JPS63213102A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS63213102A
JPS63213102A JP4549087A JP4549087A JPS63213102A JP S63213102 A JPS63213102 A JP S63213102A JP 4549087 A JP4549087 A JP 4549087A JP 4549087 A JP4549087 A JP 4549087A JP S63213102 A JPS63213102 A JP S63213102A
Authority
JP
Japan
Prior art keywords
magnetic
core
magnetic flux
iron
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4549087A
Other languages
Japanese (ja)
Inventor
Chizuko Wakabayashi
若林 千鶴子
Takayuki Matsumoto
隆幸 松本
Nobuyuki Okumura
奥村 延行
Nobuyuki Ishiwata
延行 石綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP4549087A priority Critical patent/JPS63213102A/en
Publication of JPS63213102A publication Critical patent/JPS63213102A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To increase the saturation density of a magnetic core and to generate the strong magnetic flux conforming to magnetomotive force by holding the magnetic core part, which is formed by sandwiching a thin iron film having a high saturation magnetic flux density with iron alloy films, by a pair of soft magnetic material blocks. CONSTITUTION:A magnetic head 10 has the magnetic core 11 at the center and the core 11 is sandwiched by a pair of the soft magnetic material blocks 12, 12'. More specifically, the core 11 has the iron film 111 having 21.5KG saturation magnetic flux density at the center and is formed by sandwiching the iron film by the iron alloy films 112, 112' having the compsn. Fe.X in which X is any one among Al, Ta, Ti, Cr, Nb, Zr, Co, Ni, Pd, Pt, Au, C, Si, and Ge and having about 18-20KG saturation magnetic flux density. The core 11 has the extremely high saturation magnetic flux density. The blocks 12, 12' formed of a soft magnetic material such as ferrite or 'Permalloy(R)' to an L shape hold the magnetic core 11 consisting of the iron film 111 and the iron alloy films 112, 112' in placer from both sides at the root end part of the L shape thereof. The magnetic field to be impressed to a recording medium is thereby generated at the sufficient intensity necessary for high-density recording.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、磁界変調方式により情報信号を光磁気記録
する際に用いられる磁界変調用磁気ヘッドの改良構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an improved structure of a magnetic head for magnetic field modulation used when magneto-optically recording information signals using a magnetic field modulation method.

従来の技術 消去・書き換え可能な光ディスクとして光磁気ディスク
がある。この光磁気ディスクへの情報の記録方式には大
別して2つある。1つは光変調方式であり、他の1つは
磁界変調方式である。光変調方式は、記録したい方向に
直流磁界を与えておき、記録信号で媒体に照射するレー
ザ光を変調し、光の点滅に変換して記録するものである
。一方、磁界変調方式では、レーザ光は常に連続照射し
ておき、記録信号で媒体に印加する磁界を変調し、その
方向を信号に応じて反転させて磁化を形成する。一般に
は、前者の方が開発の主流を占めていた。
2. Description of the Related Art Magneto-optical disks are known as erasable and rewritable optical disks. There are two main methods for recording information on this magneto-optical disk. One is an optical modulation method, and the other is a magnetic field modulation method. In the optical modulation method, a DC magnetic field is applied in the direction in which recording is desired, and the laser light irradiated onto the medium is modulated with a recording signal to convert it into blinking light for recording. On the other hand, in the magnetic field modulation method, laser light is always continuously irradiated, the magnetic field applied to the medium is modulated by a recording signal, and its direction is reversed according to the signal to form magnetization. In general, the former has dominated development.

光変調方式では、消去時には、記録媒体のトラツクに直
流レーザ光を照射しつつ一定方向の磁界を与えることに
よって消去動作が行われる。これは、再書き込み動作を
行う前に記録トラックの情報を一度消去しておく方法で
ある。この光変調方式では、新しい情報を記録するとき
に記録トラックの古い情報を消去モードによって予め消
去しなければならず、いわゆるオーバーライドと呼ばれ
る重ね書きができない。
In the optical modulation method, the erasing operation is performed by applying a magnetic field in a fixed direction while irradiating the tracks of the recording medium with a direct current laser beam. This is a method of erasing information on a recording track once before performing a rewriting operation. In this optical modulation method, when recording new information, old information on a recording track must be erased in advance using an erase mode, and so-called overwriting cannot be performed.

