JPH0118640B2 - - Google Patents

Info

Publication number
JPH0118640B2
JPH0118640B2 JP60014283A JP1428385A JPH0118640B2 JP H0118640 B2 JPH0118640 B2 JP H0118640B2 JP 60014283 A JP60014283 A JP 60014283A JP 1428385 A JP1428385 A JP 1428385A JP H0118640 B2 JPH0118640 B2 JP H0118640B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
polarization
ultrasonic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60014283A
Other languages
Japanese (ja)
Other versions
JPS60197099A (en
Inventor
Etsuji Yamamoto
Hiroyuki Takeuchi
Hiroshi Kanda
Kageyoshi Katakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP1428385A priority Critical patent/JPS60197099A/en
Publication of JPS60197099A publication Critical patent/JPS60197099A/en
Publication of JPH0118640B2 publication Critical patent/JPH0118640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波を用いて被測定体内部の構造・
物性を測定する装置の探触子の構成に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses ultrasonic waves to investigate the internal structure and
This invention relates to the configuration of a probe for a device that measures physical properties.

〔発明の背景〕[Background of the invention]

医用超音波診断装置や超音波顕微鏡など数MHz
から数100MHzの超音波を被測定体に送波し、反
射波あるいは透過波を受波して、その内部を詳細
に調べる装置が、最近著しく進展しつつある。従
来まで、これらの装置に用いられている電気音響
変換器すなわち探触子は、圧電体の厚み伸縮振動
を利用する方式であるため、使用周波数に対し圧
電体の製法に基づく制約が課せられていた。すな
わち、厚み方向の音速をv(m/s)、圧電体の厚
みをt(m)とすると、基本共振周波数0(Hz)は
次式で表わされる。
Several MHz such as medical ultrasound diagnostic equipment and ultrasound microscopes
Devices that transmit ultrasonic waves of several 100 MHz to an object to be measured and receive reflected or transmitted waves to examine the inside of the object in detail have been making remarkable progress recently. Conventionally, the electroacoustic transducers, or probes, used in these devices utilize the thickness expansion and contraction vibration of a piezoelectric material, so there are restrictions on the frequency of use based on the manufacturing method of the piezoelectric material. Ta. That is, when the sound velocity in the thickness direction is v (m/s) and the thickness of the piezoelectric body is t (m), the fundamental resonance frequency 0 (Hz) is expressed by the following equation.

0=v/(2t) 医用診断装置に於ては通常セラミツクスが用い
られており、その厚みを200μm程度以下にするこ
とは難かしいため、0は高々10MHzである。
0 = v/(2t) Ceramics are usually used in medical diagnostic equipment, and it is difficult to reduce the thickness to less than about 200 μm, so 0 is at most 10 MHz.

ただし、v=4000m/sとしている。しかし、
内視鏡用あるいは眼科用として更に高周波化し、
高分解能で診断したいという要望は強く、その改
善が望まれていた。一方、超音波顕微鏡に於て
は、前者とは逆に、ZnOなどの電圧半導体をスパ
ツタリングによりサフアイアなどで出来たレンズ
母体に成長させるため、極めて薄いものしか出来
ず、共振周波数も100MHz程度より高い領域で用
いられているにすぎなかつた。しかし、10MHz〜
200MHz程度の超音波を用いれば、超音波伝播媒
体での減衰をはじめ、試料内部での減衰を軽減さ
せることができるため、生物試料など分解能をあ
まり必要としない分野での幅広い応用が期待でき
る。
However, v=4000m/s. but,
Higher frequency for endoscopy or ophthalmology,
There is a strong desire for high-resolution diagnosis, and improvements have been desired. On the other hand, in ultrasonic microscopes, as opposed to the former, a voltage semiconductor such as ZnO is grown on a lens matrix made of sapphire or the like by sputtering, so only extremely thin lenses can be produced, and the resonant frequency is higher than about 100 MHz. It was only used in the field. However, 10MHz~
Using ultrasound at around 200 MHz can reduce attenuation in the ultrasound propagation medium as well as attenuation inside the sample, so it is expected to have a wide range of applications in fields that do not require high resolution, such as biological samples.

さらに従来、フレネル・ゾーンプレートを用い
て超音波を集束する振動子も知られているがフレ
ネルパターンに応じた多重同心円に振動子を分離
加工するのは非常に手間がかかる。一方単一の圧
電体に設ける電極のみを多重同心円に分離した構
造では各電極を形成する電界の回り込みにより電
極間の分離領域の圧電体もかなりの振巾で振動す
るため明確なフレネルパターン状の振動とはなら
ず、したがつて焦点に強く集束した音波ビームが
得られない欠点を有している。
Furthermore, although a vibrator that focuses ultrasonic waves using a Fresnel zone plate is conventionally known, it is very time-consuming to separate the vibrator into multiple concentric circles according to the Fresnel pattern. On the other hand, in a structure in which only the electrodes provided on a single piezoelectric material are separated into multiple concentric circles, the piezoelectric material in the separated area between the electrodes also vibrates with a considerable amplitude due to the wraparound of the electric field forming each electrode, resulting in a clear Fresnel pattern shape. It does not cause vibration, and therefore has the disadvantage that a strongly focused sound beam cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの点を鑑みてなされたもので、
その目的は10MHzから数100MHz程度の超音波帯
で利用でき、かつ不要超音波の発生を抑制してフ
レネル・ゾーンプレートで強く集束した音波ビー
ムを得ることができる高性能探触子を提供するこ
とにある。
The present invention has been made in view of these points,
The purpose is to provide a high-performance probe that can be used in the ultrasonic band from 10 MHz to several 100 MHz, and that can suppress the generation of unnecessary ultrasonic waves and obtain a strongly focused sound beam with a Fresnel zone plate. It is in.

〔発明の概要〕[Summary of the invention]

ここで、本発明の探触子の基本動作について述
べる。第1図はセラミツクスと、一例としてその
上に形成されたインターデイジタル形電極の断面
を示す。リード線1,2はセラミツクス3上の電
極4に交互に接続されている。このセラミツクス
は、通常の表面弾性波素子とは異なり、リード線
1,2間に電圧を印加して分極されるため、分極
の程度は電極下で最も強く、電極から離れるに従
い次第に弱くなつている。その方向は矢印で示す
向きとなる。このようにして一度分極されたセラ
ミツクスに、今度は超音波励振用の電圧をリード
線1,2間に印加すると、電極下の領域に対して
は、分極の向きと印加電圧の向きが一致するため
全て同位相で伸縮し、厚み方向に縦振動が生じ
る。しかし、電極間の領域に対しては、分極の向
きが交互に逆向きになるため、横方向振動は互い
に打消し極めて小さくなる。以上の理由により、
厚み縦振動が主として発生することが分かる。こ
の場合分極された領域は厚み方向に明確な境界を
有するわけではないので非共振特性を示す。従つ
て、使用周波数とは無関係に圧電体の厚さを厚く
することができる。さらに、多重円のフレネルパ
ターン状に電極を形成し、上記したインターデイ
ジタル形電極と同様に分極に利用してフレネル・
ゾーンプレートを形成すれば、電極間の領域では
厚み振動が生じず、電極領域のみのフレネル・パ
ターンに対応した部分の音圧が明確に現れ、集束
点に強く集束した音波ビームが形成できる。
Here, the basic operation of the probe of the present invention will be described. FIG. 1 shows a cross section of a ceramic and, by way of example, an interdigital electrode formed thereon. Lead wires 1 and 2 are alternately connected to electrodes 4 on ceramics 3. Unlike ordinary surface acoustic wave devices, this ceramic is polarized by applying a voltage between lead wires 1 and 2, so the degree of polarization is strongest below the electrodes and gradually weakens as you move away from the electrodes. . The direction is shown by the arrow. When a voltage for ultrasonic excitation is applied between lead wires 1 and 2 to the ceramics that has been polarized in this way, the direction of polarization matches the direction of the applied voltage for the area under the electrodes. Therefore, they all expand and contract in the same phase, causing longitudinal vibration in the thickness direction. However, in the region between the electrodes, the directions of polarization are alternately opposite, so the lateral vibrations cancel each other out and become extremely small. For the above reasons,
It can be seen that longitudinal thickness vibration mainly occurs. In this case, the polarized region does not have a clear boundary in the thickness direction, so it exhibits non-resonant characteristics. Therefore, the thickness of the piezoelectric body can be increased regardless of the frequency used. Furthermore, electrodes are formed in a Fresnel pattern of multiple circles and used for polarization in the same way as the interdigital electrodes described above.
By forming a zone plate, thickness vibration does not occur in the area between the electrodes, and the sound pressure in the area corresponding to the Fresnel pattern only in the electrode area clearly appears, making it possible to form a sound beam that is strongly focused at the focal point.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示し、超音波顕微
鏡用探触子の構造を示す。セラミツクス5上に電
極6を形成し、第1図と同様な分極処理を施して
ある。電極6は超音波伝播媒体7に浸る他、空中
の水蒸気などにさらされるので、AuやNiなどの
耐腐食性金属を蒸着あるいはスパツタリングして
形成する。しかし、電極表面にガラスなどをスパ
ツタリングして保護膜で覆う場合には、Alなど
の金属でもよい。いま、電極6に電圧を印加する
と、発生した超音波は5および7を伝播する。7
を伝播する超音波は被測定体8に到達し、8の情
報を得て反射あるいは透過する。これは有用な超
音波成分であるが、一方5を伝播する超音波は瑞
面9で反射された後再び6に達し、不要信号を発
生するので好ましくない。しかしここで、セラミ
ツクス5の長さL(m)を超音波が伝播中に減衰
し、十分に無視できるように選べば不要信号は発
生しないことになる。第3図は粒径1μmのチタン
酸鉛の伝播損失と周波数の関係を示す図である
が、10MHzに於て0.1dB/cmの減衰が得られてお
り、減衰量は周波数のほぼ2乗に比例して増大す
ることが分かる。また、減衰量は粒径の3乗に比
例することが知られているため、例えば粒径5μm
で厚みが2cmのセラミツクスを用いると、10MHz
に於て往復50dBの減衰量を達成でき、端面から
の不要な反射波はほとんど無視することができ
る。セラミツクスの厚み及び種類は必要な減衰量
に応じて選択すればよい。
FIG. 2 shows an embodiment of the present invention, and shows the structure of a probe for an ultrasound microscope. Electrodes 6 are formed on ceramics 5 and subjected to polarization treatment similar to that shown in FIG. Since the electrode 6 is not only immersed in the ultrasonic propagation medium 7 but also exposed to water vapor in the air, it is formed by vapor deposition or sputtering of a corrosion-resistant metal such as Au or Ni. However, if the electrode surface is covered with a protective film by sputtering glass or the like, a metal such as Al may be used. Now, when a voltage is applied to electrode 6, the generated ultrasonic waves propagate through 5 and 7. 7
The ultrasonic wave propagating reaches the object to be measured 8, obtains information about the object 8, and is reflected or transmitted. This is a useful ultrasonic component, but on the other hand, the ultrasonic wave propagating through 5 reaches 6 again after being reflected by the aperture 9, generating unnecessary signals, which is not preferable. However, if the length L (m) of the ceramics 5 is selected so that the ultrasonic waves attenuate during propagation and can be sufficiently ignored, no unnecessary signals will be generated. Figure 3 shows the relationship between propagation loss and frequency for lead titanate with a particle size of 1 μm. At 10 MHz, an attenuation of 0.1 dB/cm was obtained, and the amount of attenuation is approximately the square of the frequency. It can be seen that it increases proportionally. In addition, it is known that the amount of attenuation is proportional to the cube of the particle size, so for example, if the particle size is 5 μm,
If you use ceramics with a thickness of 2 cm, the frequency will be 10MHz.
A round trip attenuation of 50 dB can be achieved, and unnecessary reflected waves from the end face can be almost ignored. The thickness and type of ceramic may be selected depending on the required amount of attenuation.

