JPH01185936A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01185936A
JPH01185936A JP63009458A JP945888A JPH01185936A JP H01185936 A JPH01185936 A JP H01185936A JP 63009458 A JP63009458 A JP 63009458A JP 945888 A JP945888 A JP 945888A JP H01185936 A JPH01185936 A JP H01185936A
Authority
JP
Japan
Prior art keywords
layer
trench
active region
semiconductor device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63009458A
Other languages
Japanese (ja)
Inventor
Takao Miura
隆雄 三浦
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63009458A priority Critical patent/JPH01185936A/en
Priority to EP19890100464 priority patent/EP0325161A3/en
Priority to KR8900438A priority patent/KR920003317B1/en
Publication of JPH01185936A publication Critical patent/JPH01185936A/en
Priority to US07/755,596 priority patent/US5148247A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent a leak between adjacent elements, a leak inside an identical element and a narrow channel effect by a method wherein a substrate only on the side which is lower than a device active region to be formed on the upper part at the side face of a trench is made as a high-concentration layer and a fixed charge layer is formed in a part facing the device active region in an insulating film inside the trench. CONSTITUTION:A high-concentration layer 21 is formed only on the side which is lower than a device active region 20 to be formed on the upper part at the side face of a trench 6. A fixed charge layer 12 is formed in an insulating film 7 inside the trench 6 and in a part facing at least the device active region 20. Because the high-concentration layer 21 of, e.g., boron of P<+> is formed at the lower side of the device active region 20, it is possible to prevent a depletion layer from being formed at the interface between a substrate and the insulating film 7 inside the trench. Because the fixed charge layer 12 is formed in the oxide film 7 inside the trench, it prevents that the substrate is depleted; in addition, an impurity inside the high-concentration layer 21 is not spread in the transverse direction. By this setup, it is possible to prevent a leak between adjacent elements, a leak in an identical element and a narrow channel effect.

Description

【発明の詳細な説明】 (概要) トレンチアイソレーション等の素子弁M 61 ”4を
もつ半導体装置に関し、 隣接素子間リーク、同一素子内リーク、狭チャネル効果
を生じないようにすることを目的とし、トレンチの側面
上部に形成される素子活性領域より下側のみの基板を高
濃度層にすると共に、トレンチ内の絶縁膜中で少なくと
も素子活性領域に対向する部分に固定電荷層を形成した
構成とする。
[Detailed Description of the Invention] (Summary) The purpose of this invention is to prevent leakage between adjacent elements, leakage within the same element, and narrow channel effect in a semiconductor device having an element valve M61''4 such as trench isolation. , a structure in which a high concentration layer is formed on the substrate only below the element active region formed on the upper side of the trench, and a fixed charge layer is formed in at least a portion of the insulating film in the trench that faces the element active region. do.

〔産業上の利用分野〕[Industrial application field]

本発明は、トレンチアイソレーション等の素子力m構造
をもつ半導体装置に関する。
The present invention relates to a semiconductor device having an element force m structure such as trench isolation.

このような構造の半導体装置では、後述のように、基板
とトレンチ内の酸化膜との界面に空乏層が形成され、こ
の空乏層によって隣接素子間リーク及び同一素子内リー
クを生じる。そこでこの空乏層を形成されないようにす
るために基板にボロン不純物領域を形成するが、このよ
うにすると狭チャネル効果を生じる。
In a semiconductor device having such a structure, as will be described later, a depletion layer is formed at the interface between the substrate and the oxide film in the trench, and this depletion layer causes leakage between adjacent elements and leakage within the same element. Therefore, in order to prevent the formation of this depletion layer, a boron impurity region is formed in the substrate, but this causes a narrow channel effect.

そこで、上記隣接素子間リーク、同一素子内リーク、狭
チャネル効果を生じない半導体装置が望まれている。
Therefore, a semiconductor device is desired that does not cause the above-mentioned leakage between adjacent elements, leakage within the same element, and narrow channel effect.

〔従来の技術〕[Conventional technology]

例えばトレンチアイソレーション構造では、基板とトレ
ンチ内に形成されlc酸化膜との界面に界面準位ができ
、これによって界面に空乏層が形成され、トランジスタ
の拡散層(N” )(ソース及びドレイン)がトレンチ
の両側にある場合は、一方の拡散層のキャリアが空乏層
を介して他方の拡散層にリークしてしまう(これを隣接
素子間リークという)。一方、同一素子内のトレンチの
側壁にも空乏層が形成されているため、ゲートがオフ状
態でも同一素子内でのソース・ドレイン間でリークして
しまう(これを同一素子内リークという)。
For example, in a trench isolation structure, an interface state is created at the interface between the substrate and the LC oxide film formed in the trench, and this forms a depletion layer at the interface, which leads to the diffusion layer (N'') of the transistor (source and drain). are on both sides of the trench, carriers in one diffusion layer leak to the other diffusion layer via the depletion layer (this is called leakage between adjacent devices). Since a depletion layer is formed in both, even when the gate is off, leakage occurs between the source and drain within the same element (this is called intra-element leakage).

