. Wavefront splitting element.
【請求項2】 請求項第1項記載の波面分割素子におい
て、第1のビームスプリッターと第2のビームスプリッ
ターの間に1/2波長板を挿入することによって、第1
のビームスプリッターから出射してくるP偏光とS偏光
の振動方向を反転させ、入射光、第1のビームスプリッ
ターの反射光、第2のビームスプリッターの反射光およ
び偏光子の出射光の4本の光が同一面内で進行するよう
に配置することを特徴とする波面分割素子。
2. The wavefront splitting device according to claim 1, wherein a half-wave plate is inserted between the first beam splitter and the second beam splitter.
The oscillation directions of the P-polarized light and the S-polarized light emitted from the beam splitter are inverted, and the incident light, the reflected light of the first beam splitter, the reflected light of the second beam splitter, and the emitted light of the polarizer are changed. A wavefront splitting element, wherein light is arranged to travel in the same plane.
【請求項3】 無位相無偏光ビームスプリッターと偏光
ビームスプリッターと偏光子の3つの素子から構成さ
れ、無位相無偏光の第1のビームスプリッターの透過又
は反射P偏光、透過又は反射S偏光がそれぞれ第2の偏
光ビームスプリッターの入射P偏光、入射S偏光になる
ように配置し、かつ偏光子を第1のビームスプリッター
の透過又は反射側に透過軸がP偏光やS偏光から45°
回転した方位になるように配置することを特徴とする波
面分割素子。
3. A non-phase non-polarization beam splitter, a polarization beam splitter, and a polarizer, each of which has a transmission or reflection P polarization and a transmission or reflection S polarization of a phase non-polarization first beam splitter. The second polarizing beam splitter is arranged so as to be incident P-polarized light and incident S-polarized light, and the polarizer is disposed at the transmission or reflection side of the first beam splitter so that the transmission axis is at 45 ° from the P-polarized light or the S-polarized light.
A wavefront splitting element, wherein the wavefront splitting element is arranged to have a rotated azimuth.
JP09126294A 1994-04-28 1994-04-28 Wavefront splitting element Expired - Fee Related JP3314525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09126294A JP3314525B2 (en) 1994-04-28 1994-04-28 Wavefront splitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09126294A JP3314525B2 (en) 1994-04-28 1994-04-28 Wavefront splitting element

Publications (2)

Publication Number Publication Date
JPH07294419A JPH07294419A (en) 1995-11-10
JP3314525B2 true JP3314525B2 (en) 2002-08-12

Family

ID=14021513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09126294A Expired - Fee Related JP3314525B2 (en) 1994-04-28 1994-04-28 Wavefront splitting element

Country Status (1)

Country Link
JP (1) JP3314525B2 (en)

Also Published As

Publication number Publication date
JPH07294419A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
JP4559650B2 (en) Optical rotation measuring device and optical rotation measuring method
US5229834A (en) Sensor for detecting and measuring the angle of rotation of a plane of light polarization
JP3314525B2 (en) Wavefront splitting element
JPS58196416A (en) Optical fiber laser gyroscope
JPH0283428A (en) Automatic double refraction measuring apparatus
US5157460A (en) Method and apparatus for measuring rotary speed using polarized light
JP3021338B2 (en) Extinction ratio measurement method and extinction ratio measurement device
JP2004279380A (en) Angle of rotation measuring instrument
JPS6221016A (en) Optical fiber gyroscope
JP3181655B2 (en) Optical system and sample support in ellipsometer
JP2992829B2 (en) Laser length gauge
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
US11365989B2 (en) Method and system for contactless detection of rotational movement
SU1721437A1 (en) Method of measurement of object angular displacements and device for realization
JP2000241143A (en) Angle sensor
JPH04155260A (en) Rotational speed measuring apparatus
SU1290091A1 (en) Device for measuring double ray refraction of reflecting optical information media
JPH0639341Y2 (en) Optical electric field detector
JP2723977B2 (en) Rotation speed measurement method
JP2665917B2 (en) 4-beam splitter prism
SU708281A1 (en) Photoelectric automatic collimator
JPS58219404A (en) Optical fiber gyro device
JPH07111456B2 (en) Polarization-maintaining optical fiber type magnetic field sensor
JPS60257313A (en) Optical fiber gyroscope
JPH01156628A (en) Optical fiber sensor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees