JPS60197099A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS60197099A
JPS60197099A JP1428385A JP1428385A JPS60197099A JP S60197099 A JPS60197099 A JP S60197099A JP 1428385 A JP1428385 A JP 1428385A JP 1428385 A JP1428385 A JP 1428385A JP S60197099 A JPS60197099 A JP S60197099A
Authority
JP
Japan
Prior art keywords
electrode
ultrasonic wave
ceramic
electrodes
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1428385A
Other languages
Japanese (ja)
Other versions
JPH0118640B2 (en
Inventor
Etsuji Yamamoto
山本 悦治
Hiroyuki Takeuchi
裕之 竹内
Hiroshi Kanda
浩 神田
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP1428385A priority Critical patent/JPS60197099A/en
Publication of JPS60197099A publication Critical patent/JPS60197099A/en
Publication of JPH0118640B2 publication Critical patent/JPH0118640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a ultrasonic wave of 10-200mHz with high performance by receiving and transmitting a ultrasonic wave on an electrode surface of a polariized piezoelectric body obtained by impressing a voltage between adjacent electrodes and by making the piezoelectric body under electrode into a body for absorbing a ultrasonic wave. CONSTITUTION:An electrode 6 is formed on a ceramic 5 in such a manner that corrosion-resistant metals such as Au and Ni are deposited or spattered, because the electrode 6 is immersed in a ultrasonic wave propagating medium 7 and exposed in steam in air. When a voltage is impressed on the electrode 6, the produced ultrasonic wave propagates the ceramic 5 and the medium 7, while a ultrasonic wave for propagating the medium 7 reaches a body 8 to be measured, and is reflected or transmitted after obtaining of information of the object to be measured. On the other hand, a ultrasonic wave for propagating the ceramic 5 is reflected at end face 9, whereby unwanted waves are produced. This can be prevented if a length L of the ceramic 5 is selected so that a ultrasonic wave will be attenuated in propagation and will turn out to be negligible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波を用いて被測定体内部の構造・物性を測
定する装置の探触子の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the configuration of a probe for an apparatus that uses ultrasonic waves to measure the internal structure and physical properties of an object to be measured.

〔発明の背景〕[Background of the invention]

医用超音波診断装置や超音波顕微鏡など数MHzから数
100 MHzの超音波を被測定体に送波し、反射波あ
るいは透過波を受波して、その内部を詳細に調べる装置
が、最近著しく進展しつつある。
Recently, devices such as medical ultrasonic diagnostic equipment and ultrasound microscopes that transmit ultrasonic waves of several MHz to several 100 MHz to a measured object, receive reflected waves or transmitted waves, and examine the inside of the object in detail have become significantly more popular. Progress is being made.

従来まで、こnらの装置に用いられている電気音響変換
器すなわち探触子は、圧電体の厚み伸縮振動を利用する
方式であるため、使用周波数に対し圧電体の製法に基づ
く制約が課せられていた。すなわち、厚み方向の音速を
v(m/s)、圧電体の厚みを1(m)とすると、基本
共握周波数f(Hz )は次式で表わされる。
Conventionally, the electroacoustic transducers, or probes, used in these devices utilize the thickness expansion and contraction vibration of a piezoelectric material, so there are restrictions on the frequency of use based on the manufacturing method of the piezoelectric material. It was getting worse. That is, assuming that the sound velocity in the thickness direction is v (m/s) and the thickness of the piezoelectric body is 1 (m), the fundamental co-grip frequency f (Hz) is expressed by the following equation.

’O−v/(2t) 医用診断装置に於ては通常セラミックスが用いらnてお
シ、その厚みを200μm程度以下にすることは難かし
いため、f は高さ10MHzである。
'O-v/(2t) Since ceramics are usually used in medical diagnostic equipment and it is difficult to reduce the thickness to about 200 μm or less, f is the height of 10 MHz.

