JPH01185816A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH01185816A
JPH01185816A JP1125588A JP1125588A JPH01185816A JP H01185816 A JPH01185816 A JP H01185816A JP 1125588 A JP1125588 A JP 1125588A JP 1125588 A JP1125588 A JP 1125588A JP H01185816 A JPH01185816 A JP H01185816A
Authority
JP
Japan
Prior art keywords
magnetization
coercive force
hysteresis loop
value
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1125588A
Other languages
Japanese (ja)
Inventor
Tomohiro Fukuichi
福市 朋弘
Koji Yabushita
籔下 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1125588A priority Critical patent/JPH01185816A/en
Publication of JPH01185816A publication Critical patent/JPH01185816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To increase output without increasing coercive force by specifying ratio between an area of the part enclosed by a straight line extending a magnetization saturation region, a demagnetization curve and a tangent near the coercive force of the demagnetization curve and the area of the part enclosed by a hysteresis loop. CONSTITUTION:The area of the part 4 enclosed by the straight line extending the magnetization saturation region, the demagnetization curve 11 and the tangent 3 near the coercive force of the demagnetization curve is designated as S1 and the area of the part 5 enclosed by the hysteresis loop 1 is designated as S2. The value of S1/S2 is set at about <=0.03. The hysteresis loop 1 in the direction perpendicular to the film plane is inclined overall by the diamagnetic field thereof but a head approaches the medium at the time of recording and reproducing of actual signals and, therefore, the diamagnetic field decreases and the hysteresis loop rises. The recorded magnetization (residual magnetization) increases if the value of S1/S2 is about <=0.03. The large output is thereby taken without increasing the coercive force.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は磁気記録媒体の一種である垂直磁気記録媒体
に関するものである。 〔従来の技術〕 高密度記録の一方式として垂直磁気記録方式が提案され
多くの研究がなされている。中でも信号再生出力を大き
くすることには大きな労力が注がれている。 従来例えばこの目的の為に垂直記録層の保磁力を大きく
する事が行なわれてきた。(古谷他「垂直記録媒体の記
録再生過程」日本応用磁気学会誌vo1.8.No、2
.1984 を参照)。保磁力ヲ大キくスる事により出
力が増大する理由は種々考えられるが、定性的には次に
示す要因もその1つであると考えられる。これを説明す
ると、飽和記録された媒体に、再生の為にヘッド(例え
ば単磁極ヘッド)が接近すると媒体の垂直記録層の膜面
垂直方向の反磁界は低減する。ここで反磁界とは磁性体
において、その幾何学的形状と磁化の大きさに依存する
磁界であり、概念的には磁化の方向の長さが長い程小さ
く、短かい程大きい。従って垂直記録層の様に膜面垂直
方向に磁化が向いている場合には、磁化が他の方向を向
いている場合と比較して、最も大きな反磁界を生じてい
る。この様な処へ、磁性体であるヘッドが近づくと、磁
化周辺の幾何学的形状が変化するので反磁界は低減する
のである。 さて、この様な状態でヘッドが感じる磁化は第2図での
残留磁化Mrに相当する。但し、第2図はヘッドが近接
しているときの膜面垂直方向の垂直記録層の皿曲線(磁
化と印加磁界の関係)のメジャーループ(−旦磁化を飽
和させたループ]である。今、媒体の垂直記録層の他の
条件、例えば飽和磁化Msを等しくして、保磁力を大き
くしてHc’とすると残留磁化はMr’の様になり、M
r’ > Mrとなる。したがってこの場合には、ヘッ
ドが感じる磁化はHcの大きい媒体の方が大きく、よっ
て再生出力は増大する。 しかし保−力の大きな媒体は記録効率が悪く、例えば重
ね書き特性(旧データを一旦消去することなく新データ
をその上に重ねて書き、旧データを消す特性)の悪化を
招く。これは、媒体の保磁力が大きい場合にはヘッドか
らの記録磁界が垂直記録層の膜面垂直方向の保母力に打
ち勝って記録磁化を形成するには不充分であり、
[Industrial Application Field] The present invention relates to a perpendicular magnetic recording medium, which is a type of magnetic recording medium. [Prior Art] A perpendicular magnetic recording system has been proposed as a high-density recording system, and much research has been conducted thereon. In particular, a great deal of effort has been put into increasing the signal reproduction output. Conventionally, for this purpose, the coercive force of the perpendicular recording layer has been increased. (Furuya et al. “Recording and reproducing process of perpendicular recording media” Journal of the Japan Society of Applied Magnetics vol. 1.8. No. 2