そこで、このような空乏層が形成されないようにするた
めに、従来、アイソレーション界面にボロン不純物を基
板よりも高濃度に注入する。このようにすれば、空乏層
の形成を防ぐことはできるが、ボロンをドーピングした
後の熱処即工程において、ボロンが基板内に広く拡散さ
れてしまい、いわゆる狭チャネル効果を生じる。このた
めに、トランジスタの電流駆動能力が低下してしまう問
題点があった。
Therefore, in order to prevent the formation of such a depletion layer, boron impurities are conventionally implanted into the isolation interface at a higher concentration than the substrate. Although the formation of a depletion layer can be prevented in this way, boron is diffused widely into the substrate in the heat treatment step immediately after doping with boron, resulting in a so-called narrow channel effect. For this reason, there is a problem in that the current driving ability of the transistor is reduced.

本発明は、隣接素子間リーク、同一素子内リーク、狭チ
ャネル効果を生じない半導体装置を提供することを目的
とする。
An object of the present invention is to provide a semiconductor device that does not cause leakage between adjacent elements, leakage within the same element, or narrow channel effect.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理図を示す。同図中、21は高濃度
層で、トレンチ6の側面上部に形成される素子活性領域
20より下側のみに形成する。
FIG. 1 shows a diagram of the principle of the present invention. In the figure, reference numeral 21 denotes a highly doped layer, which is formed only below the element active region 20 formed on the upper side of the trench 6.

12は固定電荷層で、トレンチ6内の絶縁膜7中で少な
くとも素子活性領域20に対向する部分に形成してなる
A fixed charge layer 12 is formed in at least a portion of the insulating film 7 in the trench 6 facing the element active region 20.

〔作用〕[Effect]

素子活性領域20の下側に例えばP+のボロンの高濃度
層21を形成しているので、基板とトレンチ内の酸化膜
7との界面に空乏層が形成されるのを防ぎ、これにより
、隣接素子間リークを防止できる。又、トレンチ内の酸
化膜7中に固定電荷[112を形成しているので、これ
が基板の空乏化を防ぎ、同一素子内リークを防止でき、
しかも、高m度FI421の不純物が横方向に広がるこ
とはないので狭チャネル効果を防止できる。
Since a high concentration layer 21 of, for example, P+ boron is formed below the element active region 20, it is possible to prevent a depletion layer from being formed at the interface between the substrate and the oxide film 7 in the trench. Inter-element leakage can be prevented. Furthermore, since a fixed charge [112] is formed in the oxide film 7 in the trench, this prevents depletion of the substrate and prevents leakage within the same element.
Moreover, since the impurities of the high m degree FI 421 do not spread laterally, the narrow channel effect can be prevented.

(実施例〕 第2図は第1図に示す半導体装dを製造する:[程の一
実施例を説明する図である。第2図(A)において、シ
リコン基板1の上に酸化シリコン膜2、窒化シリコン膜
3、CVD法による酸化シリコン膜4をこの順に形成し
、更に表面にレジスト膜5を形成する。次に同図(B)
において、レジスト膜5をマスクとしてエツチングを行
ない、更に、レジスト膜5を除去し、次に同図(C)に
示す如く、トレンチ6を形成する。
(Example) FIG. 2 is a diagram illustrating an example of manufacturing the semiconductor device d shown in FIG. 1. In FIG. 2. A silicon nitride film 3 and a silicon oxide film 4 are formed in this order by the CVD method, and a resist film 5 is further formed on the surface.Next, the same figure (B)
In this step, etching is performed using the resist film 5 as a mask, and then the resist film 5 is removed, and then a trench 6 is formed as shown in FIG.

次に、CvD−・酸化シリコン膜4を除去し、同図(D
)において、トレンチ6内に酸化膜7(500人〜10
00人)を形成し、次に、アルミニウム水溶液に浸すこ
とによって表面にアルミニウム分子膜8を形成する。次
に、同図(E)において、後で形成されるソース、ドレ
インのN+拡散層91、92(トレンチの側面上部に形
成される素子活性領域)より下側で、トレンチ6内に6
00℃の温度でポリ・ボロン・フィルム10を充填する
Next, the CvD- silicon oxide film 4 is removed and the same figure (D
), an oxide film 7 (500 to 10
00 persons) is formed, and then an aluminum molecular film 8 is formed on the surface by immersing it in an aluminum aqueous solution. Next, in FIG. 6(E), a 6-layer structure is formed in the trench 6 below the source and drain N+ diffusion layers 91 and 92 (device active regions formed on the upper side surfaces of the trench), which will be formed later.
The poly boron film 10 is filled at a temperature of 00°C.