なお第2図中点線は超音波の伝播領域を示す。 Note that the dotted line in FIG. 2 indicates the ultrasonic propagation region.

第4図aは実施例の電極パターンを示し、第2
図に示した構成例の電極としてフレネル・ゾーン
プレートを用い超音波を集束するものである。
Figure 4a shows the electrode pattern of the example;
In the configuration example shown in the figure, a Fresnel zone plate is used as an electrode to focus ultrasonic waves.

第4図bは分極の理想的な強度分布を表わす
が、実際には第4図cのように2値化して分極す
ればよい。
Although FIG. 4b shows an ideal intensity distribution of polarization, in reality, polarization may be performed by binarizing as shown in FIG. 4c.

なお第4図bの分極強度分布T0(x)は T0(x)=C+Acos(kx2/Z0) で表わされる。ただし、Cは直流分であり、kは
波数、Z0は焦点までの距離を表わす。従つて、第
4図aに示すn番目の環の幅Δとして次式のよう
に選べばよい。
Note that the polarization intensity distribution T 0 (x) in FIG. 4b is expressed as T 0 (x)=C+A cos (kx 2 /Z 0 ). However, C is the DC component, k is the wave number, and Z 0 is the distance to the focal point. Therefore, the width Δ of the n-th ring shown in FIG. 4a may be selected as shown in the following equation.

なお、ここに示す電極は端部になるにつれて電
極間隔が狭くなるので、隣接する環ごとに分極す
る必要がある。
Note that in the electrodes shown here, the electrode spacing becomes narrower toward the ends, so it is necessary to polarize each adjacent ring.

