JPH01184304A - Variable pressure operating plant - Google Patents

Variable pressure operating plant

Info

Publication number
JPH01184304A
JPH01184304A JP700488A JP700488A JPH01184304A JP H01184304 A JPH01184304 A JP H01184304A JP 700488 A JP700488 A JP 700488A JP 700488 A JP700488 A JP 700488A JP H01184304 A JPH01184304 A JP H01184304A
Authority
JP
Japan
Prior art keywords
pressure
steam
turbine
valve
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP700488A
Other languages
Japanese (ja)
Inventor
Masaatsu Fukuda
福田 征孜
Hiroshi Oda
浩 小田
Takuji Fujikawa
卓爾 藤川
Tadashi Gengo
義 玄後
Hidehiko Idaka
英彦 伊高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP700488A priority Critical patent/JPH01184304A/en
Publication of JPH01184304A publication Critical patent/JPH01184304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To enable an efficiently of a pressure reduction turbine to be kept at a high value within a wide range of load by a method wherein a steam outlet of a high pressure turbine to be driven by a steam generated from a secondary superheater is communicated with an inlet of a steam compressor. CONSTITUTION:A valve 29 and a pressure reduction turbine 4 are arranged in parallel in the midway of a pipe line connecting a primary superheater 3 and a secondary superheater of a boiler. A steam compressor 6b driven by the pressure reduction turbine 4 is arranged and a steam outlet of a high- pressure turbine 9 driven by steam from the secondary superheater 8 is communi cated with an inlet of the steam compressor. With this arrangement, the steam compressor 6b with a variable speed is driven by the pressure reduction turbine 4 so as to compress a high pressure discharged gas of a main turbine 9. Accord ingly, the number of rotation of the pressure reduction turbine is not fixed and the pressure reduction turbine can be kept at its high efficiency over a wide range of load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変圧運転する火力発電プラントの効率を負荷
の広い範囲にわたって、高(維持させるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention maintains the efficiency of a thermal power plant operating at variable voltage at a high level over a wide range of loads.

〔従来の技術」 火力発電プラントではプラントの効率ビ高めるために蒸
気条件の向上がなされ、現在では主蒸気圧力246Kg
/mP、主蒸気温度538℃、再熱蒸気温度538℃な
いし566℃の超臨界圧プラントが数多く建設さnてい
る。これらのプラントを定格負荷で連続運転する場合は
上記の蒸気条件で何等問題ないが、起動停止や低負荷へ
の負荷変動の頻度が多(なると、上記の蒸気条件のまま
ではタービンの調速段出口部の温度変化が太き(なり、
ロータの熱応力の問題が出て来る。
[Conventional technology] In thermal power plants, the steam conditions have been improved to increase the efficiency of the plant, and currently the main steam pressure is 246 kg.
/mP, a main steam temperature of 538°C, and a reheat steam temperature of 538°C to 566°C. Many supercritical pressure plants have been constructed. If these plants are operated continuously at the rated load, there will be no problem under the above steam conditions, but there will be frequent start-stops and load fluctuations to low loads (this means that if the steam conditions above remain the same, the turbine's governor stage will be affected). The temperature change at the outlet is large (
This brings up the problem of thermal stress in the rotor.

負荷変化によるタービン調速段出口部の温度変化を軽減
するためには、負荷に応じて主蒸気圧力を変化させる方
法が適している。この方法を変圧運転法と呼ぶ。
In order to reduce temperature changes at the outlet of the turbine governor stage due to load changes, a method of changing the main steam pressure according to the load is suitable. This method is called variable voltage operation method.

変圧運転法をボイラを含めた全プラントに適用すると、
低負荷時の給水圧力低下による給水ポンプ動力低減の利
得が得られるので、蒸気加減弁の絞り損失低減、その他
の利得とあわせて、タービン側には熱応力低減の他に効
率向上の利得も生じる。ところがボイラ側にとっては、
火炉の圧力を変化させると火炉の温度が変化し、ボイラ
の熱応力の問題が生ずる。
When the variable pressure operation method is applied to the entire plant including the boiler,
The gain of reducing feed water pump power due to the drop in feed water pressure at low loads can be obtained, so in addition to reducing the throttling loss of the steam control valve and other gains, the turbine side also gains gains in efficiency improvement in addition to thermal stress reduction. . However, for the boiler side,
Changing the furnace pressure changes the furnace temperature, creating boiler thermal stress problems.