次に同図(F)において、700℃の温度でトレンチ6
内にポリ・シリコン層11を埋込み形成する。このとき
、アルミニウム分子膜8からアルミニウムが酸化膜7に
拡散されてここに負電荷12(θで示す)が形成される
一方、ポリ・ボロン・フィルム10中のボロンが基板1
へ拡散され、P+の不純物層13が形成される。更に、
表面の窒化シリコン膜3を除去する。
Next, in the same figure (F), the trench 6 is heated at a temperature of 700°C.
A polysilicon layer 11 is embedded therein. At this time, aluminum is diffused from the aluminum molecular film 8 into the oxide film 7 and a negative charge 12 (indicated by θ) is formed there, while boron in the poly-boron film 10 is diffused into the oxide film 7.
A P+ impurity layer 13 is formed. Furthermore,
The silicon nitride film 3 on the surface is removed.

なお、負電荷12を形成する方法としては、上記の伯、
アルミニウムをイオン注入したり、アルミニウム薄膜を
形成して拡散したり、膜自身で負電荷をもつ膜を成長さ
せるようにしてもよい。
In addition, as a method of forming the negative charge 12, the above-mentioned method,
It is also possible to ion-implant aluminum, form a thin aluminum film and diffuse it, or grow a film that itself has a negative charge.

このように、本発明は、トレンチ内の素子活性領域の下
側にボロン不純物層13を形成したため、前述した隣接
素子間リークを防止でき、一方、本発明は、酸化膜7の
中に負電荷12を形成したため、基板1側には正゛占荷
が誘起されることになり、前述した同一素子内リークを
防止でき、又、不純物が横方向に広がることはないので
秋チャネル効果を防止できる。従来の場合のゲート電圧
対リーク電流特性は例えば第3図(△)に示ず如くであ
り、リーク電流は比較的高くばらついているが、本発明
の場合は同図([3)に示寸如くであり、リーク電流は
低く抑えられていることがわかる。
As described above, in the present invention, since the boron impurity layer 13 is formed under the element active region in the trench, the above-mentioned leakage between adjacent elements can be prevented. 12, positive loading is induced on the substrate 1 side, which prevents the leak within the same element as described above, and also prevents the fall channel effect since impurities do not spread laterally. . The gate voltage vs. leakage current characteristic in the conventional case is as shown in Figure 3 (△), for example, and the leakage current varies relatively high, but in the case of the present invention, the characteristics are as shown in Figure 3 ([3]). It can be seen that the leakage current is suppressed to a low level.

第4図は本発明装置を製造する工程の他の実施例を説明
する図である。このものは第4図<A)に至る工程まで
は第2図(A)〜(C)までの工程を用いる。第4図(
A)において、1〜レンチ内に酸化膜7を形成し、次に
、同図(B)において表面に窒化シリコン膜32を形成
する。次に、同図(C)において、窒化シリコン膜32
を異方性エツチングしてトレンチ6内の窒化シリコン膜
32を除去し、更に、拡散m91、92より下側で、ト
レンチ6内にC10法(Chemical Liqui
dDeposition、化学液相成長法)にてSOG
 (スピン・オン・グラス)層15を充填する。
FIG. 4 is a diagram illustrating another embodiment of the process for manufacturing the device of the present invention. This product uses the steps shown in FIGS. 2(A) to 2(C) up to the step leading to FIG. 4<A). Figure 4 (
In A), an oxide film 7 is formed in the trenches 1 to 1, and then a silicon nitride film 32 is formed on the surface in FIG. 1B. Next, in the same figure (C), the silicon nitride film 32
The silicon nitride film 32 in the trench 6 is removed by anisotropic etching, and the C10 method (Chemical Liquid
SOG using dDeposition, chemical liquid phase growth method)
(Spin-on-glass) layer 15 is filled.

次に、同図(D)において、表面に窒化シリコン膜33
を形成し、更に、同図(E)において、窒化シリコン膜
33を異方性エツチングし、又、SOG層15を除去す
る。このとき、底部の酸化膜7も除去される。次に、回
転イオン注入法でボロンを基板1に注入してP+の不純
物層13を形成するが、トレンチ内には上側が2つの窒
化シリコン膜32.33からなる厚い層、下側が窒化シ
リコン膜32のみからなる薄い層であるので、ボロンは
■側の窒化シリコン膜32を介して下側のみに注入され
、上側には注入されない。
Next, in the same figure (D), a silicon nitride film 33 is formed on the surface.
Further, as shown in FIG. 3E, the silicon nitride film 33 is anisotropically etched and the SOG layer 15 is removed. At this time, the oxide film 7 on the bottom is also removed. Next, boron is implanted into the substrate 1 using a rotational ion implantation method to form a P+ impurity layer 13. Inside the trench, there is a thick layer consisting of two silicon nitride films 32 and 33 on the upper side and a silicon nitride film on the lower side. Since it is a thin layer consisting only of 32, boron is implanted only into the lower side through the silicon nitride film 32 on the side 3, and is not implanted into the upper side.