これに対して磁界変調方式では、その記録原理上、他の
磁気記録と同様に、古い情報が書き込まれた記録トラッ
クの上に直接新しい情報を書き込むことができる。すな
わち、即時に新しい情報を重ね書きできる。したがって
、別設消去動作を行うためのモードを設定する必要はな
く、即時オーバーライドが可能である。そのため、緊急
時の重ね書きが要求される場合の記録方式として有利で
あり、注目され始めている。
On the other hand, in the magnetic field modulation method, due to its recording principle, new information can be written directly onto a recording track where old information has been written, similar to other magnetic recording methods. In other words, new information can be immediately overwritten. Therefore, there is no need to set a mode for performing a separate erase operation, and immediate override is possible. Therefore, it is advantageous as a recording method when overwriting is required in an emergency, and it is beginning to attract attention.

この磁界変調方式に用いられる磁気ヘッド1は、従来第
2図に示すように、フェライト等の比較的飽和磁束密度
が低い軟磁性体により中央に磁心コア1aを有する単体
のE形状ブロック体に形成され、磁心コア1aの周りに
励磁用コイル1bを巻き付けて装着したものであった。
The magnetic head 1 used in this magnetic field modulation method is conventionally formed into a single E-shaped block body having a magnetic core 1a in the center made of a soft magnetic material such as ferrite with a relatively low saturation magnetic flux density, as shown in FIG. The excitation coil 1b was wound around the magnetic core 1a.

この磁気ヘッド1は、第3図に示すように、媒体面にレ
ーザ光を照射する光ヘッド2と記録媒体3を挟んで対向
し、磁心コア1aの先端部と媒体面との間には0.1〜
0.2 mm程度のギャップが設定され、非接触で情報
の記録が行われる。これは、媒体との摺接による相互の
摩耗、損耗、傷等を避けるためである。
As shown in FIG. 3, this magnetic head 1 faces an optical head 2 that irradiates a laser beam onto a medium surface with a recording medium 3 in between, and there is no space between the tip of a magnetic core 1a and the medium surface. .1~
A gap of about 0.2 mm is set, and information is recorded without contact. This is to avoid mutual wear, damage, damage, etc. due to sliding contact with the medium.

発明が解決しようとする問題点 ところが、非接触で情報を記録する場合、コイル1bへ
高周波電流を通電し、ヘッドを励磁して磁心コア1aか
ら磁束を生じさせ、媒体へ磁界を印加するのであるが、
そのときに生ずる磁界の強さは媒体との距離の2〜3乗
程度に反比例して弱くなることが知られている。そのた
め、記録媒体を磁化させるに必要な強い磁界強度を得よ
うとすれば、磁気ヘッドの起磁力を上げ、磁心コア1a
の部分から十分に強い磁束を生じさせるようにすること
か必要である。なお、記録媒体に与える印加磁界の強度
としては、媒体面上で150〜200(Oe)(エルス
テッド)程度の大きさが要求される。
Problems to be Solved by the Invention However, when recording information in a non-contact manner, a high-frequency current is passed through the coil 1b, the head is excited, a magnetic flux is generated from the magnetic core 1a, and a magnetic field is applied to the medium. but,
It is known that the strength of the magnetic field generated at this time decreases in inverse proportion to the second to third power of the distance to the medium. Therefore, in order to obtain a strong magnetic field strength necessary to magnetize the recording medium, the magnetomotive force of the magnetic head is increased and the magnetic core 1a
It is necessary to generate a sufficiently strong magnetic flux from this part. Note that the strength of the magnetic field applied to the recording medium is required to be approximately 150 to 200 (Oe) (Oersteds) on the surface of the medium.