.. 1984). There are various possible reasons why the output increases due to the increase in coercive force, but qualitatively, the following factors are considered to be one of them. To explain this, when a head (for example, a single-pole head) approaches a saturated recording medium for reproduction, the demagnetizing field in the direction perpendicular to the film surface of the perpendicular recording layer of the medium is reduced. Here, the demagnetizing field is a magnetic field that depends on the geometrical shape and magnitude of magnetization in a magnetic material; conceptually, the longer the length in the direction of magnetization, the smaller it is, and the shorter it is, the larger it is. Therefore, when the magnetization is oriented in a direction perpendicular to the film surface as in a perpendicular recording layer, the largest demagnetizing field is generated compared to when the magnetization is oriented in other directions. When the head, which is a magnetic material, approaches such a place, the geometrical shape around the magnetization changes, and the demagnetizing field is reduced. Now, the magnetization felt by the head in this state corresponds to the residual magnetization Mr in FIG. However, Figure 2 shows the major loop (a loop in which the magnetization is saturated by -1) of the dish curve (relationship between magnetization and applied magnetic field) of the perpendicular recording layer in the direction perpendicular to the film surface when the head is close. , other conditions of the perpendicular recording layer of the medium, for example, if the saturation magnetization Ms is made equal and the coercive force is increased to Hc', the residual magnetization becomes Mr', and M
r'> Mr. Therefore, in this case, the magnetization felt by the head is greater for the medium with a higher Hc, and the reproduction output increases accordingly. However, a medium with high retention strength has poor recording efficiency, resulting in, for example, deterioration of overwrite characteristics (a characteristic in which new data is written on top of old data without first erasing it, thereby erasing old data). This is because when the coercive force of the medium is large, the recording magnetic field from the head is insufficient to overcome the coercive force in the direction perpendicular to the film surface of the perpendicular recording layer and form recorded magnetization.

【交流
】消去状態の媒体にはある程度書き込めても、記録状態
の媒体にはその記録磁化を書きかえるだけの磁界が充分
発生できないこと等が原因である。これを図面で説明す
ると、第3図の点線はヘッドが近接している時の膜面垂
直方向の垂直記録層のMH凸曲線メジャーループである
。 第3図(a)図のように交流消去された媒体を磁化する
場合には磁化は原点Oで示され、ヘッドの記録磁界を一
旦正に発生させた後に記録磁界を除くと磁化の状態は矢
印で示される様に変化し、磁化は点Aで示される大きさ
を持つ。 一方、(b)図で示される様に当初負の磁化Bをもって
いる媒体を正に書きかえようとヘッドの記録磁界を正に
しても磁界を取り除いtこ後に残つ1こ磁化NはBと符
号が同じであり、書きかえられていそCで保磁力を増大
させることなく出力を大きくすることが望まれていた。 この発明は上記のような問題点を解決するためになされ
たもので保磁力を増大させることなく出力が大きくとれ
る垂i′!!磁気記録媒体を提供するここの発明に係る
垂直磁気記録媒体は垂直磁気記録層の少なくともその表
面近傍での膜面垂直方向のヒステリシスループ(1]に
おいて、磁化飽和領域を延長した直線(わと、減磁曲線
0と、減磁曲線の保磁力近傍における接線(3)とで囲
まれた部分(4)の面積を81、ヒステリシスループ(
13で囲まれた部分(5)の面積を82として、s+、
、’s*の値が0.0]程度以下であることを特徴とし
たものである。 〔作用〕 この発明において、膜面垂直方向のヒステリシスループ
(υはその反磁界の為に全体的に傾斜するが、実際の信
号の記録再生時にはヘッドが近接するため、前述のよう
に反磁界は低減し、ヒステリシスループは立ってくる。 この時S、/S、の値が0.0]程度以下であると、記
録された磁化(残留磁化)は大きくなる。 し発明の実施例〕 以下、この発明の一実施例を図について説明する。第1
図において(υは垂@磁気記創17)の膜面垂直方向の
ヒステリシスループ、(2)は磁化飽和領域を延長した
直線、σ旧よ減磁曲線、(3)は減磁曲線の保磁力近傍
における接線、(4)は磁化飽和領域を延長した直線(
21と減磁曲線αυと減磁曲線の保磁力近傍における接
線で囲まれた部分、(5)はヒステリシスループ(υで
囲まれた部分である。 まず、ヘッドが媒体に信号を記録する場合にはヘッドが
近接した状態において、媒体膜面垂直方向の反磁界は低
減されてヒステリシスループはその傾斜が小さくなる。 この様子を第2図に示し、ている通りである。この状態
で保磁力より充分大きな記録磁界を印加することにより
媒体の垂直方向の磁化が飽和する。ヘッドと媒体が相対
的に移動して反磁界が復帰し、記録磁界が減少すると記
録された磁化は第1図において残留磁化(8)として表
わされる。次に再生時にはヘッドが近接することにより
反磁界が低減されてヒステリシスループは第2図のよう
になり、記録磁化は残留磁化(8)として表わされ、こ
の大きさにほぼ比例した出力が再生される。よって第2
図における残留磁化(81の値を大きくすることが望ま
しい。従来の長手方向記録媒体においては垂直磁気記録
媒体と異なり、その反磁界は無視できるので、ヘッドの
近接、離れなどによるヒステリシスループの形状変化は
無視でき、(残留磁化)/(飽和磁化〕の比を角形比と
称していた。(この直が1に近い万が出力は大きくとれ
る。〕しかし本発明における(4)のits。 と(5)の面!SsD比S、/S、はこの従来の角形比
を単に表現しなおしtこものではない。従来の角形比は
ヘッドの位置にかかわらずほぼ一定の値をとる媒体固有
の社であった。これを垂直磁気記録層の示標として用い
ると、その値は、今注目している媒体の一部分に対して
ヘッドがどの位置にあるかにより大きく変わる。これは
第1図と@2図を比較しても明らかである。即ち媒体固
有の値ではない。 しかもヘッドがその使用状態に、媒体の注目した一部分
に最も近づいた場合でも反磁界は無視できる大きさとは
ならず、換言すればヘッドの使用状態(スペーシングな
ど〕によっても反磁界の大きさは異なり、したがって角
形比も異なる値をとる。 また、ヘッド近接時の朋カーブは容易には測定できない
。 一万、S1/ S、の値は媒体固着の値であり、その根
拠1こるMHカーブは容易に測定でき、かつ実際の使用
状態における残留−化の艮好さを表現することができ、
垂直磁気記録媒体の示標fこりえるものである。 S1/S、の値を0.03程反以下に抑さえて本発明を
実現するにはいろいろな手段が考えられるが、例えば次
の様にして実現できる。 第4図において表面が陽極酸化されたアルミ合金の上に
公知のスパッタリング法でFe 、 Niを主成分とし
た軟磁性)tjJ ff1llを設ける。例えばMoC
u −FeNi(Ni含有率80ωt%、Cu5ωt%
0Mo3cB%)合金をターゲットにして0.5μm程
度設ける。更にこの表面にスパッタリング法で非晶質口
を設ける。例えばSingをターゲットにして0.02
μm程曳設ける。 更にこの表面に垂直磁気記録17)を設ける。例えばC
oCr  (Cr含有率20ωt%〕合金をターゲット
として0.3μm程度設ける。 この様にして作製した垂直磁気記録層(7)のSL/S
2の値はo、oosであった。 また第4図において上記例と同様にしてCoZrNb(
ZnlOωt%、Nb5ωt%〕をターゲットとしたス
パッタ膜を軟磁性庸旬に設ける。更にこの表面にCoC
r (Cr 20ωt%)合金をターゲットとしたスパ
ッタ膜を垂直磁気記録層に設ける(0.3μm)この様
にして作製した媒体のS、/S、の値は0.02であっ
た。 −万、第5図において、表面が陽極酸化されたアルミ合
金の上にスパッタリング法でFe 、 Niを主成分と
した軟磁性層−を設ける。例えばMoCu −FeNi
(Ni含有率80(lJt%、Cu5ωt%9Mo3ω
t%〕合金をターゲットにして0.5μm程度設ける。 更にこの表面に垂直磁気記録@ (7)を設ける。例え
ばCoCr(Cr含有率20ωt%〕合金をターゲット
として0.3μm程度設ける。 この様にして作製した垂直磁気記録M(7)のS、/S
2の値は0.04であった。 これら2種の垂直磁気記録媒体について、主磁極励磁型
単磁極ヘッドを用いて録再特性を測定したところ、記録
密度20KFRPIにおいて第6図に示す結果を得た。 また、録再出力は前述のようにその保−力にも大きく依
存するので保磁力は約300〜約8000e程友である
ことが望ましい。保磁力が3000e以下であると出力
の著るしい低下を招くのみならず、ヒステリシスループ
の形状は原点付近で大きく変わり、S1/S、が定義で
きない場合もある。なお5OOOe以上では実際上記録
が困難である。tコとえば第7図のようになる。また飽
和磁化が大きいと、S1/S、の値が同じならば第2図
の残留磁化(8)の値も大きいので約200〜約700
 emu/。。程度にあることが望ましい。 〔発明の効果〕 以上のようにこの発明によればs、/’ s2の値を0
.03程度以下にしたので、再生時の残留磁化の値が飽
和磁化の値に近くなり、再生出力が大きくなるという利
点がある。
[Alternating current] This is caused by the fact that even though it is possible to write to a certain extent on a medium in an erased state, a sufficient magnetic field cannot be generated to rewrite the recorded magnetization on a medium in a recorded state. To explain this with a drawing, the dotted line in FIG. 3 is the MH convex curve major loop of the perpendicular recording layer in the direction perpendicular to the film surface when the head is close. When magnetizing a medium that has been erased by AC as shown in Figure 3(a), the magnetization is indicated by the origin O, and once the recording magnetic field of the head is generated positively and then the recording magnetic field is removed, the state of magnetization is It changes as shown by the arrow, and the magnetization has the magnitude shown at point A. On the other hand, as shown in figure (b), even if the recording magnetic field of the head is made positive in order to rewrite the medium that initially has negative magnetization B to positive, the one magnetization N that remains after the magnetic field is removed is B. Since the signs are the same, it was desired to increase the output without increasing the coercive force by rewriting the code C. This invention was made to solve the above-mentioned problems, and it is possible to obtain a large output without increasing the coercive force. ! The perpendicular magnetic recording medium according to the present invention which provides a magnetic recording medium has a hysteresis loop (1) in the direction perpendicular to the film plane at least in the vicinity of the surface of the perpendicular magnetic recording layer, in which a straight line (wato, The area of the part (4) surrounded by the demagnetization curve 0 and the tangent line (3) near the coercive force of the demagnetization curve is 81, and the hysteresis loop (
Assuming that the area of the part (5) surrounded by 13 is 82, s+,