次に、窒化シリコン膜3+ 、32.33を除去し、表
面にアルミニウム分子膜を形成し、熱処理を行なう。こ
れにより、同図(F)において、酸化膜7に負電荷12
が形成される。次に、トレンチ内にポリ・シリコン層1
1を形成する。
Next, the silicon nitride films 3+, 32 and 33 are removed, an aluminum molecule film is formed on the surface, and heat treatment is performed. As a result, in the same figure (F), the oxide film 7 has a negative charge of 12
is formed. Next, a polysilicon layer 1 is placed inside the trench.
form 1.

このものは、イオン注入で不純物層13を形成している
ので、第2図に示す熱処理による場合よりら深さやドー
ピング酒を高粘度に制御できる。
In this case, since the impurity layer 13 is formed by ion implantation, the depth and doping liquid can be controlled to a higher viscosity than in the case of the heat treatment shown in FIG.

その他の効果は第2図に示すものと同様である。Other effects are similar to those shown in FIG.

第5図は本発明装置を製造する工程の更に他の実施例を
説明する図である。このものは第5図(A)に至る工程
までは第4図(B)までの工程を用いる。第5図(A>
において、SOG膜15を充填した後、酸化シリコンM
 42をCVD法で形成し、更に、窒化シリコン膜33
を形成する。
FIG. 5 is a diagram illustrating still another embodiment of the process for manufacturing the device of the present invention. This product uses the steps up to FIG. 4(B) up to the step up to FIG. 5(A). Figure 5 (A>
After filling the SOG film 15, silicon oxide M
42 is formed by the CVD method, and a silicon nitride film 33 is further formed.
form.

次に、同図(B)において、窒化シリコン膜33を異方
性エツチングし、次に、同図(C)において、酸化シリ
コンlll342を全面エツチングし、残った窒化シリ
コンPA33をマスクとしてsoG膜15を除去する。
Next, the silicon nitride film 33 is anisotropically etched as shown in FIG. remove.

次に、窒化シリコン膜を全面エツチングすると、窒化シ
リコン膜33及び酸化シリコン膜42をマスクとして下
部の窒化シリコン膜32も同時に除去されて同図(D)
となる。次に、酸化シリコン膜42.4+及び下部の酸
化Wi7を除去して同図(E)とする。次に、同図(E
)において、ガス拡散又は固相拡散により、ボロンの不
純物層13を形成する。ガス拡散では、三塩化ボロン(
BCC10液体を用い、2B(、Ils→2B+3C2
zの化学反応でボロン(B)の不純物層13を形成し、
固相拡散では、窒化ボロン(BN)の固体を用い、28
N→2B+N2の化学反応でボロン(B)の不純物層1
3を形成する。次に、窒化シリコン膜3+ 、32を除
去し、同図(F)に示す如く酸化Ml 7に負電荷12
を形成し、ポリ・シリコン層11を形成する。
Next, when the entire surface of the silicon nitride film is etched, the lower silicon nitride film 32 is also removed at the same time using the silicon nitride film 33 and silicon oxide film 42 as a mask, as shown in FIG.
becomes. Next, the silicon oxide film 42.4+ and the oxidized Wi7 at the bottom are removed to form the same figure (E). Next, the same figure (E
), a boron impurity layer 13 is formed by gas diffusion or solid phase diffusion. In gas diffusion, boron trichloride (
Using BCC10 liquid, 2B(, Ils→2B+3C2
A boron (B) impurity layer 13 is formed by a chemical reaction of z,
In solid phase diffusion, solid boron nitride (BN) is used, and 28
Boron (B) impurity layer 1 is formed by the chemical reaction of N→2B+N2
form 3. Next, the silicon nitride films 3+ and 32 are removed, and as shown in FIG.
A polysilicon layer 11 is formed.