ただし、V = 4000 m / sとしている。し
かし、内視鏡用あるいは眼科用として更に高周波化し、
高分解能で診断したいという要望は強く、その改善が望
ま扛ていた。一方、超音波顕微鏡に於ては、前者とは逆
に、ZnOなどの圧電半導体をスパッタリングによりサ
ファイアなどで出来たレンズ母体に成長させるため、極
めて薄いものしか出来ず、共振周波数も100 MHz
程度よシ高い領域で用いられているにすぎなかった。し
かし、10 MHz〜200MHz程度の超音波を用い
れば、超音波伝播媒体での減衰をはじめ、試料内部での
減衰を軽減させることができるため、生物試料など分解
能をあ″1.9必要としない分野での幅広い応用が期待
できる。
However, V = 4000 m/s. However, for use in endoscopes or ophthalmology, the frequency has become even higher.
There is a strong desire for high-resolution diagnosis, and improvements have been desired. On the other hand, in ultrasonic microscopes, on the contrary, a piezoelectric semiconductor such as ZnO is grown on a lens matrix made of sapphire or the like by sputtering, so only extremely thin lenses can be produced, and the resonant frequency is 100 MHz.
It was only used in higher-level areas. However, if ultrasonic waves of about 10 MHz to 200 MHz are used, it is possible to reduce attenuation in the ultrasonic propagation medium as well as attenuation inside the sample. It can be expected to have a wide range of applications in various fields.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの点を鑑みてなされたもので、その目的
は10MHzから数1100MHz程度の超音波帯で利
用でき、かつセラミックス自身を不要超音波吸収体とし
て用いる高性能探触子を提供することにある。
The present invention was made in view of these points, and its purpose is to provide a high-performance probe that can be used in the ultrasonic band from 10 MHz to several 1100 MHz and uses ceramic itself as an unnecessary ultrasonic absorber. It is in.

べろ。第1図はセラミックスと、−例としてその上に形
成さnたインター・ディジタル形電極の断面を示す。リ
ード線1,2はセラミックス3上の電極4に交互に接続
さnている。このセラミックスは、通常の表面弾性波素
子とは異なり、リード線1,2間に電圧を印加して分極
さ扛るため、分極の程度は電極下で最も強く、電極から
離九るに従い次第に弱くなっている。その方向は矢印で
示す向きとなる。このようにして一度分極されたセラミ
ックスに、今度は超音波励振用の電圧をリード線1,2
間に印加すると、電極下の領域に対しては、分極の向き
と印加電圧の向きが一致するため全て同位相で伸縮し、
厚み方向に縦撮動が生じる。しかし、電極間の領域に対
しては、分極の向きが交互に逆向きになるため、横方向
振動は互いに打消し極めて小さくなる。以上の理由によ
り、厚み縦振動が主として発生することが分かる。この
場合分極された領域は明確な境界を有するわけではない
ので非共振特性を示す。従って、このような探触子の共
振周波数f(Hz)は横方向撮動に伴う電気インピーダ
ンスの変化に依存するため、電極の周期をJ(m)、横
方向の音速をv(m/s)として次式で与えら扛る。
Vero. FIG. 1 shows a cross section of a ceramic and, by way of example, an interdigital electrode formed thereon. Lead wires 1 and 2 are alternately connected to electrodes 4 on ceramics 3. Unlike ordinary surface acoustic wave elements, this ceramic is polarized by applying a voltage between lead wires 1 and 2, so the degree of polarization is strongest below the electrodes and gradually weakens as you move away from the electrodes. It has become. The direction is shown by the arrow. Once the ceramic has been polarized in this way, the voltage for ultrasonic excitation is applied to the lead wires 1 and 2.
When applied between the electrodes, the polarization direction and the applied voltage direction match for the area under the electrodes, so they all expand and contract in the same phase.
Vertical imaging occurs in the thickness direction. However, in the region between the electrodes, the directions of polarization are alternately opposite, so the lateral vibrations cancel each other out and become extremely small. It can be seen that for the above reasons, longitudinal thickness vibration mainly occurs. In this case, the polarized region does not have clear boundaries and exhibits non-resonant characteristics. Therefore, since the resonant frequency f (Hz) of such a probe depends on the change in electrical impedance accompanying lateral imaging, the period of the electrode is J (m), and the sound velocity in the lateral direction is v (m/s). ) is given by the following formula.

