JPH01185363A - Polyamide film having excellent resistance to pinhole formation - Google Patents

Polyamide film having excellent resistance to pinhole formation

Info

Publication number
JPH01185363A
JPH01185363A JP989688A JP989688A JPH01185363A JP H01185363 A JPH01185363 A JP H01185363A JP 989688 A JP989688 A JP 989688A JP 989688 A JP989688 A JP 989688A JP H01185363 A JPH01185363 A JP H01185363A
Authority
JP
Japan
Prior art keywords
film
polyamide
polycaprolactone
present
biaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP989688A
Other languages
Japanese (ja)
Other versions
JPH0662845B2 (en
Inventor
Akira Enokida
晃 榎田
Tadaharu Fujii
藤井 忠晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP989688A priority Critical patent/JPH0662845B2/en
Publication of JPH01185363A publication Critical patent/JPH01185363A/en
Publication of JPH0662845B2 publication Critical patent/JPH0662845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain the title film having excellent resistance to pinhole formation even at a low temperature, by melt-mixing a polyamide with a specified polycaprolactone, forming the melt into a film and stretching this film. CONSTITUTION:99.9-95wt.% polyamide (A) (e.g., polycaprolactam) is melt-mixed with 0.1-5wt.% polycaprolactone (B) of an MW of 5,000-100,000, and the melt is formed into an unstretched film. This film is biaxially stretched consecutively or simultaneously at a stretch ratio of 1.2-6 to obtain the title film having a thickness of 1-50mu and forms at most ten pinholes when subjected to a flex fatigue test (1,000 repeated runs at 5 deg.C).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低温度下においても優れた耐ピンホール性を有
するポリアミド系フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polyamide film that has excellent pinhole resistance even at low temperatures.

(従来の技術) ポリアミドの2軸延伸フィルムは一般機械特性。(Conventional technology) General mechanical properties of biaxially stretched polyamide film.

熱的特性、バリヤー性はもちろんのこと、包装材料分野
で重要視される耐摩耗性、耐衝撃性および耐ピンホール
性に優れることから1食品包装分野を中心に広く用いら
れている。
It is widely used mainly in the food packaging field because of its excellent thermal properties and barrier properties as well as abrasion resistance, impact resistance, and pinhole resistance, which are important in the packaging material field.

(発明が解決しようとする課題) しかしながら、上記特性中においても実用上量も重要視
される耐ピンホール性についてはその温度依存性が顕著
であり、10℃以下のような低温度下での使用において
、しばしば繰り返し屈曲疲労の結果生じるピンホールに
よる充填物の漏れ出しなどのトラブルが発生し、その使
用は制限されていた。
(Problem to be solved by the invention) However, among the above characteristics, pinhole resistance, for which quantity is also important in practical terms, has a remarkable temperature dependence, and it is difficult to obtain pinhole resistance at low temperatures such as 10°C or lower. In use, problems such as leakage of the filling material due to pinholes often occur as a result of repeated bending fatigue, and its use has been limited.

(課題を解決するための手段) 本発明者らは、かかる欠点を改善すべく検討した結果、
ポリカプロラクトンを特定量添加し、かつ得られるフィ
ルムの厚みを限定することによりポリアミドフィルムの
低温度下における耐ピンホール性が改善されることを見
い出し本発明に到達したのである。
(Means for Solving the Problems) As a result of the inventors' studies to improve these drawbacks,
The present invention was achieved by discovering that the pinhole resistance of a polyamide film at low temperatures can be improved by adding a specific amount of polycaprolactone and limiting the thickness of the resulting film.

すなわち本発明は、ポリアミド99.9〜954%とポ
リカプロラクトン0.1〜54%との混合体からなる厚
み1〜50μの2軸延伸フィルムであり、その5℃にお
ける1000回繰り返し屈曲疲労テストにおけるピンホ
ールの発生個数が10個以下であることを特徴とする2
軸延伸ポリアミド系フィルムである。
That is, the present invention is a biaxially stretched film with a thickness of 1 to 50 microns made of a mixture of 99.9 to 954% polyamide and 0.1 to 54% polycaprolactone, and which has a 1000 times repeated bending fatigue test at 5°C. 2, characterized in that the number of pinholes is 10 or less
It is an axially stretched polyamide film.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明におけるポリアミドとは、その分子内にアミド結
合−CONH−を有する線状高分子化合物であり、ポリ
カプロラクタム(ナイロン6)。
The polyamide in the present invention is a linear polymer compound having an amide bond -CONH- in its molecule, and is polycaprolactam (nylon 6).