なお、上記各実施例は負電荷12を酸化膜7の全面(ト
レンチの側面及び底面)に形成した構成であるが、これ
に限定されるものではなく、第6図に示す如く、酸化膜
7の上部(トレンチの上部)のみに形成するようにして
もよい。この場合、アルミニウムをイオン注入する方法
を用い、その注入角度を所定角度つけることによりトレ
ンチの上部のみに形成する。
Although each of the above embodiments has a configuration in which the negative charges 12 are formed on the entire surface of the oxide film 7 (the side surfaces and the bottom surface of the trench), the present invention is not limited to this, and as shown in FIG. It may be formed only on the upper part of the trench (the upper part of the trench). In this case, a method of implanting aluminum ions is used, and the implantation angle is set at a predetermined angle, so that the trench is formed only in the upper part.

例えば、同図(A)において、後で拡散191。For example, in the same figure (A), diffusion 191 is performed later.

92を形成する際に同時に形成される空乏H16,。Depletion H16, which is formed simultaneously when forming 92.

162の下端より下方までのみ負電荷12を形成し、か
つ、不純物層13を空乏層161.162の下端に接し
ないように形成する。この場合、不純物層13が空乏層
161.162に接していないのでPN接合の耐圧を大
きくとり得、このように高耐圧を必要とする装置に最適
である。一方、同図(B)において、同図(A)と同様
に空乏層161.162の下端より下方までのみ負を荷
12を形成し、かつ、不純物層13を空乏層161゜1
62の下端より上方で拡散層91、92の下端より下方
に形成する。この場合、不純物lA13が空乏Ji11
61、162に接しているのでPN接合の耐圧は低く、
このように高耐圧を必要としない装置に最適である。
The negative charges 12 are formed only below the lower ends of the depletion layers 161 and 162, and the impurity layer 13 is formed so as not to contact the lower ends of the depletion layers 161 and 162. In this case, since the impurity layer 13 is not in contact with the depletion layers 161 and 162, the breakdown voltage of the PN junction can be increased, which is optimal for devices that require such a high breakdown voltage. On the other hand, in the same figure (B), similarly to the same figure (A), the negative load 12 is formed only from the lower end of the depletion layer 161.162, and the impurity layer 13 is
It is formed above the lower ends of the diffusion layers 91 and 92 and below the lower ends of the diffusion layers 91 and 92. In this case, impurity lA13 is depleted Ji11
Since it is in contact with 61 and 162, the withstand voltage of the PN junction is low.
In this way, it is ideal for devices that do not require high withstand voltage.

同図(C)は、拡散層91 、92の下端と不純物層1
3が接している例を示す。この場合は、接合耐圧はより
低くなるが、接合リーク電流低減の効果は、同図(A)
および(B)の場合と同様、著しいものがある。
The same figure (C) shows the lower ends of the diffusion layers 91 and 92 and the impurity layer 1.
An example where 3 are in contact is shown. In this case, the junction breakdown voltage will be lower, but the effect of reducing the junction leakage current will be as shown in the same figure (A).
As in the case of (B) and (B), there are significant cases.