f = v / l セラミックスの場合V−4000m / s程度であシ
、電極の周期はフォトリングラフィやX線リングラフィ
を用いれば1μm程度まで微細化できるので、f=IG
Hzとなる。実際にはセラミックスの粒径が0.5μm
程度であるため、J=5μmが現在のところ限界と考え
ら几、この時f=400MHzとなる。この値は粒径が
小さくなれば当然高くなることは言うまでもない。
f = v / l In the case of ceramics, it is about V-4000 m / s, and the period of the electrode can be miniaturized to about 1 μm using photolithography or X-ray phosphorography, so f = IG
Hz. In reality, the particle size of ceramics is 0.5 μm.
Therefore, J = 5 μm is considered to be the limit at present, and in this case f = 400 MHz. It goes without saying that this value naturally increases as the particle size becomes smaller.

さて、このように周波数が高くなると電極の背面から超
音波を放射したのではセラミックス自身の内部損失によ
り、電極下で発生した超音波が、セラミックスを伝播す
る途中で減衰し、著しい感度劣化をもたらす他、低周波
に於ては逆に内部の多重反射により不要信号が生じる欠
点があった。
Now, when the frequency increases, if the ultrasonic wave is emitted from the back of the electrode, the internal loss of the ceramic itself causes the ultrasonic wave generated under the electrode to attenuate while propagating through the ceramic, resulting in a significant deterioration in sensitivity. Another disadvantage is that at low frequencies, unnecessary signals are generated due to internal multiple reflections.

そこで、電極表面を超音波の放射面とし、電極下のセラ
ミックスをバッキング材として用いる構成法により、前
記欠点を解決し、高性能探触子を達成できたので以下実
施例を参照しながら説明する。
Therefore, by using a construction method in which the electrode surface is used as the ultrasonic emission surface and the ceramic under the electrode is used as the backing material, the above-mentioned drawbacks were solved and a high-performance probe was achieved.This will be explained below with reference to examples. .

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示し、超音波顕微鏡用探触
子の構造を示す。セラミックス5上に電極6を形成し、
第1図と同様な分極処理を施しである。電極6は超音波
伝播媒体7に浸る他、空中の水蒸気などにさらされるの
で、AuやNlなどの耐腐食性金属を蒸着あるいはスパ
ッタリングして形成する。しかし、電極表面にガラスな
どをスパッタリングして保護膜で覆う場合には、AJな
どの金属でもよい。いま、電極6に電圧を印加すると、
発生した超音波は5および7を伝播する。
FIG. 2 shows an embodiment of the present invention, and shows the structure of a probe for an ultrasound microscope. Forming an electrode 6 on the ceramic 5,
The same polarization treatment as in FIG. 1 was performed. Since the electrode 6 is not only immersed in the ultrasonic propagation medium 7 but also exposed to water vapor in the air, it is formed by vapor deposition or sputtering of a corrosion-resistant metal such as Au or Nl. However, if the electrode surface is covered with a protective film by sputtering glass or the like, a metal such as AJ may be used. Now, when voltage is applied to electrode 6,
The generated ultrasonic waves propagate through 5 and 7.