第5図は本発明の他の実施例を示し、セラミツ
クス22上に、複数個の電極23を並置したもの
である。電極の形状としては第4図aに示すもの
を用いることができる。このように複数個の電極
を形成した探触子を用いれば、短時間に多くの領
域からの情報を得ることができるので、測定速度
を高めることができる。
FIG. 5 shows another embodiment of the present invention, in which a plurality of electrodes 23 are arranged on a ceramic 22. The shape of the electrode shown in FIG. 4a can be used. By using a probe in which a plurality of electrodes are formed in this manner, information from many areas can be obtained in a short period of time, so that the measurement speed can be increased.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によりフレネル・パター
ンの分極強度分布をもつ振動子が容易に得られ、
電極間の領域からの音波の送出は非常に少なく、
よつて焦点に強く集束する音波ビームを発するフ
レネル・ゾーンプレートを得ることができる。
As described above, according to the present invention, a vibrator having a Fresnel pattern polarization intensity distribution can be easily obtained.
Very little sound waves are emitted from the area between the electrodes;
Thus, a Fresnel zone plate can be obtained that emits a sound beam that is strongly focused at a focal point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いたセラミツクスの動作を
説明するための図、第2図は本発明の実施例を示
す図、第3図は減衰量と周波数の関係を示す図、
第4図aは電極の形状を示す図、第4図b及び第
4図cはそれぞれ分極強度を示す図、第5図は本
発明の他の実施例を示す図である。
FIG. 1 is a diagram for explaining the operation of the ceramics used in the present invention, FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between attenuation and frequency.
FIG. 4a is a diagram showing the shape of the electrode, FIGS. 4b and 4c are diagrams each showing the polarization strength, and FIG. 5 is a diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 フレネル・ゾーンプレート状に分割された多
重同心円状の電極が表面に設けられた圧電体を有
し、該圧電体の上記表面近くが上記多重同心円状
の電極の隣接する環ごとに電圧を印加して交互の
向きに分極されてなることを特徴とする超音波探
触子。
1 Multiple concentric electrodes divided into Fresnel zone plates have a piezoelectric body provided on the surface, and a voltage is applied near the surface of the piezoelectric body to each adjacent ring of the multiple concentric electrodes. An ultrasonic probe characterized by being polarized in alternating directions.
JP1428385A 1985-01-30 1985-01-30 Ultrasonic probe Granted JPS60197099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1428385A JPS60197099A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1428385A JPS60197099A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS60197099A JPS60197099A (en) 1985-10-05
JPH0118640B2 true JPH0118640B2 (en) 1989-04-06

Family

ID=11856761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1428385A Granted JPS60197099A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS60197099A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708444B2 (en) * 2011-10-31 2015-04-30 コニカミノルタ株式会社 Piezoelectric device, ultrasonic probe, and method of manufacturing piezoelectric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545823B2 (en) * 1975-03-10 1979-03-22
JPS54161315A (en) * 1977-03-24 1979-12-20 Koji Toda Ultrasonic transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545823U (en) * 1977-06-15 1979-01-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545823B2 (en) * 1975-03-10 1979-03-22
JPS54161315A (en) * 1977-03-24 1979-12-20 Koji Toda Ultrasonic transducer

Also Published As

Publication number Publication date
JPS60197099A (en) 1985-10-05

Similar Documents

Publication Publication Date Title
Gallego-Juarez Piezoelectric ceramics and ultrasonic transducers
Wong et al. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer
JPH02253798A (en) Piezoelectric converting element
JP2012023735A (en) Ultrasonic transducer, ultrasonic probe, and ultrasonic imaging apparatus
JPS5822915B2 (en) ultrasonic transducer
JP5179836B2 (en) Ultrasonic probe
Papadakis et al. 2 Fabrication and characterization of transducers
US4414482A (en) Non-resonant ultrasonic transducer array for a phased array imaging system using1/4 λ piezo elements
JPH0118640B2 (en)
JPH03270282A (en) Composite piezo-electric body
JPS5822978A (en) Ultrasonic wave device
Eiras et al. Vibration modes in ultrasonic Bessel transducer
JPH03274899A (en) Ultrasonic converter
Chilibon Ultrasound transducer for medical therapy
JP2007288396A (en) Ultrasonic probe
JPH03270599A (en) Composite piezoelectric body
JPH0440099A (en) Ultrasonic probe
JPS6153562A (en) Ultrasonic probe
JPH02251754A (en) Focus probe
RU2070840C1 (en) Ultrasonic transducer
Snook et al. Design of a high frequency annular array for medical ultrasound
JPS60198453A (en) Ultrasonic probe
Zhang et al. PIN-PMN-PT Single Crystal 1-3 Composite-based 20 MHz Ultrasound Phased Array
JPS59178378A (en) Ultrasonic probe
Olbrish et al. Physical apodization of ultrasonic arrays