又、上記各実施例は特にエピタキシャル層を用いた構成
ではないが、本発明は第7図に示すような高濃度基板1
7の上に低濃度エピタキシャル層18を形成した構成の
ものにも適用できる。第7図(A)において、高濃度基
板17の上に低濃度エピタキシャル層18を形成し、高
m度基板17まで形成したトレンチの側壁及び底部の酸
化117に負電荷12を形成する。一方、同図(b)に
おいて、同図(A)に示す基板17、エピタキシャル層
18の構成で、負電荷12を少なくともN+拡散層19
1 、192の下端まで形成する。
Further, although each of the above embodiments does not particularly use a structure using an epitaxial layer, the present invention is applicable to a highly concentrated substrate 1 as shown in FIG.
It can also be applied to a configuration in which a low concentration epitaxial layer 18 is formed on top of the epitaxial layer 7 . In FIG. 7A, a low concentration epitaxial layer 18 is formed on a high concentration substrate 17, and negative charges 12 are formed on the oxide 117 on the side walls and bottom of the trench formed up to the high concentration substrate 17. On the other hand, in the same figure (b), with the structure of the substrate 17 and the epitaxial layer 18 shown in the same figure (A), the negative charges 12 are at least transferred to the N+ diffusion layer 19.
1, 192 to the lower end.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、素子活性領域の下
側に例えばP+のボロンの高濃度層を形成しているので
、基板とトレンチ内の酸化膜との界面に空乏層が形成さ
れるのを防ぎ、これにより、隣接素子間リークを防止で
き、又、トレンチ内の酸化膜中に固定電荷を形成してい
るので、これが同一素子内リークを防止でき、しかも、
高atam21の不純物が横方向に広がることはないの
で狭ヂャネル効果を防止できる。
As explained above, according to the present invention, since a high concentration layer of, for example, P+ boron is formed below the element active region, a depletion layer is formed at the interface between the substrate and the oxide film in the trench. This prevents leakage between adjacent elements, and since fixed charges are formed in the oxide film within the trench, this prevents leakage within the same element.
Since impurities with high atam21 do not spread laterally, narrow channel effects can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明装置の¥!J造工稈の一実施例の図、第
3図は従来例及び本発明のゲート電圧対リーク電流特性
図、 第4図は本発明装置の製造工程の他の実施例の図、 第5図は本発明装置の製造工程の更に他の実施例の図、 第6図は本発明において負電荷をトレンチ上部のみに形
成づる実施例の図、 第7図は低濃度エピタキシャル層を用いた実施例の図で
ある。 図において、 1は基板、 3.3+ 、32.33は窒化シリコン膜、4.4+ 
、42は酸化シリコン膜、 6はトレンチ、 7は酸化膜、 8はアルミニウム分子膜、 91.92.191,192.20は素子活性領域、 10はポリ・ボロン・フィルム、 11はポリ・シリコン層、 12は負電荷(固定電荷層)、 13はボロン不純物層、 15はSOG膜、 161、162は空乏層、 17は高濃度基板、 18は低濃度エピタキシャル層、 21は高濃度層 を示す。 ビ 本袴明の厘理目 烙1図 外>eE(V)→        +−−シ五(V)→
才ミ」特グ]Xnオ崎をylのゲー戸殴耳りナリニ7酸
月に外陰b1第3図 第2図 1I4図 第S図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a diagram of the device of the present invention! A diagram of one embodiment of J artificial culm, FIG. 3 is a gate voltage vs. leakage current characteristic diagram of the conventional example and the present invention, FIG. 4 is a diagram of another embodiment of the manufacturing process of the device of the present invention, and FIG. 5 6 is a diagram of still another embodiment of the manufacturing process of the device of the present invention, FIG. 6 is a diagram of an embodiment in which negative charges are formed only in the upper part of the trench in the present invention, and FIG. 7 is an embodiment using a low concentration epitaxial layer. This is a diagram. In the figure, 1 is the substrate, 3.3+, 32.33 is the silicon nitride film, 4.4+
, 42 is a silicon oxide film, 6 is a trench, 7 is an oxide film, 8 is an aluminum molecule film, 91.92.191, 192.20 are element active regions, 10 is a poly-boron film, 11 is a poly-silicon layer , 12 is a negative charge (fixed charge layer), 13 is a boron impurity layer, 15 is an SOG film, 161 and 162 are depletion layers, 17 is a high concentration substrate, 18 is a low concentration epitaxial layer, and 21 is a high concentration layer. Bihon Hakama Akira's Rimoku 1 outside the diagram > eE (V) → +-- Shigo (V) →
[Special] Xn Osaki, yl's game door, listen to Nalini 7 acid moon, vulva b1 Fig. 3 Fig. 2 Fig. 1 I 4 Fig. S Fig.

Claims (5)

【特許請求の範囲】[Claims] (1)トレンチアイソレーシヨンの素子分離構造をもつ
半導体装置において、 トレンチ(6)の側面上部に形成される素子活性領域(
20)より下側のみの基板を高濃度層(21)にすると
共に、 該トレンチ(6)内の絶縁膜(7)中で少なくとも上記
素子活性領域(20)に対向する部分に固定電荷層(1
2)を形成してなることを特徴とする半導体装置。
(1) In a semiconductor device with a trench isolation element isolation structure, an element active region (
20), a high concentration layer (21) is formed on only the lower side of the substrate, and a fixed charge layer (21) is formed on at least a portion of the insulating film (7) in the trench (6) facing the element active region (20). 1
2) A semiconductor device comprising:
(2)該高濃度前(13)は、その上端が該素子活性領
域(9_1、9_2)形成によって形成される空乏層(
16_1、16_2)下端より下方に形成してなること
を特徴とする請求項1記載の半導体装置。
(2) Before the high concentration (13), the upper end thereof is a depletion layer (
16_1, 16_2) The semiconductor device according to claim 1, wherein the semiconductor device is formed below the lower end.
(3)該高濃度層(13)は、その上端が該素子活性領
域(9_1、9_2)形成によって形成される空乏層(
16_1、16_2)下端より上方で、かつ、該素子活
性領域(9_1、9_2)下端より下方に形成してなる
ことを特徴とする請求項1記載の半導体装置。
(3) The upper end of the high concentration layer (13) is a depletion layer (
2. The semiconductor device according to claim 1, wherein the device active regions (9_1, 9_2) are formed above the lower ends thereof and below the lower ends of the element active regions (9_1, 9_2).
(4)該高濃度層(13)は、その上端が該素子活性領
域(9_1、9_2)に接するように成ることを特徴と
する請求項2記載の半導体装置。
(4) The semiconductor device according to claim 2, wherein the high concentration layer (13) has its upper end in contact with the element active region (9_1, 9_2).
(5)該空間電荷層(12)は、該素子活性領域(9_
1、9_2)及び該空乏層(16_1、16_2)の両
方に対向する部分に形成してなることを特徴とする請求
項2又は3もしくは4記載の半導体装置。
(5) The space charge layer (12) is connected to the device active region (9_
5. The semiconductor device according to claim 2, wherein the semiconductor device is formed in a portion facing both the depletion layer (16_1, 16_2) and the depletion layer (16_1, 16_2).
JP63009458A 1988-01-21 1988-01-21 Semiconductor device Pending JPH01185936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63009458A JPH01185936A (en) 1988-01-21 1988-01-21 Semiconductor device
EP19890100464 EP0325161A3 (en) 1988-01-21 1989-01-13 Semiconductor device having trench isolation
KR8900438A KR920003317B1 (en) 1988-01-21 1989-01-17 Semiconductor device having trench isolation structure
US07/755,596 US5148247A (en) 1988-01-21 1991-09-05 Semiconductor device having trench isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009458A JPH01185936A (en) 1988-01-21 1988-01-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01185936A true JPH01185936A (en) 1989-07-25