ポリヘキサメチレンアジパミド(ナイロン66)、ポリ
へキサメチレンセバカミド(ナイロン610Lポリアミ
ノウンデカン酸(ナイロン11)、ポリラウリンラクタ
ム(ナイロン12)およびそれらの共重合物などが含ま
れる。特に本発明に好適なポリアミドとしてはポリカプ
ロラクタム(ナイロン6)。
Polyhexamethylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610L) polyaminoundecanoic acid (nylon 11), polylaurinlactam (nylon 12), and copolymers thereof, etc. are included. Particularly the present invention A suitable polyamide is polycaprolactam (nylon 6).

およびポリヘキサメチレンアジパミド(ナイロン66)
を挙げることができる。
and polyhexamethylene adipamide (nylon 66)
can be mentioned.

また本発明のポリカプロラクトンとはε−カプロラクト
ンの開環重合により得られる−(CH2)5C00−の
繰り返し単位からなる線状ポリエステル化合物である。
Further, the polycaprolactone of the present invention is a linear polyester compound comprising repeating units of -(CH2)5C00- obtained by ring-opening polymerization of ε-caprolactone.

本発明のポリカプロラクトンの分子量は5,000〜1
00,000 、好ましくは10,000〜70.00
0である。分子量が5,000より小さくなるとポリア
ミドとの混合体から得られる2軸延伸フィルムについて
本発明の目的とする特性値(5℃における1000回繰
り返し屈曲疲労テストにおけるピンホールの発生個数が
10個以下)を得ることができない。
The molecular weight of the polycaprolactone of the present invention is 5,000 to 1
00,000, preferably 10,000-70.00
It is 0. When the molecular weight is less than 5,000, the characteristic value targeted by the present invention for the biaxially stretched film obtained from the mixture with polyamide (the number of pinholes in a 1000-times repeated bending fatigue test at 5°C is 10 or less) can't get it.

一方2分子量が100,000を越えるとポリアミドと
の混合体から得られる2軸延伸フィルムについて本発明
の目的とする特性値を達成することはできるが、該フィ
ルムの透明性が著しく悪くなり実用に耐えない。
On the other hand, if the biaxial molecular weight exceeds 100,000, the properties aimed at in the present invention can be achieved for the biaxially oriented film obtained from the mixture with polyamide, but the transparency of the film will deteriorate significantly, making it impractical for practical use. I can't stand it.

本発明のポリアミドとポリカプロラクトンの混合割合は
、ポリアミドに対してポリカプロラクトンが0.1〜5
wt%、好ましくは0.5〜3wt%である。ポリカプ
ロラクトンが0.1 wt%より少ないとポリアミドと
の混合体から得られる2軸延伸フィルムについて本発明
の目的とする特性値を得ることはできない。
The mixing ratio of polyamide and polycaprolactone of the present invention is 0.1 to 5% of polycaprolactone to polyamide.
wt%, preferably 0.5 to 3 wt%. If the amount of polycaprolactone is less than 0.1 wt%, it is impossible to obtain the characteristic values aimed at in the present invention for the biaxially stretched film obtained from the mixture with polyamide.

一方、ポリカプロラクトンが5wt%より多い場合はポ
リアミドとの混合体から得られる2軸延伸フィルムにつ
いて本発明の目的とする特性値は得られるが、該2軸延
伸フィルムの透明性が著しく悪くなり実用に耐えなくな
る。ポリアミドとポリカプロラクトンとの混合体から2
軸延伸フィルムを得る方法については特に限定するもの
ではなく。
On the other hand, when polycaprolactone is more than 5 wt%, the biaxially stretched film obtained from the mixture with polyamide can obtain the characteristic values aimed at in the present invention, but the transparency of the biaxially stretched film deteriorates significantly and is not suitable for practical use. I can't stand it anymore. 2 from a mixture of polyamide and polycaprolactone
There are no particular limitations on the method for obtaining the axially stretched film.