そこで、タービンは変圧運転としてロータの熱応力を低
減し、ボイラの火炉は定圧運転として火炉の熱応力を低
減するために、第4図図示のように、−次週熱器(3)
と二次過熱器(8)との間に減圧弁器を配設することか
行なわれていた。この場合には、給水ポンプの動力低減
によるプラント効率改善の利得はな(なるが、蒸気加減
弁の絞り損失低減他による変圧運転利得は残る。このよ
うにして減圧弁による減圧を行なう場合には、蒸気の減
圧による損失が生じるほか、高差圧のため減圧弁にエロ
ージョンが発生しゃ丁いという問題があった。
Therefore, the turbine operates at variable pressure to reduce the thermal stress on the rotor, and the boiler furnace operates at constant pressure to reduce the thermal stress in the furnace.
A pressure reducing valve device has been installed between the secondary superheater (8) and the secondary superheater (8). In this case, there is no gain in plant efficiency improvement due to power reduction of the feed water pump (although there remains a variable pressure operation gain due to reduction in throttling loss of the steam regulating valve, etc.). In addition to the loss caused by steam pressure reduction, there was also the problem that erosion occurred in the pressure reducing valve due to the high differential pressure, making it difficult to shut off.

この点の改善案として、第5図のように、減圧弁器の代
りに、これと並列に配設さnた減圧タービン(4)に、
蒸気を流して発電機(6a)を駆動し、動力を回収する
ことが考案されている。
As an improvement plan for this point, as shown in Fig. 5, instead of the pressure reducing valve device, a pressure reducing turbine (4) installed in parallel with the pressure reducing valve device is installed.
It has been devised to flow steam to drive a generator (6a) and recover power.

なお、第4図および第5図において、(1)はエコノマ
イザ、(2)は火炉、          (5)は減
圧タービン蒸気加減弁、 (力は補助過熱器、 (9)は高圧タービン、αQは主タービン蒸気加減弁、
αυは高圧バイパス弁、α2は低温再熱蒸気管逆止弁、
0は再熱器、Iはインタセプト弁、←9は中圧タービン
、αQは低圧バイパス弁、住ηは復水器、(I1工低圧
タービン、(19は発電機、■は復水ポンプ、r2υは
低圧ヒータ、(ハ)は脱気器、(ハ)は給水ポンプ、(
財)は高圧ヒータ、(ハ)、(イ)は遮断弁である。
In Figures 4 and 5, (1) is the economizer, (2) is the furnace, (5) is the pressure reducing turbine steam control valve, (power is the auxiliary superheater, (9) is the high pressure turbine, and αQ is the main turbine steam control valve,
αυ is a high-pressure bypass valve, α2 is a low-temperature reheat steam pipe check valve,
0 is the reheater, I is the intercept valve, ←9 is the medium pressure turbine, αQ is the low pressure bypass valve, η is the condenser, (I1 is the low pressure turbine, (19 is the generator, ■ is the condensate pump, r2υ is a low pressure heater, (c) is a deaerator, (c) is a water supply pump, (
(Fi) is a high-pressure heater, (C) and (B) are shut-off valves.

〔発明が解決しようとする課題」 減圧タービンにより発電機を駆動する場合は、圧タービ
ンは第6図(100OMW級ハイブリッド変圧運転プラ
ントの例〕に示すように、プラントが高負荷のときは大
流量低差圧、プラントが低負荷のときは小流量高差圧と
なり、一定速度のタービンでは、全域にわたっ壬高い効
率レベルを維持するのは極めて難かしい。
[Problem to be solved by the invention] When a generator is driven by a pressure-reducing turbine, the pressure turbine has a large flow rate when the plant is under high load, as shown in Figure 6 (an example of a 100 OMW class hybrid variable voltage operation plant). Low differential pressures, low flow rates and high differential pressures when the plant is at low load, make it extremely difficult to maintain high efficiency levels throughout the entire range with a constant speed turbine.

また減圧タービンと発電機?地上に配置すると、過熱器
はボイラの上部に配さnているから、減圧タービンの入
口、出口の蒸気管が長(なり、配管の圧損が発生する。
Also a pressure reducing turbine and generator? When placed on the ground, the superheater is located at the top of the boiler, so the steam pipes at the inlet and outlet of the pressure reducing turbine are long, resulting in a pressure drop in the pipes.