しかしながら、従来の磁気ヘッドの構造は、全体が単体
ブロック形状であることは勿論の事、特に磁心コア1a
の部分が5〜8KG (キロガウス)程度の飽和磁束密
度Bsが低いフェライト等の軟磁性材によって形成され
ていたので、起磁力を上げるためにコイル1bにいくら
高周波電流を流したとしても、飽和磁束密度の低さのた
めに磁心コア1aがあるレベルで飽和してしまい、それ
以上起磁力を上げてもそれに見合った磁束を生じさせる
ことができなかった。
However, the structure of the conventional magnetic head is, of course, entirely in the form of a single block, and in particular, the structure of the magnetic core 1a is
Since the part is made of a soft magnetic material such as ferrite with a low saturation magnetic flux density Bs of about 5 to 8 KG (kilogauss), no matter how much high-frequency current is passed through the coil 1b to increase the magnetomotive force, the saturation magnetic flux will decrease. Due to the low density, the magnetic core 1a was saturated at a certain level, and even if the magnetomotive force was increased further, it was not possible to generate a commensurate magnetic flux.

更に、磁心コア1aから生ずる磁束Φは、飽和磁束密度
をBs1磁心コアの断面積をSとするとΦ=Bs@Sの
式で表されるが、この式より明らかなようにBsが小さ
い場合は、必要な磁束Φを得るために面積Sを大きくし
なければならない。
Furthermore, the magnetic flux Φ generated from the magnetic core 1a is expressed by the formula Φ=Bs@S, where the saturation magnetic flux density is Bs1 and the cross-sectional area of the magnetic core is S. As is clear from this formula, when Bs is small, , the area S must be increased to obtain the required magnetic flux Φ.

コア1aの断面積Sを大きくすると、必然的にインダク
タンスLが大きくなり、インピーダンスが増大するため
に高密度記録を得るために大きな電流量が必要となりデ
バイスの操作が困難になる。
If the cross-sectional area S of the core 1a is increased, the inductance L will inevitably increase, and since the impedance increases, a large amount of current will be required to obtain high-density recording, making it difficult to operate the device.

また、磁心コア1aが単体の軟磁性材で構成されている
ため、渦電流による損失が大きくなり、強い磁束を生じ
させることができなくなる。
Furthermore, since the magnetic core 1a is made of a single soft magnetic material, loss due to eddy current becomes large, making it impossible to generate strong magnetic flux.

以上のように、従来の磁気ヘッドは、要となる磁心コア
1aの飽和磁束密度が低いために、起磁力に見合った強
い磁束を生じさせることができず、高密度記録に必要な
十分に強い磁界強度が得られない等の問題を有していた
As described above, the conventional magnetic head cannot generate a strong magnetic flux commensurate with the magnetomotive force due to the low saturation magnetic flux density of the magnetic core 1a, which is the key point. There were problems such as not being able to obtain magnetic field strength.

この発明は、上述した従来のヘッド構造の問題点を解消
するために提案されたもので、その目的は磁心コアの飽
和磁束密度を高くして起磁力に見合った十分に強い磁束
を発生できるようにすることにある。
This invention was proposed to solve the above-mentioned problems with the conventional head structure, and its purpose is to increase the saturation magnetic flux density of the magnetic core to generate a sufficiently strong magnetic flux commensurate with the magnetomotive force. It is to make it.

問題点を解消するための手段 この発明は、高飽和磁束密度を宵する鉄薄膜をFe@X
(XはA11Tat Tix Cr1Nb17、r、C
o、Ni1Pd、Pt1Au、C,S i、Geのうち
のいずれか1つ)組成の高飽和磁密度を有する鉄系合金
薄膜で挟み込んで磁心コア部を形成し、この磁心コア部
を一対の軟磁性体ブロックで挟持したことを特徴とする
ものである。
Means for Solving the Problems This invention provides Fe@X thin iron films with high saturation magnetic flux density.
(X is A11Tat Tix Cr1Nb17, r, C
A magnetic core is formed by sandwiching between iron-based alloy thin films having a high saturation magnetic density of the following composition: Ni1Pd, Pt1Au, C, Si, Ge), and this magnetic core is sandwiched between a pair of soft It is characterized by being sandwiched between magnetic blocks.