通常公知の方法を用いることができる。Generally known methods can be used.

たとえば、まずポリアミドとポリカプロラクトンをブレ
ンドした後、押出機で溶融混練し混合体のペレットを得
る。次いでこの混合体のペレットを再溶融し、Tダイ法
、インフレーション法等によって製膜し、未延伸フィル
ムを製造する。或いはポリアミドとポリカプロラクトン
をブレンドした後、押出機で溶融混練し、そのまま上記
の方法により製膜し、未延伸フィルムとすることもでき
る。
For example, first, polyamide and polycaprolactone are blended and then melt-kneaded using an extruder to obtain pellets of the mixture. Next, the pellets of this mixture are remelted and formed into a film by a T-die method, an inflation method, etc. to produce an unstretched film. Alternatively, after blending polyamide and polycaprolactone, the mixture can be melt-kneaded in an extruder and then directly formed into a film by the above method to obtain an unstretched film.

このようにして製造された未延伸フィルムは逐次または
同時2軸延伸される。延伸の温度はポリアミドフィルム
の場合とほぼ同様の温度で行うことができるが、必要に
応じて変更した温度で行ってもかまわない。また延伸倍
率は必要に応じて縦。
The unstretched film thus produced is subjected to sequential or simultaneous biaxial stretching. The stretching temperature can be approximately the same as that for the polyamide film, but it may be stretched at a different temperature if necessary. In addition, the stretching ratio can be adjusted vertically as necessary.

横方向とも1.2〜6倍の範囲で行うことができる。It can be performed in the range of 1.2 to 6 times in both the lateral directions.

このようにして得られる2軸延伸フィルムの厚みは1〜
50μ、好ましくは5〜40μである。
The thickness of the biaxially stretched film obtained in this way is 1~
50μ, preferably 5 to 40μ.

本発明でいう耐ピンホール性は厚み依存性を有しており
フィルムが厚くなる程劣る。フィルム厚みが50μを越
えると、ポリカプロラクトンを添加しても本発明の目的
とする特性値を得ることはできない。
The pinhole resistance referred to in the present invention is thickness-dependent, and the thicker the film, the worse it becomes. If the film thickness exceeds 50 μm, even if polycaprolactone is added, the desired characteristic values of the present invention cannot be obtained.

また、フィルム厚みが1μより小さいと強度保持材とし
て使用に耐えない。
Moreover, if the film thickness is less than 1 μm, it cannot be used as a strength-retaining material.

本発明の2軸延伸フィルムは必要に応じて熱処理が施さ
れる。また2本発明の2軸延伸フィルムは2層以上から
なる複合フィルムの1層としても使用可能である。
The biaxially stretched film of the present invention is subjected to heat treatment if necessary. Furthermore, the biaxially stretched film of the present invention can also be used as one layer of a composite film consisting of two or more layers.

さらに本発明のフィルムには必要に応じて通常公知の添
加剤、たとえば酸化防止剤、結晶核剤。
Furthermore, the film of the present invention may contain commonly known additives, such as antioxidants and crystal nucleating agents, if necessary.

滑剤、帯電防止剤などを添加することもできる。A lubricant, an antistatic agent, etc. can also be added.

次に本発明の特性値の測定方法を説明する。Next, a method for measuring characteristic values according to the present invention will be explained.

−〇− ■低温耐ピンホール性(繰り返し屈曲疲労テスト)MT
L−B−131Fに示されるFed、Te5t Met
hod Std。
−〇− ■Low temperature pinhole resistance (repeated bending fatigue test) MT
Fed shown in LB-131F, Te5t Met
hod Std.

No、 101 CのMethod 2017に従い、
いわゆるゲルボテスターで5℃下で1000回繰り返し
屈曲を加えた後、フィルムに生じるピンホールの個数を
その値とした。
No. 101C, Method 2017,
After repeatedly bending the film 1000 times at 5° C. using a so-called GELBO tester, the number of pinholes produced in the film was taken as the value.

■透明性(曇価) JIS4−6714法により測定した。■Transparency (haze value) Measured by JIS4-6714 method.