Family

ID=11720843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009458A Pending JPH01185936A (en) 1988-01-21 1988-01-21 Semiconductor device

Country Status (4)

Country Link
US (1) US5148247A (en)
EP (1) EP0325161A3 (en)
JP (1) JPH01185936A (en)
KR (1) KR920003317B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093897A (en) * 2003-09-19 2005-04-07 Oki Electric Ind Co Ltd Semiconductor device, and manufacturing method thereof
JP2006269789A (en) * 2005-03-24 2006-10-05 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2010516058A (en) * 2007-01-09 2010-05-13 マックスパワー・セミコンダクター・インコーポレイテッド Semiconductor device and manufacturing method thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190230A (en) * 1989-12-20 1991-08-20 Fujitsu Ltd Semiconductor device and manufacture thereof
DE4127925C2 (en) * 1990-02-27 1994-01-13 Fraunhofer Ges Forschung Process for producing an isolated, single-crystalline silicon island
DE4006158A1 (en) * 1990-02-27 1991-09-12 Fraunhofer Ges Forschung METHOD FOR PRODUCING AN INSULATED, SINGLE-CRYSTAL SILICON ISLAND
DE4042334C2 (en) * 1990-02-27 1993-11-18 Fraunhofer Ges Forschung Process for producing an isolated, single-crystalline silicon island
US5149675A (en) * 1990-12-31 1992-09-22 Texas Instruments Incorporated Ring crystallization of wafers to prevent thermal shock
JPH05109762A (en) * 1991-05-16 1993-04-30 Internatl Business Mach Corp <Ibm> Semiconductor device and manufacture thereof
GB9219268D0 (en) * 1992-09-11 1992-10-28 Inmos Ltd Semiconductor device incorporating a contact and manufacture thereof
US5456952A (en) * 1994-05-17 1995-10-10 Lsi Logic Corporation Process of curing hydrogen silsesquioxane coating to form silicon oxide layer
US5693971A (en) 1994-07-14 1997-12-02 Micron Technology, Inc. Combined trench and field isolation structure for semiconductor devices
SE511826C2 (en) * 1997-03-26 1999-12-06 Ericsson Telefon Ab L M trench Isolation
US6326293B1 (en) * 1997-12-19 2001-12-04 Texas Instruments Incorporated Formation of recessed polysilicon plugs using chemical-mechanical-polishing (CMP) and selective oxidation
JP2000031264A (en) 1998-07-08 2000-01-28 Mitsubishi Electric Corp Semiconductor device and fabrication thereof
EP0973203A3 (en) * 1998-07-17 2001-02-14 Infineon Technologies AG Semiconductor layer with lateral variable doping and its method of fabrication
JP3540633B2 (en) * 1998-11-11 2004-07-07 株式会社東芝 Method for manufacturing semiconductor device
US6348394B1 (en) * 2000-05-18 2002-02-19 International Business Machines Corporation Method and device for array threshold voltage control by trapped charge in trench isolation
US6893923B2 (en) * 2001-03-21 2005-05-17 International Rectifier Corporation Reduced mask count process for manufacture of mosgated device
US7553740B2 (en) * 2005-05-26 2009-06-30 Fairchild Semiconductor Corporation Structure and method for forming a minimum pitch trench-gate FET with heavy body region
JP2007194259A (en) * 2006-01-17 2007-08-02 Toshiba Corp Semiconductor device, and method of manufacturing same
US8564057B1 (en) 2007-01-09 2013-10-22 Maxpower Semiconductor, Inc. Power devices, structures, components, and methods using lateral drift, fixed net charge, and shield
US8803195B2 (en) * 2007-08-02 2014-08-12 Wisconsin Alumni Research Foundation Nanomembrane structures having mixed crystalline orientations and compositions
WO2010065428A2 (en) 2008-12-01 2010-06-10 Maxpower Semiconductor Inc. Mos-gated power devices, methods, and integrated circuits
US8278691B2 (en) * 2008-12-11 2012-10-02 Micron Technology, Inc. Low power memory device with JFET device structures
WO2012006261A2 (en) * 2010-07-06 2012-01-12 Maxpower Semiconductor Inc. Power semiconductor devices, structures, and related methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463974A (en) * 1966-07-01 1969-08-26 Fairchild Camera Instr Co Mos transistor and method of manufacture
US3787251A (en) * 1972-04-24 1974-01-22 Signetics Corp Mos semiconductor structure with increased field threshold and method for making the same
JPS57159030A (en) * 1981-03-27 1982-10-01 Hitachi Ltd High withstand voltage semiconductor device
DE3467953D1 (en) * 1983-04-21 1988-01-14 Toshiba Kk Semiconductor device having an element isolation layer and method of manufacturing the same
JPS6043843A (en) * 1983-08-19 1985-03-08 Nec Corp Semiconductor device having dielectric isolating region
JPS6158266A (en) * 1984-08-29 1986-03-25 Toshiba Corp Semiconductor device and manufacture thereof
JPS6187358A (en) * 1984-10-05 1986-05-02 Nec Corp Semiconductor memory and manufacture thereof
JPS61154160A (en) * 1984-12-27 1986-07-12 Fujitsu Ltd Semiconductor memory device
JPH0666439B2 (en) * 1985-11-12 1994-08-24 日本電気株式会社 Semiconductor memory device
IT1189143B (en) * 1986-05-16 1988-01-28 Sgs Microelettronica Spa PROCEDURE FOR THE IMPLEMENTATION OF THE INSULATION OF INTEGRATED CIRCUITS WITH A VERY HIGH INTEGRATION SCALE, IN PARTICULAR IN MOS AND CMOS TECHNOLOGY
JPH0691212B2 (en) * 1986-10-07 1994-11-14 日本電気株式会社 Semiconductor memory