, 's* is about 0.0] or less. [Operation] In this invention, the hysteresis loop (υ) in the direction perpendicular to the film surface is tilted overall due to the demagnetizing field, but since the head approaches during actual signal recording and reproduction, the demagnetizing field is When the value of S, /S, is about 0.0 or less, the recorded magnetization (residual magnetization) becomes large.Examples of the Invention] Below, An embodiment of this invention will be explained with reference to the figures.
In the figure, (υ is the hysteresis loop in the direction perpendicular to the film surface of vertical @ magnetic recording 17), (2) is the straight line extending the magnetization saturation region, σ is the demagnetization curve, and (3) is the coercive force of the demagnetization curve. The tangent line in the vicinity (4) is the straight line extending the magnetization saturation region (
21, the demagnetization curve αυ, the part surrounded by the tangent of the demagnetization curve near the coercive force, and (5) is the hysteresis loop (the part surrounded by υ).First, when the head records a signal on the medium, When the head is close to the head, the demagnetizing field in the direction perpendicular to the media surface is reduced and the slope of the hysteresis loop becomes smaller.This situation is shown in Figure 2.In this state, the coercive force By applying a sufficiently large recording magnetic field, the perpendicular magnetization of the medium is saturated.As the head and medium move relative to each other, the demagnetizing field returns, and when the recording magnetic field decreases, the recorded magnetization remains as shown in Figure 1. It is expressed as magnetization (8).Next, during reproduction, the demagnetizing field is reduced by the proximity of the head, resulting in a hysteresis loop as shown in Figure 2, and the recorded magnetization is expressed as residual magnetization (8), and this large The output that is approximately proportional to the second
It is desirable to increase the value of residual magnetization (81) in the figure. In conventional longitudinal recording media, unlike perpendicular magnetic recording media, the demagnetizing field can be ignored, so the shape of the hysteresis loop changes due to the approach or separation of the head, etc. can be ignored, and the ratio of (residual magnetization)/(saturation magnetization) is called the squareness ratio. (If this ratio is close to 1, the output can be large.)However, in the present invention, (4) is. 5) The SsD ratio S, /S is not simply a re-expression of this conventional squareness ratio.The conventional squareness ratio is a characteristic characteristic of the medium that takes a nearly constant value regardless of the position of the head. When this is used as an indicator of the perpendicular magnetic recording layer, its value varies greatly depending on the position of the head with respect to the part of the medium that is currently being focused on.This is shown in Figure 1 and @ It is clear from comparing Figure 2. In other words, it is not a value unique to the medium.Moreover, even when the head is in its operating state, when it is closest to the part of the medium that is of interest, the demagnetizing field is not negligible; Then, the magnitude of the demagnetizing field will vary depending on the usage conditions of the head (spacing, etc.), and the squareness ratio will therefore take a different value.Also, the curve when the head is close cannot be easily measured.10,000, S1/ The value of S is the value of medium adhesion, and the basis for this is that the MH curve can be easily measured and can express the degree of residual formation under actual usage conditions.