7を伝播する超音波は被測定体8に到達し、8の情報を
得て反射あるいは透過する。こnは有用な超音波成分で
あるが、一方5を伝播する超音波は端面9で反射された
後再び6に達し、不要信号を発生するので好ましくない
。しかしここで、セラミックス5の長さL(m)を超音
波が伝播中に減衰し、十分に無視できるように選べば不
要信号は発生しないことになる。第3図は粒径1μmの
チタン酸鉛の伝播損失と周波数の関係を示す図であるが
、10MHzに於て0.1 d B/crILの減衰が
得られており、減衰量は周波数のほぼ2乗に比例して増
大することが分かる。また、減衰量は粒径の3乗に比例
することが知られているため、例えば粒径5μmで厚み
が2ぼのセラミックスを用いると、10 M Hzに於
て往復5QdBの減衰量を達成でき、端面からの不要な
反射波はほとんど無視することができる。セラミックス
の厚み及び種類は必要な減衰量に応じて選択すればよい
The ultrasonic wave propagating through 7 reaches the object to be measured 8, obtains information about 8, and is reflected or transmitted. Although this n is a useful ultrasonic component, on the other hand, the ultrasonic wave propagating through 5 reaches 6 again after being reflected by end face 9, which is not preferable because it generates an unnecessary signal. However, if the length L (m) of the ceramic 5 is selected so that the ultrasonic waves attenuate during propagation and can be sufficiently ignored, no unnecessary signals will be generated. Figure 3 is a diagram showing the relationship between propagation loss and frequency for lead titanate with a particle size of 1 μm. Attenuation of 0.1 dB/crIL was obtained at 10 MHz, and the amount of attenuation is almost the same as the frequency. It can be seen that it increases in proportion to the square of the square. Furthermore, it is known that the amount of attenuation is proportional to the cube of the grain size, so for example, if ceramics with a grain size of 5 μm and a thickness of 2 mm are used, it is possible to achieve a round trip attenuation of 5 QdB at 10 MHz. , unnecessary reflected waves from the end face can be almost ignored. The thickness and type of ceramic may be selected depending on the required amount of attenuation.

なお第2図中点線は超音波の伝播領域を示す。Note that the dotted line in FIG. 2 indicates the ultrasonic propagation region.

電極形状としては、第4図(a) 、 (b) 、 (
C)に示すものの他、これらを組み合わせた形状が考え
られる。
The electrode shapes are as shown in Fig. 4 (a), (b), (
In addition to the shape shown in C), a combination of these shapes can be considered.

第4図において、10.11は電極を、12はセラミッ
クスを表わす。
In FIG. 4, 10 and 11 represent electrodes, and 12 represents ceramics.

第5図は本発明の他の実施例を示し、電極面が曲率を有
するため、超音波を集束する構造の探触子を示す。セラ
ミックス13にレンズ14が作成さn、その上に電極1
5が形成さ扛ている。発生した超音波は図中点線のよう
に集束され、被測定体16に到達する。電極の形成は次
のようにして行なうことができる。セラミックスの凹面
全体に金属薄膜を蒸着あるいはスパッタリングなどで形
成し、次にレジストを塗布した後、任意形状の電極を第
6図に示す光学系によシ焼き付ける。すなわち、光源1
7からの光はレンズ18によシ平行光線となシ、マスク
19を通った後、集束レンズ20で絞られセラミックス
面21に像を結ぶ。電極の形状はマスク19により決め
られる。ここで、セラミックス面は曲率を持っているた
め、マスクにも同じ曲線を持たせることが必要である。
FIG. 5 shows another embodiment of the present invention, and shows a probe having a structure in which the electrode surface has a curvature so that ultrasonic waves are focused. A lens 14 is created on the ceramic 13, and an electrode 1 is placed on it.
5 is formed. The generated ultrasonic waves are focused as shown by the dotted line in the figure and reach the object to be measured 16. The electrodes can be formed as follows. A thin metal film is formed on the entire concave surface of the ceramic by vapor deposition or sputtering, and then a resist is applied, and then electrodes of arbitrary shapes are baked into the optical system shown in FIG. That is, light source 1
The light from 7 is converted into parallel light by a lens 18, passes through a mask 19, is condensed by a condenser lens 20, and forms an image on a ceramic surface 21. The shape of the electrode is determined by the mask 19. Here, since the ceramic surface has a curvature, it is necessary that the mask also have the same curve.

このように電極を焼き付けた後、エツチングし、不要に
示した構成例の電極としてフレネル・ゾーンプレートを
用い超音波を集束するものである。
After the electrodes are baked in this manner, they are etched, and a Fresnel zone plate is used as the electrode in the configuration example shown unnecessarily to focus the ultrasonic waves.