作用 磁心コア1aに飽和磁束密度Bsが高いF e 5Fe
X (X=AI、Tat Tt 41 @ e)を用い
ているので、起磁力を十分大きく上げても磁心コアの飽
和は生じない。
Fe 5Fe with high saturation magnetic flux density Bs in the working magnetic core 1a
Since X (X=AI, Tat Tt 41 @ e) is used, saturation of the magnetic core does not occur even if the magnetomotive force is increased sufficiently.

また、Φ=Bs・Sの関係から飽和磁束密度BSが高く
なると、コアの断面積Sを極力小さくできる。したがっ
て、インダクタンスLを低く抑えることができ、ヘッド
の感度も島くなる。さらに、磁心コア部分を、Fe膜と
Fe・X膜の積層構造としているため、渦電流が生じに
くくなる。
Further, from the relationship Φ=Bs·S, when the saturation magnetic flux density BS increases, the cross-sectional area S of the core can be made as small as possible. Therefore, the inductance L can be kept low, and the sensitivity of the head can also be reduced. Furthermore, since the magnetic core portion has a laminated structure of an Fe film and an Fe/X film, eddy currents are less likely to occur.

実施例 以下、この発明の実施例について図面を参照して説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明に係る磁界変調用磁気ヘッドを示して
いる。
FIG. 1 shows a magnetic head for magnetic field modulation according to the present invention.

磁気ヘッド10は、中心に磁心コア11を有するE形状
に形成されている。磁心コア11は一対の軟磁性体ブロ
ック12.12’によってサンドウィッチ状に挟持され
ている。
The magnetic head 10 is formed in an E shape with a magnetic core 11 at the center. The magnetic core 11 is sandwiched between a pair of soft magnetic blocks 12 and 12'.

磁心コア11は、中心に飽和磁束密度が約21゜5KG
 (キロガウス)の鉄膜111を存し、この鉄膜111
が飽和磁束密度約18〜20KG程度の鉄系合金膜11
2,112’によって挟み込まれサンドウィッチされた
積層構造になっている。
The magnetic core 11 has a saturation magnetic flux density of approximately 21°5KG at the center.
(kilogauss) iron film 111 exists, and this iron film 111
The iron-based alloy film 11 has a saturation magnetic flux density of about 18 to 20 KG.
It has a laminated structure sandwiched between 2 and 112'.

鉄膜111は、元来、耐食性にやや難点があるが、耐食
性に優れた鉄系合金[112,112によってサンドウ
ィッチし、積層構造とすることによってヘッドの耐食性
が著しく向上する。なお、ここで、鉄膜111、鉄系合
金膜112.172′が有する飽和磁束密度的21.5
KG、ならびに18〜20KGは、従来コア材として一
般的に用いられてきたフェライト等の軟磁性金属材の5
〜6KGに比べると格段に高い値といえる。したがって
、磁心コア11は、飽和磁束密度Bsが極めて高い構造
で構成される。
The iron film 111 originally has some drawbacks in corrosion resistance, but by sandwiching it with iron-based alloys [112, 112, which have excellent corrosion resistance, and forming a laminated structure, the corrosion resistance of the head is significantly improved. Here, the iron film 111 and the iron-based alloy film 112.172' have a saturation magnetic flux density of 21.5.
KG and 18-20KG are soft magnetic metal materials such as ferrite that have been commonly used as core materials.
It can be said that this is a much higher value than ~6KG. Therefore, the magnetic core 11 is configured to have an extremely high saturation magnetic flux density Bs.

鉄系合金薄膜112.112”は、Fe*Xの組成を持
つ。Xは、AI、Ta1Tt1Crs Nb% Zr1
Cr1Nii Pds Pt、Au% 0%5i1Ge
のうちのいずれか1つであり、その中から必要に応じて
適宜選択して膜形成される。このXの組成比は、上述の
飽和磁束密度18〜20KGを得るに好適な比率で決め
られる。それは、例えば、8atm%程度の比率である
The iron-based alloy thin film 112.112'' has a composition of Fe*X.X is AI, Ta1Tt1Crs Nb% Zr1
Cr1Nii Pds Pt, Au% 0%5i1Ge
The film is formed by selecting one of them as necessary. The composition ratio of X is determined at a ratio suitable for obtaining the above-mentioned saturation magnetic flux density of 18 to 20 KG. For example, the ratio is about 8 atm%.