This is an indicator of perpendicular magnetic recording media. Various means can be considered to realize the present invention by suppressing the value of S1/S to about 0.03 or less, and for example, it can be realized as follows. In FIG. 4, a soft magnetic material containing Fe and Ni as main components is provided on an aluminum alloy whose surface has been anodized by a known sputtering method. For example, MoC
u -FeNi (Ni content 80ωt%, Cu5ωt%
A thickness of about 0.5 μm is provided using a target of 0Mo3cB%) alloy. Furthermore, an amorphous opening is provided on this surface by sputtering. For example, target Sing and use 0.02
Provide a distance of approximately μm. Furthermore, perpendicular magnetic recording 17) is provided on this surface. For example, C
oCr (Cr content: 20 ωt%) alloy is used as a target to provide a thickness of about 0.3 μm. SL/S of the perpendicular magnetic recording layer (7) prepared in this way
The value of 2 was o, oos. In addition, in FIG. 4, CoZrNb (
A sputtered film targeting ZnlOωt%, Nb5ωt%] is provided on a soft magnetic layer. Furthermore, CoC is added to this surface.
A sputtered film targeting r (Cr 20ωt%) alloy was provided on the perpendicular magnetic recording layer (0.3 μm), and the value of S, /S, of the medium thus produced was 0.02. In FIG. 5, a soft magnetic layer mainly composed of Fe and Ni is provided by sputtering on an aluminum alloy whose surface is anodized. For example, MoCu-FeNi
(Ni content 80 (lJt%, Cu5ωt%9Mo3ω
t%] The alloy is used as a target, and a thickness of about 0.5 μm is provided. Furthermore, perpendicular magnetic recording @ (7) is provided on this surface. For example, a CoCr (Cr content: 20 ωt%) alloy is used as a target to provide a thickness of about 0.3 μm.
The value of 2 was 0.04. When the recording and reproducing characteristics of these two types of perpendicular magnetic recording media were measured using a main pole excitation type single magnetic pole head, the results shown in FIG. 6 were obtained at a recording density of 20 KFRPI. Further, since the recording/reproducing output largely depends on the coercive force as mentioned above, it is desirable that the coercive force is in the range of about 300 to about 8000 e. If the coercive force is less than 3000e, not only will the output drop significantly, but the shape of the hysteresis loop will change greatly near the origin, and S1/S may not be defined. It should be noted that recording is difficult in practice if it is 5000e or more. For example, it will look like the one shown in Figure 7. Also, if the saturation magnetization is large, the value of residual magnetization (8) in Figure 2 is also large if the value of S1/S is the same, so it is about 200 to about 700.
emu/. . It is desirable that it be at a certain level. [Effect of the invention] As described above, according to this invention, the value of s, /' s2 can be set to 0.