かといって減圧タービンを過熱器の近くに配置すると、
重量の大きい発電機もボイラの上部に配置せねばならな
いので、ボイラ鉄骨の補強や発電機ブスダクトのひきま
わしなど配置上の問題が生じる。
However, if the pressure reducing turbine is placed near the superheater,
Since the heavy generator must also be placed above the boiler, problems arise in terms of placement, such as reinforcing the boiler steel frame and routing the generator bus duct.

〔課題を解決するための手段」 本発明は前記従来の課題を解決するために、ボイラの一
次過熱器と二次過熱器とを連結する管路の途中に弁と減
圧タービンとを並列にして配設するとともに、同減圧タ
ービンにより駆動される蒸気圧縮機ン設げ、上記二次過
熱器からの蒸気で駆動される高圧タービンの蒸気出口を
上記蒸気圧縮機の入口に連通させたことを特徴とする変
圧運転プラントを提案するものである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention provides a system in which a valve and a pressure reducing turbine are arranged in parallel in the middle of a pipe connecting a primary superheater and a secondary superheater of a boiler. and a steam compressor driven by the pressure reducing turbine, the steam outlet of the high pressure turbine driven by the steam from the secondary superheater communicating with the inlet of the steam compressor. This paper proposes a plant with variable pressure operation.

〔作用〕[Effect]

本発明は上記のように構成され、減圧タービンにより、
一定速度の発電機を駆動する代ワに、可変速度の蒸気圧
縮機Z駆動する。そしてこの蒸気圧縮機で主タービンの
高圧排気を圧縮するのである。
The present invention is configured as described above, and uses a pressure reducing turbine to
Instead of driving a constant speed generator, a variable speed vapor compressor Z is driven. The steam compressor then compresses the high-pressure exhaust gas from the main turbine.

〔実施例〕〔Example〕

第1図に本発明の一実施例の系統図Z示す。前記第4図
および第5図によって説明した従来のものと同一の部分
については同一の符号を付して説明を省略する。本笑施
例では、ボイラの一次過熱器(3)と二次過熱器(8)
とを補助過熱器(7)を介して連結する管路の途中に、
減圧弁器と減圧タービン(4)とが並列にして配設され
ている。そして、この減圧タービン(4)によって駆動
される蒸気圧縮機(6b)が設げられており、上記二次
過熱器(8功・らの蒸気で駆動される高圧タービン(9
)の蒸気出口が上記蒸気圧縮機(6b)の入口に連通し
ている。また上記蒸気圧縮機(6b)の出口は再熱器餞
の入口に連通している。(5)、@は遮断弁、(至)は
バイパス弁である。
FIG. 1 shows a system diagram Z of an embodiment of the present invention. The same parts as those of the conventional device explained with reference to FIGS. 4 and 5 are given the same reference numerals, and the explanation thereof will be omitted. In this example, the boiler's primary superheater (3) and secondary superheater (8)
In the middle of the pipe connecting the and via the auxiliary superheater (7),
A pressure reducing valve device and a pressure reducing turbine (4) are arranged in parallel. A steam compressor (6b) is provided which is driven by this pressure reducing turbine (4), and a high pressure turbine (9) is driven by steam from the secondary superheater (8).
) is in communication with the inlet of the vapor compressor (6b). Further, the outlet of the vapor compressor (6b) communicates with the inlet of the reheater. (5), @ is a cutoff valve, and (to) is a bypass valve.

このような系統のプラントにおい工、ボイラのエコノマ
イザ(1)、火炉(2)、−次週熱器(3)を通って過
熱された蒸気は、減圧タービン(4)に導びかれる。
Steam that has been superheated through the plant odors, boiler economizer (1), furnace (2), and heat generator (3) in such a system is led to a pressure reducing turbine (4).

減圧タービンの蒸気加減弁(5)は、減圧タービン入口
の蒸気圧力が一定値になるように制御される。
The steam control valve (5) of the pressure reducing turbine is controlled so that the steam pressure at the inlet of the pressure reducing turbine becomes a constant value.

これにより、火炉(2)、−次週熱器(3)の圧力は一
定に保たれる。減圧タービン(4)は蒸気圧縮機(6b
)を駆動する。
As a result, the pressures in the furnace (2) and the heating device (3) are kept constant. The pressure reducing turbine (4) is a steam compressor (6b
) to drive.