第7図(b)は分極の理想的な強度分布を表わすが、実
際には第7図(C)のように2値化して分極すればよい
Although FIG. 7(b) shows an ideal intensity distribution of polarization, in reality, polarization may be performed by binarizing as shown in FIG. 7(C).

なお第7図(b)の分極強度分布To(x)はTo (
x) = O+Ac0”’ (kx2/Zo )で表わ
される。ただし、0は直流分であり、kは波数、ZOは
焦点までの距離を表わす。従って、第7図(a)に示す
n番目の項の幅Δとして次式のように選べばよい。
Note that the polarization intensity distribution To(x) in FIG. 7(b) is To(
x) = O+Ac0''' (kx2/Zo). However, 0 is the DC component, k is the wave number, and ZO is the distance to the focal point. The term width Δ may be selected as shown in the following equation.

なお、ここに示す電極は端部になるにつ扛て電極間隔が
狭くなるので、隣接する環ごとに分極する必要がある。
Note that in the electrodes shown here, since the distance between the electrodes becomes narrower toward the ends, it is necessary to polarize each adjacent ring.

第8図は本発明の他の実施例を示し、セラミックス22
上に、複数個の電極23を並置したものである。電極の
形状としては第2図、第5図、第7図に示すものを用い
ることができる。このように複数個の電極を形成した探
触子を用いnば、短時間に多くの領域からの情報を得る
ことができるので、測定速度を高めることができる。
FIG. 8 shows another embodiment of the present invention, in which ceramics 22
A plurality of electrodes 23 are arranged side by side on the top. As the shape of the electrode, those shown in FIG. 2, FIG. 5, and FIG. 7 can be used. By using a probe in which a plurality of electrodes are formed in this manner, information from many areas can be obtained in a short period of time, so that the measurement speed can be increased.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明により従来の構成の探触子では得
ることが困難な帯域(例えば10MHz〜200MHz
)の超音波を高性能に得ることができる。
As described above, the present invention enables the detection of frequencies that are difficult to obtain with probes of conventional configurations (for example, 10 MHz to 200 MHz).
) can obtain high-performance ultrasonic waves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いたセラミックスの動作を説明する
ための図、第2図は本発明の実施例を示す図、第3図は
減衰量と周波数の関係を示す図、第4図は電極の形状を
示す図、第5図は本発明の他の実施例を示す図、第6図
は電極を焼付けるための光学系を示す図、第7図(a)
は本発明の他の実施例を示す図、第7図(b)及び第7
図(C)はそnぞn分極強度を示す図、第8図は本発明
の他の実施例を示す図である。 代理人 弁理士 小川勝男 牙 l ソ :+ 2 図 圃達教tM/4z) ;J−4’@ 2 (6) ヤ 5 図 !で ヤ 6 図 +7図 十B 凹 第1頁の続き @発明者 片倉 景義 国赫」稔ケ窪 央研究所内
Figure 1 is a diagram for explaining the operation of the ceramics used in the present invention, Figure 2 is a diagram showing an example of the present invention, Figure 3 is a diagram showing the relationship between attenuation and frequency, and Figure 4 is a diagram showing the relationship between attenuation and frequency. FIG. 5 is a diagram showing another embodiment of the present invention; FIG. 6 is a diagram showing an optical system for baking the electrode; FIG. 7(a)
7(b) and 7(b) are diagrams showing other embodiments of the present invention.
FIG. 8C is a diagram showing the polarization intensity, and FIG. 8 is a diagram showing another embodiment of the present invention. Agent Patent attorney Katsuo Ogawa l So: + 2 Tatsukyo tM/4z);J-4'@2 (6) Ya 5 Figure! Deya 6 Figure + 7 Figure 10B Continuation of concave 1st page @ Inventor Kageyoshi Katakura Kuniyoshi” Minoru Gakuo Research Institute

Claims (1)