なお、Xとして、上記・のいずれか1つの物質を成分と
する化合物を選択することも可能である。
Note that as X, it is also possible to select a compound containing any one of the substances listed above as a component.

軟磁性体ブロック12.12’は、フェライト、パーマ
ロイ、センダスト等の軟磁性材によりL字状に形成され
、そのL字の基端部で鉄膜111と鉄系合金膜112.
112′とから成る磁心コア11を両側から挟持してい
る。両ブロック12.12′の磁心コア11との結合面
121.121’は研磨加工等により鏡面仕上げされて
いる。
The soft magnetic material block 12.12' is formed in an L shape from a soft magnetic material such as ferrite, permalloy, or sendust, and has an iron film 111 and an iron alloy film 112.1 at the base end of the L shape.
112' is held between both sides. The coupling surfaces 121, 121' of both blocks 12, 12' with the magnetic core 11 are mirror-finished by polishing or the like.

磁気ヘッド10を構成するにあたっては、一方の軟磁性
体ブロック12の接合面121上に鉄系合金膜112、
鉄膜111、鉄系合金1!112’をスパッタによって
この順に積層成膜し、磁心コア11を被着形成せしめた
後、軟磁性体ブロック12の部分をエツチングによる食
刻等により磁心コア11に沿って溝入れし、凹型に形成
する。次いで、他方のL字に形成された軟磁性体ブロッ
ク12′を接合面121′を介して磁心コア11に接着
固定すると、磁心コア11が一対の軟磁性体ブロック1
2.12’によって挟持される。その後、磁心コア11
の周りに励磁用コイル13を巻線して装着すると、第1
図に示す構造を持つ磁界変調用磁気へラド10が形成さ
れる。
In constructing the magnetic head 10, an iron-based alloy film 112,
The iron film 111 and the iron-based alloys 1 and 112' are laminated in this order by sputtering, and after the magnetic core 11 is formed, the soft magnetic block 12 is etched into the magnetic core 11. Groove along and form a concave shape. Next, when the other L-shaped soft magnetic block 12' is adhesively fixed to the magnetic core 11 via the joint surface 121', the magnetic core 11 is attached to the pair of soft magnetic blocks 1.
2.12'. After that, the magnetic core 11
When the excitation coil 13 is wound and attached around the first
A magnetic helad 10 for magnetic field modulation having the structure shown in the figure is formed.

なお、軟磁性体ブロック12.12’を形成する材料と
しては、フェライト、パーマロイ、センダスト、または
その他のアモルファス合金等を用いることが可能である
Note that ferrite, permalloy, sendust, or other amorphous alloys can be used as the material for forming the soft magnetic blocks 12, 12'.

以上のようなヘッド構成において、光磁気記録にあたり
、コイル13に記録信号に応じた高周波電流を流すと、
その起磁力によりヘッド10の磁心コア11が磁化され
、媒体方向に磁束が発生する。そして、記録信号に応じ
て記録媒体に印加される変調磁界の方向が反転し、光ヘ
ッドから連続照射されるレーザ光との協働により媒体の
記録トラック上に情報が記録される。一度記録した記録
トラックに別の情報を書き込むには、そのまま同一トラ
ックをトレースして重ねて記録して行けば良い。すると
、前に記録された古い情報は新しい情報によって消去さ
れ、新しい情報が書き込まれる。したがって、別に消去
動作を行うためのモードを設定する必要はなく、即時オ
ーバーライドができるので、光変調方式に比べてデータ
書き込みに要する時間が短く、その分データ転送速度も
速くなる。
In the head configuration as described above, when a high frequency current is passed through the coil 13 in accordance with the recording signal during magneto-optical recording,
The magnetic core 11 of the head 10 is magnetized by the magnetomotive force, and a magnetic flux is generated in the direction of the medium. Then, the direction of the modulated magnetic field applied to the recording medium is reversed in accordance with the recording signal, and information is recorded on the recording track of the medium in cooperation with the laser beam continuously irradiated from the optical head. To write different information on a recording track that has been recorded once, it is sufficient to trace the same track and record it overlappingly. Then, the previously recorded old information is erased by the new information, and the new information is written. Therefore, there is no need to set a separate mode for performing an erasing operation, and instant override can be performed, so the time required for data writing is shorter than in the optical modulation method, and the data transfer speed is correspondingly faster.