減圧タービン(4)の排気は、補助過熱器(力、二次過
熱器(8)を通りさらに過熱度Z高められて、主タービ
ンの高圧タービン(9)へ導びかnる。補助過熱器(力
は、−次週熱器(3)を出た蒸気が減圧タービン(4)
で仕事をすることにより温度が低下したのを補なうため
に設けるものであるが、ボイラの特性上必ずしも設げな
(てもよい場合もある。
The exhaust gas of the pressure reducing turbine (4) passes through an auxiliary superheater (8), is further increased in superheat degree Z, and is led to the high pressure turbine (9) of the main turbine.Auxiliary superheater (The power is -Next week, the steam leaving the heater (3) is transferred to the decompression turbine (4)
This is provided to compensate for the temperature drop caused by the work being done in the boiler, but due to the characteristics of the boiler, it may not necessarily be provided.

主タービンの蒸気加減弁aQは主タービンの出力を調整
するために使われる。変圧運転時の蒸気加減弁(lOl
の制御方法には下記に代表されるように種々あるが、い
ずれによっ又もよい。
The main turbine steam control valve aQ is used to adjust the output of the main turbine. Steam control valve (lOl) during variable pressure operation
There are various control methods as typified below, and any of them may be used.

■ 蒸気加減弁開度−元方式:蒸気加減弁の開度を固定
して運転する方式で、タービン出力は主蒸気圧力によっ
て一律に決まる。したがっ℃負荷変化時等の過渡時に主
蒸気圧力を精密に制御するのが難かしいので、タービン
出力を精密に制御するのは難かしい。
■ Steam regulating valve opening - original method: This is a method in which the opening of the steam regulating valve is fixed and the turbine output is uniformly determined by the main steam pressure. Therefore, it is difficult to precisely control the main steam pressure during transients such as when the load changes in degrees Celsius, and therefore it is difficult to precisely control the turbine output.

■ 蒸気加減弁開度微調整方式二上記■のように完全に
は蒸気加減弁開度を固定せず、タービン出力が所要の値
になるよ5に微調整する方式で、負荷変動時の過渡時に
おいても精密にタービン出力を制御できる。蒸気加減弁
の開度が変動する分だけ調速段出口の蒸気温度も変化す
るので、完全な変圧運転とは言いにくいが、災用的な方
法である。
■ Steam control valve opening fine adjustment method 2 As in the above ■, the steam control valve opening is not completely fixed, but is finely adjusted to 5 until the turbine output reaches the required value. Turbine output can be precisely controlled even at times. Since the steam temperature at the governor stage outlet changes as much as the opening degree of the steam control valve changes, it is difficult to say that it is a perfect variable pressure operation, but it is a disaster-saving method.

■ 主蒸気圧力/調速段出口圧力比一定制御方式:主蒸
気圧力と調速段出口圧力の比が一定になるように蒸気加
減弁を制御する方式で、上記■の蒸気加減弁開度−足方
式に一部過渡時の前圧制御機能を加えたものである。こ
の方式では上記■よりも主蒸気圧力の過渡的変動が少な
(なるが、過渡的出力変化は大きい。
■ Main steam pressure/governing stage outlet pressure ratio constant control method: This is a method in which the steam regulating valve is controlled so that the ratio between the main steam pressure and the governor stage outlet pressure is constant. This is a foot system with a partial front pressure control function added during transient periods. In this method, there are fewer transient fluctuations in the main steam pressure than in the method (2) above (although the transient output changes are large).