.. Since the value is set to about 0.03 or less, the value of residual magnetization during reproduction becomes close to the value of saturation magnetization, which has the advantage that the reproduction output becomes large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を説明するための膜面垂直方向のヒス
テリシスループを示す図、第2図はヘツドが近接するこ
とにより反億界が低減したヒステリシスループ、第3図
は重ね書きの様子を示したループを示す図、第4図はこ
の発明の一実施例を示す垂直磁気記録媒体の断面図、第
5図は従来の垂直磁気記録媒体の断面図である。 (1)・・・膜面垂直方向のヒステリシスループ、(2
)・・・磁化飽和領域を延長した直線、(3)・・・減
磁曲線の保億力近傍における接線、(6)・・・基板、
關・・・軟磁性層、1・・・非晶質層、(7)・・・垂
直磁気記録層。 なお、図中同一符号は、同−又は相当部分を示す。
Fig. 1 is a diagram showing a hysteresis loop in the direction perpendicular to the film surface to explain this invention, Fig. 2 is a hysteresis loop in which the reciprocal field is reduced due to the proximity of the heads, and Fig. 3 is a diagram showing the state of overwriting. FIG. 4 is a sectional view of a perpendicular magnetic recording medium showing an embodiment of the present invention, and FIG. 5 is a sectional view of a conventional perpendicular magnetic recording medium. (1) Hysteresis loop in the direction perpendicular to the film surface, (2
)... Straight line extending the magnetization saturation region, (3)... Tangent line near the coercive force of the demagnetization curve, (6)... Substrate,
關...Soft magnetic layer, 1... Amorphous layer, (7)... Perpendicular magnetic recording layer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  基板(6)上に設けた垂直磁気記録層(7)の膜面垂
直方向のヒステリシスループ(1)において、磁化飽和
領域を延長した直線(2)と、減磁曲線(11)と、減
磁曲線の保磁力近傍における接線(3)とで囲まれた部
分(4)の面積をS_1、ヒステリシスループ(1)で
囲まれた部分(5)の面積をS_2として、S_1/S
_2の値が0.03程度以下であることを特徴とした垂
直磁気記録媒体。
In the hysteresis loop (1) in the direction perpendicular to the film surface of the perpendicular magnetic recording layer (7) provided on the substrate (6), the straight line (2) extending the magnetization saturation region, the demagnetization curve (11), and the demagnetization The area of the part (4) surrounded by the tangent line (3) near the coercive force of the curve is S_1, and the area of the part (5) surrounded by the hysteresis loop (1) is S_2, and S_1/S
A perpendicular magnetic recording medium characterized in that the value of _2 is about 0.03 or less.
JP1125588A 1988-01-20 1988-01-20 Perpendicular magnetic recording medium Pending JPH01185816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125588A JPH01185816A (en) 1988-01-20 1988-01-20 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125588A JPH01185816A (en) 1988-01-20 1988-01-20 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01185816A true JPH01185816A (en) 1989-07-25

Family

ID=11772830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125588A Pending JPH01185816A (en) 1988-01-20 1988-01-20 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01185816A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102419A (en) * 1985-10-28 1987-05-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Vertical magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102419A (en) * 1985-10-28 1987-05-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
US4126494A (en) Magnetic transfer record film
EP0400970B1 (en) Perpendicular magnetic recording medium and production method thereof
US5920449A (en) Recording head for single layer magnetic film perpendicular magnetization medium
US4202022A (en) Magnetic transfer record film and apparatus for magneto-optically reading magnetic record patterns using the same
JP3344651B2 (en) Method of manufacturing magnetic recording medium using master information carrier
JPS63166008A (en) Magnetic anisotropic recording medium
JPH11250416A (en) Thin film magnetic head
JPH01185816A (en) Perpendicular magnetic recording medium
JPH0237501A (en) Magnetic recording system and magnetic recording device
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP2615144B2 (en) Magnetic recording media
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPH0373921B2 (en)
JP2659708B2 (en) Magneto-optical memory media
JPS61258322A (en) Magneto-resistance effect head
JP2511997B2 (en) Magnetic recording media
JP3139301B2 (en) Magnetic recording / reproducing device
JP2508639B2 (en) Perpendicular magnetic recording media
JPH04285723A (en) Vertical magnetic recording medium
JPS6055535A (en) Photomagnetic recording medium
JPS6029926A (en) Vertical magnetic recording medium
JPS61131228A (en) Vertical magnetic recording medium
JPS63213102A (en) Magnetic head
Toda et al. Write ard Read Characteristics in Combination with a Single Pole Type Thin Film Head and a Double Layer Rigid Disk for Perpendicular Magnetic Recording
JPS6139250A (en) Recording medium and its recording and reproducing method