(作用) 本発明ではポリアミドに限定された分子量を有するポリ
カプロラクトンを特定量添加し、かつそのフィルム厚み
を限定することにより、ポリアミドフィルムの低温度下
における耐ピンホール性が著しく改善される。この原理
については詳しくは判らないが、ガラス転移温度が一6
0℃と非常に低く低温度下における衝撃特性に優れるポ
リカプロラクトンをポリアミドに添加することにより屈
曲時にフィルムに加えられる衝撃力がポリカプロラクト
ンにより分散され、その結果低温度下における繰り返し
屈曲疲労によるピンホールの発生が著しく減少するもの
と考えられる。
(Function) In the present invention, by adding a specific amount of polycaprolactone having a limited molecular weight to polyamide and limiting the film thickness, the pinhole resistance of the polyamide film at low temperatures is significantly improved. I do not know the details of this principle, but the glass transition temperature is 6.
By adding polycaprolactone, which has excellent impact properties at extremely low temperatures of 0°C, to polyamide, the impact force applied to the film during bending is dispersed by the polycaprolactone, resulting in pinholes caused by repeated bending fatigue at low temperatures. It is thought that the occurrence of this will be significantly reduced.

しかしこのような耐ピンホール性は厚み依存性を有して
おり、フィルムが厚くなるほどこの特性は劣ってくる。
However, such pinhole resistance is thickness dependent, and the thicker the film, the worse this property becomes.

したがって上記ポリカプロラクトンを特定量添加し、か
つフィルム厚みを本発明の範囲に限定することによりは
じめて本発明の耐ピンホール性を達成することができる
のである。
Therefore, the pinhole resistance of the present invention can only be achieved by adding a specific amount of the polycaprolactone and limiting the film thickness within the range of the present invention.

(実施例) 本発明をより理解し易くするために、比較例および実施
例を挙げて具体的に説明するが2本発明はこれら実施例
に限定されるものではない。
(Examples) In order to make the present invention easier to understand, the present invention will be specifically explained using comparative examples and examples, but the present invention is not limited to these examples.

比較例1 96%濃硫酸中で25℃で測定した相対粘度3.0のポ
リカプロラクタムを270℃でTダイより溶融押出しし
、30℃のドラム上で冷却して173 μの未延伸フィ
ルムを得た。続いてこのフィルムを縦方向に3.3倍、
横方向に3.5倍80℃で同時2軸延伸し15μの2軸
延伸フィルムを得た。
Comparative Example 1 Polycaprolactam with a relative viscosity of 3.0 measured at 25°C in 96% concentrated sulfuric acid was melt extruded from a T-die at 270°C and cooled on a drum at 30°C to obtain an unstretched film of 173 μm. Ta. Next, magnify this film by 3.3 times in the vertical direction.
The film was simultaneously biaxially stretched 3.5 times in the transverse direction at 80°C to obtain a 15μ biaxially stretched film.

比較例2 比較例1のポリカプロラクタム98w t%と分子量3
.000のポリカプロラクトン2i%を混合し、250
℃に設定した押出機で溶融混練しペレット化した。
Comparative Example 2 Polycaprolactam of Comparative Example 1 98wt% and molecular weight 3
.. 000 polycaprolactone 2i% mixed, 250
The mixture was melt-kneaded and pelletized using an extruder set at ℃.

次いでこのペレットを比較例1と同様の方法で押出し延
伸し、 15μの2軸延伸フィルムを得た。
This pellet was then extruded and stretched in the same manner as in Comparative Example 1 to obtain a 15μ biaxially stretched film.

実施例1 比較例1のポリカプロラクタム98wt%と分子量io
、oooのポリカプロラクトン2wt%から比較例2の
方法に従い15μの2軸延伸フィルムを得た。
Example 1 Polycaprolactam 98wt% and molecular weight io of Comparative Example 1
A 15 μm biaxially stretched film was obtained from 2 wt % of polycaprolactone of , ooo according to the method of Comparative Example 2.

実施例2 比較例1のポリカプロラクタム98wt%と分子量40
、000のポリカプロラクトン2ivt%から比較例2
の方法に従い、15μの2軸延伸フィルムを得た。
Example 2 Polycaprolactam of Comparative Example 1 98wt% and molecular weight 40
, 000 polycaprolactone 2ivt% Comparative Example 2
A 15μ biaxially stretched film was obtained according to the method described in the following.