高圧タービン(9)の入口には高圧バイパス弁αυが設
けられ、高圧タービン入口圧力が所定の値を越えると主
蒸気を高圧排気へバイパスする。高圧タービン(9)ヲ
出た蒸気は低温再熱蒸気管逆上弁(1りを通って、蒸気
圧縮機(6b)へ導びか扛る。蒸気圧縮機(6b)で圧
縮された蒸気は、再熱器αJで再熱さn主タービンのイ
ンタセプト弁Q41を通って、中圧タービンα9に導入
される。中圧タービンQ9の入口には低圧バイパス弁(
161が設げられ、中圧タービン入口圧力が所定の値ン
越えると高温再熱蒸気を復水器αηヘバイノスする。中
圧タービンa四ヲ出た蒸気は、低圧タービンαQを通っ
て復水器αDへ導びかnて復水となる。高圧タービン(
9)、中圧タービンαωおよび低圧タービンα樽よりな
る主タービンにより発電機a1が駆動さ扛る。
A high-pressure bypass valve αυ is provided at the inlet of the high-pressure turbine (9), and when the high-pressure turbine inlet pressure exceeds a predetermined value, main steam is bypassed to the high-pressure exhaust. The steam discharged from the high-pressure turbine (9) passes through the low-temperature reheat steam pipe reverse valve (1) and is guided to the steam compressor (6b).The steam compressed by the steam compressor (6b) is , is reheated by the reheater αJ, and is introduced into the intermediate pressure turbine α9 through the main turbine intercept valve Q41.A low pressure bypass valve (
161 is provided, and when the intermediate pressure turbine inlet pressure exceeds a predetermined value, the high temperature reheated steam is transferred to the condenser αη. The steam discharged from the intermediate pressure turbine a4 passes through the low pressure turbine αQ, is guided to the condenser αD, and becomes condensed water. High pressure turbine (
9) A generator a1 is driven by a main turbine consisting of an intermediate pressure turbine αω and a low pressure turbine α barrel.

復水器a力を出た復水は復水ポンプ翰、低圧ヒータQυ
、脱気器翰、給水ポンプ(ハ)Z通って給水となり高圧
ヒータ@を通って再び前記ボイラのエコノマイザ(1)
へ送られる。
Condensate from the condenser a is sent to the condensate pump and low pressure heater Qυ
, the deaerator, the water supply pump (c) Z, the water is supplied, passes through the high pressure heater @, and returns to the economizer (1) of the boiler.
sent to.

プラントの起動初期など、減圧タービン(4)および蒸
気圧縮機(6b)を使用しない時は、遮断弁(ハ)。
When the pressure reducing turbine (4) and steam compressor (6b) are not in use, such as during the early stages of plant startup, the shutoff valve (c) is used.

(ハ)、@、@を閉じて、減圧弁−およびバイパス弁−
を開く。
(c) Close @, @, pressure reducing valve - and bypass valve -
open.

第1図、第4図および第5図において、低圧ヒータQυ
、高圧ヒータ(財)がそnぞれ1個づつ示さnているが
、こnらは複数個あってもよい。また主タービンの主蒸
気止弁、再熱蒸気止弁は図示が省略さnている。またプ
ラントの特性によっては、高圧バイパス弁aυ、低圧バ
イパス弁(Le、低温再熱蒸気管逆止弁α21は、必ず
しもなくても良い。また第1図および第5図における減
圧弁−は、減圧弁でな(遮断弁であってもよい。
In Figures 1, 4 and 5, low pressure heater Qυ
, one high-pressure heater (good) is shown, but there may be more than one of these. Further, the main steam stop valve and reheat steam stop valve of the main turbine are not shown. Also, depending on the characteristics of the plant, the high-pressure bypass valve aυ, the low-pressure bypass valve (Le, and the low-temperature reheat steam pipe check valve α21) may not necessarily be provided. It is not a valve (it may also be a shutoff valve).

第2図は主タービン出力と主蒸気圧力との関係の一例を
示すものである。図中の実線は、いわゆる「ハイブリッ
ド変圧運転(複合変圧運転〕」と呼ばnるもので、主タ
ービンの蒸気加減弁8個のうち第1から第6までの弁が
同時に開き第7弁以降がシーケンシャルに開いて行くも
のに対して、第7弁の開き始め(A点9以上の負荷では
定圧運転、それ以下の負荷では第1ないし第6弁の全開
状態で主蒸気圧力を変化させることによって負荷を変化
させる変圧運転ビ組み合わせたものである。
FIG. 2 shows an example of the relationship between main turbine output and main steam pressure. The solid line in the diagram indicates what is called "hybrid variable pressure operation (compound variable pressure operation)," in which the first to sixth of the eight steam control valves in the main turbine open simultaneously, and the seventh and subsequent valves open simultaneously. For those that open sequentially, the 7th valve starts to open (at a load of A point 9 or above, constant pressure operation, and at a load below that, the main steam pressure is changed with the 1st to 6th valves fully open). This is a combination of variable voltage operation that changes the load.