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093897A (en) * 2003-09-19 2005-04-07 Oki Electric Ind Co Ltd Semiconductor device, and manufacturing method thereof
JP4540320B2 (en) * 2003-09-19 2010-09-08 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
JP2006269789A (en) * 2005-03-24 2006-10-05 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2010516058A (en) * 2007-01-09 2010-05-13 マックスパワー・セミコンダクター・インコーポレイテッド Semiconductor device and manufacturing method thereof
JP2015092593A (en) * 2007-01-09 2015-05-14 マックスパワー・セミコンダクター・インコーポレイテッドMaxpower Semiconductor Inc. Semiconductor device

Also Published As

Publication number Publication date
US5148247A (en) 1992-09-15
EP0325161A3 (en) 1990-09-05
KR890012390A (en) 1989-08-26
EP0325161A2 (en) 1989-07-26
KR920003317B1 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
JPH01185936A (en) Semiconductor device
KR100476901B1 (en) Method of forming SOI(Silicon-On-Insulator) semiconductor substrate
US5401998A (en) Trench isolation using doped sidewalls
JP3157357B2 (en) Semiconductor device
JPH1012718A (en) Trench element isolation
JP2002076112A (en) Semiconductor element capable of reducing junction leakage current and narrow width effect and its manufacturing method
KR0157875B1 (en) Manufacture of semiconductor device
KR100397370B1 (en) Method for fabricating a integrated circuit having a shallow junction
US5943589A (en) Method of fabricating semiconductor device with a trench isolation
KR19980081139A (en) Method of forming a CMOS circuit device
JPH0425076A (en) Thin film transistor
KR100220251B1 (en) Semiconductor device and method of manufacturing the same
US5914517A (en) Trench-isolation type semiconductor device
JPH0621451A (en) Manufacture of semiconductor device
KR100327437B1 (en) Semiconductor device and Method for fabricating the same
KR20060027525A (en) Method of forming a semiconductor device having a recessed transistor channel region
JPS5846648A (en) Manufacture of semiconductor device
KR0140996B1 (en) Forming method of low dopping junction
JPH0235779A (en) Semiconductor device and manufacture thereof
KR100356793B1 (en) Method for fabricating bc-soi device
KR940007663B1 (en) Manufacturing method of mosfet
US20050095801A1 (en) Trench capacitor and method of manufacturing the same
JP2705583B2 (en) Method for manufacturing semiconductor device
KR900008620B1 (en) A method for producing dram
KR0151192B1 (en) Manufacture of semiconductor memory device