ヘッド10を励磁して磁化を反転させるには、上記のよ
うに高周波電流が用いられる。ヘッド10の磁心コア1
1から生ずる磁界の強さは、コイル13に流れる高周波
電流によって生ずる起磁力の大きさに依存する。磁心コ
ア11を形成する鉄膜111、鉄系合金膜112.11
2゛は、現状における上限に近い値まで飽和磁束密度B
sが高いので、コイル13に高周波電流を流し、起磁力
を十分に大きくしても、それを十分に許容することがで
き、飽和することはない。また、飽和磁束密度Bsが高
いので、上述の関係式Φ=Bs@Sにより、磁心コア1
1の磁束が生ずる断面積Sを格段に小さくすることが可
能となる。従って、コアのインダクタンスLが低く抑え
られ、ヘッドの感度が良くなる。そして、磁心コア11
を鉄膜111と鉄系合金l1112.112′の積層構
造としているために各層の層厚を小さくすることができ
渦電流が生じにくくなり、磁界強度に影響を与える渦電
流損は殆んどなくなる。
To excite the head 10 and reverse the magnetization, a high frequency current is used as described above. Magnetic core 1 of head 10
The strength of the magnetic field generated by the coil 13 depends on the magnitude of the magnetomotive force generated by the high frequency current flowing through the coil 13. Iron film 111 and iron-based alloy film 112.11 forming the magnetic core 11
2゛ is the saturation magnetic flux density B up to a value close to the current upper limit.
Since s is high, even if a high frequency current is passed through the coil 13 and the magnetomotive force is sufficiently increased, it can be tolerated sufficiently and saturation will not occur. In addition, since the saturation magnetic flux density Bs is high, the magnetic core 1
It becomes possible to significantly reduce the cross-sectional area S where one magnetic flux is generated. Therefore, the inductance L of the core is kept low, and the sensitivity of the head is improved. And the magnetic core 11
Since it has a laminated structure of iron film 111 and iron-based alloy l1112.112', the thickness of each layer can be made small, making it difficult for eddy currents to occur, and eddy current loss that affects magnetic field strength is almost eliminated. .

発明の詳細 な説明したように、本発明に係るヘッド構造によれば、
ヘッドに与える起磁力を大きくしても、磁心コアは飽和
することはなく十分に使用に耐えられ、かつ、高周波に
よる渦電流損もほとんどなくなる。したがって、起磁力
を太きくシ、それに見合った強い磁束を生じさせること
ができ、記録媒体に印加する磁界強度を高密度記録に必
要な十分な強さで発生させることができる。
As described in detail, according to the head structure according to the present invention,
Even if the magnetomotive force applied to the head is increased, the magnetic core does not become saturated and can be used satisfactorily, and eddy current loss due to high frequencies is almost eliminated. Therefore, it is possible to increase the magnetomotive force and generate a commensurately strong magnetic flux, and it is possible to generate a magnetic field strength applied to the recording medium with sufficient strength necessary for high-density recording.