ただし低負荷(B点以下)では、主蒸気圧力は約100
Kg/mP程度に保持して第1ないし第6弁同時開の蒸
気加減弁絞り運転となる。第2図中にはまた、定圧運転
の場合、ならびに第1ないし第8弁全開での全域変圧運
転の場合の出力と主蒸気圧力との関係も、それぞれ破線
および一点鎖線で示さnている。
However, at low loads (below point B), the main steam pressure is approximately 100
The steam control valve throttle operation is performed by maintaining the pressure at about Kg/mP and simultaneously opening the first to sixth valves. In FIG. 2, the relationship between the output and the main steam pressure in the case of constant pressure operation and in the case of wide range variable pressure operation with the first to eighth valves fully open are also shown by broken lines and dashed-dotted lines, respectively.

第3図は、本実施例の効果すなわち変圧運転プラントの
効率改善率’に、10100O超臨界圧プラントヲ例に
とって試算した結果を示す。この図の破線は、減圧ター
ビンを用いて発電機を駆動する、第5図図示の変圧運転
プラントの減圧タービン出力とプラント効率改善率(減
圧弁を用いる第4図図示の変圧運転プラントのプラント
効率に対する相対値)暑示す。また第3図の実線は、減
圧タービンを用いて蒸気圧縮機を駆動する、第1図に示
さnる本発明の実施例の特性を示す。蒸気圧縮機によっ
て高圧タービンの排気圧力が中圧タービンの入口圧力に
対して下げられるので、高圧タービンの熱落差が増加し
、主タービン出力が増加して、再熱器の入熱が減少する
ので、プラント効率が向上する。
FIG. 3 shows the effect of this embodiment, that is, the efficiency improvement rate of a variable pressure operation plant, calculated using a 10100O supercritical pressure plant as an example. The broken line in this figure shows the pressure reducing turbine output and the plant efficiency improvement rate of the variable pressure operating plant shown in Figure 5, which uses a pressure reducing turbine to drive the generator (plant efficiency of the variable pressure operating plant shown in Figure 4 using a pressure reducing valve). (relative value to) indicates heat. Moreover, the solid line in FIG. 3 shows the characteristics of the embodiment of the invention shown in FIG. 1, which uses a pressure reducing turbine to drive the steam compressor. The vapor compressor reduces the exhaust pressure of the high pressure turbine relative to the inlet pressure of the intermediate pressure turbine, increasing the heat drop of the high pressure turbine, increasing the main turbine output and reducing the heat input to the reheater. , plant efficiency is improved.

蒸気圧縮機の効率が発電機の効率に比べて低いので、本
実施例によるプラント効率改善″4Aは、減圧タービン
で発電機を駆動する第5図の場合に比べて低くなるが、
本実施例においては、減圧タービンと蒸気圧縮機のセッ
トは、重量が比較的軽(、ボイラ上部の過熱器や再熱器
の近くに容易に設置できるから、重量の大きい発電機な
ボイラの上部に設置したり、大きな蒸気配管を引き廻し
たりする必要がないので、ボイラの構造上有利であり、
また管路の圧力損失も少なくて丁む。また減圧タービン
の回転数が固定さnないので、負荷の広い範囲にわたり
て減圧タービンの効率を高(保つことができる。
Since the efficiency of the vapor compressor is lower than the efficiency of the generator, the plant efficiency improvement of 4A according to this embodiment is lower than that in the case of FIG. 5 in which the generator is driven by a pressure-reducing turbine.
In this example, the decompression turbine and steam compressor set is relatively light in weight (and can be easily installed near the superheater or reheater in the upper part of the boiler, so it can be installed in the upper part of the boiler, which is a heavy generator). It is advantageous in terms of the boiler structure because there is no need to install it in the boiler or run large steam piping.
Also, the pressure loss in the pipeline is small. Furthermore, since the rotational speed of the pressure reducing turbine is not fixed, the efficiency of the pressure reducing turbine can be maintained at a high level over a wide range of loads.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次の効果が奏せらnる。 According to the present invention, the following effects can be achieved.

■ 減圧タービンの回転数が固定されないので、負荷の
広い範囲にわたって減圧タービンを高効率に保つことが
できる。
■ Since the rotation speed of the pressure reducing turbine is not fixed, it is possible to maintain high efficiency of the pressure reducing turbine over a wide range of loads.