比較例3 比較例1のポリカプロラクタム98wt%と分子量15
0.000のポリカプロラクトン2wt%から比較例2
の方法に従い15μの2軸延伸フィルムを得た。
Comparative Example 3 Polycaprolactam of Comparative Example 1 98wt% and molecular weight 15
Comparative Example 2 from 2 wt% of 0.000 polycaprolactone
A 15μ biaxially stretched film was obtained according to the method described in the following.

比較例4 比較例1のポリカプロラクタム99.95 wt%と分
子i40,000のポリカプロラクトン0.05wt%
から比較例2の方法に従い15μの2軸延伸フィルムを
得た。
Comparative Example 4 99.95 wt% polycaprolactam of Comparative Example 1 and 0.05 wt% polycaprolactone with molecule i 40,000
According to the method of Comparative Example 2, a 15μ biaxially stretched film was obtained.

実施例3 比較例1のポリカプロラクタム99w t%と分子量4
0.000のポリカプロラクトン1wt%から比較例2
の方法に従い15μの2軸延伸フィルムを得た。
Example 3 Polycaprolactam of Comparative Example 1 99wt% and molecular weight 4
Comparative Example 2 from 1 wt% of 0.000 polycaprolactone
A 15μ biaxially stretched film was obtained according to the method described in the following.

比較例5 比較何重のポリカプロラクタム94wt%と分子量40
.000のポリカプロラクトン6wt%から比較例2の
方法に従い15μの2軸延伸フィルムを得た。
Comparative Example 5 Comparative polycaprolactam 94wt% and molecular weight 40
.. According to the method of Comparative Example 2, a 15μ biaxially stretched film was obtained from 6 wt % of polycaprolactone of 000.

比較例6 比較例1のポリカプロラクタム98wt%と分子量40
.000のポリカプロラクトン2iyt%から比較例1
の方法に従い690 μの未延伸フィルムを得た。
Comparative Example 6 Polycaprolactam of Comparative Example 1 98wt% and molecular weight 40
.. Comparative Example 1 from 000 polycaprolactone 2iyt%
An unstretched film of 690 μm was obtained according to the method described in .

続いてこのフィルムを比較例1と同様の方法で延伸し6
0μの2軸延伸フィルムを得た。
Subsequently, this film was stretched in the same manner as in Comparative Example 1.
A biaxially stretched film of 0μ was obtained.

以上の比較例および実施例のフィルムの特性値を第1表
に示した。
Table 1 shows the characteristic values of the films of the above Comparative Examples and Examples.

第1表 この表から明らかなように2本発明のフィルムのみが低
温度下における耐ピンホール性および透明性に優れてい
る。
Table 1 As is clear from this table, only the two films of the present invention are excellent in pinhole resistance and transparency at low temperatures.

(発明の効果) 本発明によれば、ポリアミドに限定された分子量を有す
るポリカプロラクトンを特定量添加し。
(Effects of the Invention) According to the present invention, a specific amount of polycaprolactone having a limited molecular weight is added to polyamide.

かつ得られるフィルムの厚みを限定することにより、ポ
リアミドフィルムにとって実用上重要な低温度下におけ
る耐ピンホール性を改善することが可能となる。
In addition, by limiting the thickness of the resulting film, it is possible to improve the pinhole resistance at low temperatures, which is practically important for polyamide films.

また本発明により、これまで制限されていたポリアミド
フィルムの低温度下での使用範囲が大きく広がることに
なる。
Furthermore, the present invention greatly expands the range of use of polyamide films at low temperatures, which had been limited until now.