また、磁心コアの断面積が従来に比べて格段に小さくな
るので、高透磁率を持ち、かつインダクタンスの低いヘ
ッド構造となり、応答性に優れ、感度の良い磁気ヘッド
を提供することができる。
Furthermore, since the cross-sectional area of the magnetic core is much smaller than in the past, a head structure with high magnetic permeability and low inductance can be achieved, making it possible to provide a magnetic head with excellent responsiveness and high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁界変調用磁気ヘッドを示す斜視
図、第2図は従来のヘッド構造を示す斜視図、第3図は
従来のヘッドを用いた磁界変調方式による光磁気記録の
概略を説明する模式図である。 11・・・磁心コア、 111・・・鉄膜、 112.112°・・・鉄系合金膜、 12.12’ ・・・軟磁性体ブロック。 第3図
FIG. 1 is a perspective view showing a magnetic head for magnetic field modulation according to the present invention, FIG. 2 is a perspective view showing a conventional head structure, and FIG. 3 is a schematic diagram of magneto-optical recording using a magnetic field modulation method using a conventional head. FIG. 11...Magnetic core, 111...Iron film, 112.112°...Iron-based alloy film, 12.12'...Soft magnetic material block. Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)媒体面にレーザ光を照射する光ヘッドと記録媒体
を挟んで対向し、情報信号に応じて変調された磁界を発
生する磁界変調用の磁気ヘッドであって、高飽和磁束密
度を有する鉄薄膜をFe・X(XはAl、Ta、Ti、
Cr、Nb、Zr、Co、Ni、Pd、Pt、Au、C
、Si、Geのうちいずれか1つ)組成の高飽和磁束密
度を有する鉄系合金薄膜で挟み込んで磁心コア部を形成
し、この磁心コア部を一対の軟磁性体ブロックにより挟
持したことを特徴とする磁気ヘッド。
(1) A magnetic head for magnetic field modulation that faces an optical head that irradiates a laser beam onto a medium surface with a recording medium in between, and generates a magnetic field modulated according to an information signal, and has a high saturation magnetic flux density. Fe・X (X is Al, Ta, Ti,
Cr, Nb, Zr, Co, Ni, Pd, Pt, Au, C
, Si, or Ge) and sandwiched between iron-based alloy thin films having a high saturation magnetic flux density to form a magnetic core portion, and this magnetic core portion is sandwiched between a pair of soft magnetic blocks. magnetic head.
(2)前記軟磁性体ブロックがフェライト、センダスト
、パーマロイ等の軟磁性材のうちのいずれか1つを選ん
で成ることを特徴とする特許請求の範囲第(1)項に記
載の磁気ヘッド。
(2) The magnetic head according to claim (1), wherein the soft magnetic material block is made of any one of soft magnetic materials such as ferrite, sendust, and permalloy.
(3)前記軟磁性体ブロックがアモルファス合金より成
ることを特徴とする特許請求の範囲第(1)項に記載の
磁気ヘッド。
(3) The magnetic head according to claim (1), wherein the soft magnetic block is made of an amorphous alloy.
JP4549087A 1987-02-28 1987-02-28 Magnetic head Pending JPS63213102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4549087A JPS63213102A (en) 1987-02-28 1987-02-28 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4549087A JPS63213102A (en) 1987-02-28 1987-02-28 Magnetic head

Publications (1)

Publication Number Publication Date
JPS63213102A true JPS63213102A (en) 1988-09-06

Family

ID=12720843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4549087A Pending JPS63213102A (en) 1987-02-28 1987-02-28 Magnetic head

Country Status (1)

Country Link
JP (1) JPS63213102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656100A (en) * 1992-02-15 1997-08-12 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656100A (en) * 1992-02-15 1997-08-12 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US5674327A (en) * 1992-02-15 1997-10-07 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet

Similar Documents

Publication Publication Date Title
JPH0695404B2 (en) Magneto-optical recording method
JPH0291806A (en) Vertically magnetized thin-film head
JPS62128040A (en) Photomagnetic recording medium
JPH0152802B2 (en)
JPS59152515A (en) Vertical magnetization type magnetic head
JPS6332709A (en) Magnetic conversion head
JPS63213102A (en) Magnetic head
JP3460947B2 (en) Magneto-optical recording medium and magneto-optical recording device
JPH022207B2 (en)
JPH0237501A (en) Magnetic recording system and magnetic recording device
JPS61214258A (en) Write and reproducing integrated magnetic head
JPS63211101A (en) Magnetic head
JPS6341125B2 (en)
JPH03266243A (en) Magneto-optical recording method
JPH0327963B2 (en)
JPH05120630A (en) Magnetic disk device
JPH0252324B2 (en)
JPH01100752A (en) Magnetic recording and optical reproducing/recording medium
JPH0778917B2 (en) Magneto-optical recording method
JPS63211102A (en) Magnetic head
JP2000030216A (en) Thin-film magnetic head
JPS6059510A (en) Magnetic head
JPH02240809A (en) Magnetic head
JPS61214264A (en) Photomagnetic head
JPH01232560A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method