■ 重量が比較的軽い減圧タービンと蒸気圧縮機のセッ
トを過熱器や再熱器のあるボイラ上部に容易に設置でき
るから、配管が簡単になって、ボイラ鉄骨を補強して重
量の大きい発電機なボイラ高所に設置したり、大きな蒸
気配管を引き廻したりしなくて丁み、ボイラの構造上有
利であり、また配管の横力損失も小さくなる。
■ The relatively light decompression turbine and steam compressor set can be easily installed on top of the boiler where the superheater and reheater are located, making piping easier and reinforcing the boiler steel frame for use in heavy generators. There is no need to install the boiler at a high place or route large steam piping, which is advantageous in terms of the structure of the boiler, and the lateral force loss of the piping is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図および
第3図はその作用効果を示す図、第4図および第5図は
従来の変圧運転プラントの例を示す系統図、第6図は減
圧タービンの条件ン示す図である。 (1)・・・エコノマイザ    (2)・・・火炉(
3)・・・−次週熱器     (4)・・・減圧ター
ビン(5)・・・減圧タービン蒸気加減弁 機
FIG. 1 is a system diagram showing an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing its effects, and FIGS. 4 and 5 are system diagrams showing an example of a conventional variable voltage operation plant. FIG. 6 is a diagram showing the conditions of the pressure reducing turbine. (1)...Economizer (2)...Furnace (
3)...-Next week's heater (4)...Reducing turbine (5)...Reducing turbine steam regulator

Claims (1)

【特許請求の範囲】[Claims]  ボイラの一次過熱器と二次過熱器とを連結する管路の
途中に弁と減圧タービンとを並列にして配設するととも
に、同減圧タービンにより駆動される蒸気圧縮機を設け
、上記二次過熱器からの蒸気で駆動される高圧タービン
の蒸気出口を上記蒸気圧縮機の入口に連通させたことを
特徴とする変圧運転プラント。
A valve and a pressure-reducing turbine are arranged in parallel in the middle of the pipe connecting the primary superheater and the secondary superheater of the boiler, and a steam compressor driven by the pressure-reducing turbine is installed to achieve the above-mentioned secondary superheating. A variable pressure operation plant, characterized in that a steam outlet of a high pressure turbine driven by steam from a steam compressor is communicated with an inlet of the steam compressor.
JP700488A 1988-01-18 1988-01-18 Variable pressure operating plant Pending JPH01184304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP700488A JPH01184304A (en) 1988-01-18 1988-01-18 Variable pressure operating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP700488A JPH01184304A (en) 1988-01-18 1988-01-18 Variable pressure operating plant

Publications (1)

Publication Number Publication Date
JPH01184304A true JPH01184304A (en) 1989-07-24

Family

ID=11653927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP700488A Pending JPH01184304A (en) 1988-01-18 1988-01-18 Variable pressure operating plant

Country Status (1)

Country Link
JP (1) JPH01184304A (en)

Similar Documents

Publication Publication Date Title
US5809783A (en) Method and apparatus of conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
US6339926B1 (en) Steam-cooled gas turbine combined power plant
JPS6193208A (en) Turbine bypass system
CN111749740B (en) Power generation facility and output increase control method for power generation facility
JP4343427B2 (en) Steam power plant output adjustment method and its steam power plant
MXPA96002485A (en) Method and conversion apparatus of a water vapor turbine energy plant with thermal regeneration cycle to a combined cycle power plant without regeneration
US5850739A (en) Steam turbine power plant and method of operating same
KR20150047428A (en) Starting method for steam turbine plant
US4402183A (en) Sliding pressure flash tank
JP2010163892A (en) Steam turbine facility, and method of operating feed water pump drive turbine
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
US5347814A (en) Steam system in a multiple boiler plant
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP2587419B2 (en) Supercritical once-through boiler
JP2000110511A (en) Cogeneration method and its system
JPH01184304A (en) Variable pressure operating plant
JP4232321B2 (en) Combination system of multiple boilers and steam turbines, and power plant
JP2008075996A (en) Exhaust heat recovery boiler and its steam pressure control method
JPH0932512A (en) Steam supply device of steam turbine gland seal
JP3497553B2 (en) Multi-can thermal power plant and operating method thereof
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH01181003A (en) Pressure reducing turbine apparatus
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system