特許出願人   ユニチカ株式会社Patent applicant: Unitika Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリアミド99.9〜95wt%と、分子量5,
000〜100,000のポリカプロラクトン0.1〜
5wt%とを溶融混合して得られた組成物からなる厚み
1〜50μの2軸延伸フィルムであり、その5℃におけ
る1000回繰り返し屈曲疲労テストにおけるピンホー
ルの発生個数が10個以下であることを特徴とする2軸
延伸ポリアミド系フィルム。
(1) Polyamide 99.9-95wt%, molecular weight 5,
000-100,000 polycaprolactone 0.1-
It is a biaxially stretched film with a thickness of 1 to 50 μ made of a composition obtained by melt-mixing 5 wt% of the film, and the number of pinholes generated in the film is 10 or less when subjected to a bending fatigue test repeated 1000 times at 5 ° C. A biaxially stretched polyamide film characterized by:
JP989688A 1988-01-19 1988-01-19 Polyamide film with excellent pinhole resistance Expired - Lifetime JPH0662845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP989688A JPH0662845B2 (en) 1988-01-19 1988-01-19 Polyamide film with excellent pinhole resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP989688A JPH0662845B2 (en) 1988-01-19 1988-01-19 Polyamide film with excellent pinhole resistance

Publications (2)

Publication Number Publication Date
JPH01185363A true JPH01185363A (en) 1989-07-24
JPH0662845B2 JPH0662845B2 (en) 1994-08-17

Family

ID=11732887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP989688A Expired - Lifetime JPH0662845B2 (en) 1988-01-19 1988-01-19 Polyamide film with excellent pinhole resistance

Country Status (1)

Country Link
JP (1) JPH0662845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588065A2 (en) * 1992-08-19 1994-03-23 The Goodyear Tire & Rubber Company Package for compounding rubber, compounded rubber and method of compounding rubber
JP2005169978A (en) * 2003-12-15 2005-06-30 Unitika Ltd Biaxially stretched laminated film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411161B2 (en) 1995-11-02 2003-05-26 宇部興産株式会社 Polyamide resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588065A2 (en) * 1992-08-19 1994-03-23 The Goodyear Tire & Rubber Company Package for compounding rubber, compounded rubber and method of compounding rubber
EP0588065A3 (en) * 1992-08-19 1994-05-11 Goodyear Tire & Rubber Package for compounding rubber and compounded rubber
TR27759A (en) * 1992-08-19 1995-07-14 Goodyear Tire & Rubber Packaging and compound rubber for rubber compounding.
JP2005169978A (en) * 2003-12-15 2005-06-30 Unitika Ltd Biaxially stretched laminated film

Also Published As

Publication number Publication date
JPH0662845B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
Chinsirikul et al. Flexible and tough poly (lactic acid) films for packaging applications: property and processability improvement by effective reactive blending
JPS6024814B2 (en) resin composition
JPH01185363A (en) Polyamide film having excellent resistance to pinhole formation
JPH04314741A (en) Polyamide film
JPS6088067A (en) Glass fiber-reinforced polyamide resin composition
JPH07268209A (en) Polyamide resin composition for forming film and biaxially oriented polyamide film made therefrom
Son et al. Thermal properties of poly (trimethylene terephthalate)/poly (ethylene terephthalate) melt blends
JPS5946274B2 (en) Manufacturing method of polyamide film
Petrov et al. Structure and thermal behavior of nylon‐6/polytetrahydrofuran triblock copolymers obtained via anionic polymerization
JPH0222032A (en) Biaxially oriented polyamide film
JPS60133050A (en) Polyamide blend resin composition
Akovali et al. Polyblends of poly (styrene-b-butadiene-b-styrene) and polystyrene. I. Mechanical properties
JPS59184620A (en) Thermocontracting molded article
JPH051304B2 (en)
JP3472628B2 (en) Polyamide resin composition and biaxially stretched film
JPH11172022A (en) Biaxially oriented polyamide film
JPS5852821B2 (en) Nylon stretched film and its manufacturing method
KR940002186B1 (en) Low-temperature-extensible thermoplastic elastomer and preparation thereof
JP2917401B2 (en) Biaxially stretched polyamide film with excellent hot water resistance
JPS5930850A (en) Heat-shrinkable film and sheet
JPH05245928A (en) Block copolymeric uniaxially oriented film, sheet or tube
JPH01172452A (en) Polyamide film reduced in pinhole formation
Rokicka et al. Synthesis and mechanical and thermal properties of multiblock terpoly (ester-ether-amide) thermoplastic elastomers with variable molecular weight of ester block
JPH11181278A (en) Oriented polyamide film
JPH0225325B2 (en)