【特許請求の範囲】 1、インター・ディジタル形電極あるいは同心環状電極
あるいはこれらを組合せた電極を有し、隣接する電極間
に電圧を印加して分極した圧電体の電極表面よシ超音波
を送受信し、電極下の前記圧電体を超音波吸収体とした
超音波探触子。 2、電極面に曲率を持たせたことを特徴とする実用新案
登録請求の範囲第1項に記載の探触子。 3、同心環状電極がフレネル・ゾーンプレート状である
ことを特徴とする実用新案登録請求の範囲第1項に記載
の探触子。
[Claims] 1. Transmission and reception of ultrasonic waves across the electrode surface of a piezoelectric material that has inter-digital electrodes, concentric annular electrodes, or a combination of these electrodes and is polarized by applying a voltage between adjacent electrodes. and an ultrasonic probe in which the piezoelectric body under the electrode is an ultrasonic absorber. 2. The probe according to claim 1 of the utility model registration, characterized in that the electrode surface has a curvature. 3. The probe according to claim 1, wherein the concentric annular electrode has a Fresnel zone plate shape.
JP1428385A 1985-01-30 1985-01-30 Ultrasonic probe Granted JPS60197099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1428385A JPS60197099A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1428385A JPS60197099A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS60197099A true JPS60197099A (en) 1985-10-05
JPH0118640B2 JPH0118640B2 (en) 1989-04-06

Family

ID=11856761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1428385A Granted JPS60197099A (en) 1985-01-30 1985-01-30 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS60197099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098724A (en) * 2011-10-31 2013-05-20 Konica Minolta Holdings Inc Piezoelectric device, ultrasonic probe and manufacturing method of piezoelectric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545823U (en) * 1977-06-15 1979-01-16
JPS54161315A (en) * 1977-03-24 1979-12-20 Koji Toda Ultrasonic transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103142A (en) * 1975-03-10 1976-09-11 Kawaguchi Chemical Ind Hisan kongotokuseinokairyosareta gomuyohaigozai

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161315A (en) * 1977-03-24 1979-12-20 Koji Toda Ultrasonic transducer
JPS545823U (en) * 1977-06-15 1979-01-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098724A (en) * 2011-10-31 2013-05-20 Konica Minolta Holdings Inc Piezoelectric device, ultrasonic probe and manufacturing method of piezoelectric device

Also Published As

Publication number Publication date
JPH0118640B2 (en) 1989-04-06

Similar Documents

Publication Publication Date Title
JP3556582B2 (en) Ultrasound diagnostic equipment
KR860000380B1 (en) Device for ultrasonic diagnosis
US20070197917A1 (en) Continuous-focus ultrasound lens
JPS6217195B2 (en)
JPS58135977A (en) Ultrasonic linear array transducer with collimator
Mo et al. Crosstalk reduction with a micromachined diaphragm structure for integrated ultrasound transducer arrays
JPS60197099A (en) Ultrasonic probe
JPS649012B2 (en)
JPH0437379B2 (en)
JPS6157012B2 (en)
JPH03274899A (en) Ultrasonic converter
Toda et al. Ultrasonic imaging system using a leaky surface acoustic wave transducer composed of piezoelectric ceramic and fused quartz
Snook et al. High-frequency transducers for medical ultrasonic imaging
JPH0762671B2 (en) Acoustic lens
JP2754648B2 (en) Ultrasonic transducer and acoustic imaging device using the transducer
RU2070840C1 (en) Ultrasonic transducer
Toda et al. Nondestructive testing in human teeth using a leaky Lamb wave device
JPH0432726A (en) Hydrophone
JPH0546218B2 (en)
Chubachi et al. Scanning acoustic microscope employing concave ultrasonic transducers
Kim et al. Prior inverse filtering for the improvement of axial resolution
JPH0510932A (en) Ultrasonic sensor and ultrasonic spectrum microscope using the same
SU1658079A1 (en) Surface-excitable piezoelectric converter
JPS59131338A (en) Method and system for forming ultrasonic image
RU34794U1 (en) ACOUSTIC MICROSCOPE HEAD