JPH01184263A - Pretreatment for coating - Google Patents

Pretreatment for coating

Info

Publication number
JPH01184263A
JPH01184263A JP617288A JP617288A JPH01184263A JP H01184263 A JPH01184263 A JP H01184263A JP 617288 A JP617288 A JP 617288A JP 617288 A JP617288 A JP 617288A JP H01184263 A JPH01184263 A JP H01184263A
Authority
JP
Japan
Prior art keywords
substrate
inert gas
frequency output
pretreatment
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP617288A
Other languages
Japanese (ja)
Inventor
Koji Okamoto
康治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP617288A priority Critical patent/JPH01184263A/en
Publication of JPH01184263A publication Critical patent/JPH01184263A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out pretreatment in a short time without causing damage due to arching by introducing an inert gas into a vacuum tank, applying high-frequency output to a substrate, and initiating glow discharge in the gas to perform the cleaning and heating of the substrate. CONSTITUTION:A substrate 2 cleaned with an organic solvent, etc., is fitted in a vacuum tank 1 and, after the inside of the vacuum tank 1 is evacuated, an inert gas is introduced. A high-frequency output is impressed on the substrate 2 from a high-frequency electric power source 8 and glow discharge is initiated in the inert gas, by which the cleaning and heating of the substrate 2 is carried out by means of the ion bombardment of the inert gas. At this time, the high-frequency output is selected so that substrate temp. is regulated to about 200-600 deg.C. After the above pretreatment, a bias voltage is impressed on the substrate 2, by which the substrate 2 is coated with cathode material. By this method, even if contamination by oxides, etc., exists in the substrate 2 and a substrate holder, the occurrence of arcing due to charging up can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空アーク蒸着法を用いるコーティング(
成膜)の前処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a coating method using a vacuum arc evaporation method (
This relates to a pretreatment method for (film formation).

〔従来の技術〕[Conventional technology]

第2図は従来の真空アーク蒸着法に用いる真空アーク放
電形PVD装置を示す概略図であり、真空ポンプ6によ
って排気される真空槽l内に基板2が設置され、さらに
この基板2に対向して陰極3が設置される。基板2は直
流バイアス電′/S4によって、接地された真空槽1よ
り負の電圧が印加されるようになっている。また、前記
陰極3ば、真空槽1の壁面を陽極とするアーク電源5に
接続され、真空槽1と陰極3との間でアーク放電させ、
陰極3から陰極物質(たとえばTiなど)を蒸発、イオ
ン化させる。
FIG. 2 is a schematic diagram showing a vacuum arc discharge type PVD apparatus used in the conventional vacuum arc evaporation method. The cathode 3 is installed. A negative voltage is applied to the substrate 2 from the grounded vacuum chamber 1 by a DC bias voltage '/S4. Further, the cathode 3 is connected to an arc power source 5 having the wall surface of the vacuum chamber 1 as an anode, and an arc is discharged between the vacuum chamber 1 and the cathode 3.
A cathode material (for example, Ti) is evaporated and ionized from the cathode 3.

基板2への陰極物質のコーティングにあたっては、基板
2の前処理を行う。この前処理は基板2の洗浄と加熱を
目的をするものであって、真空槽1内にH2+ He、
Δr等の不活性ガスを10−″〜1O−Itorr導入
して基板2に負の直流電圧(数100V〜数kV)を印
加し、直流グロー放電を発生させて前記不活性ガスのイ
オン衝撃により基板2の洗浄および加熱を行う。
Before coating the substrate 2 with the cathode material, the substrate 2 is pretreated. The purpose of this pretreatment is to clean and heat the substrate 2, and the vacuum chamber 1 contains H2+ He,
An inert gas such as Δr is introduced at 10 −″ to 1 O−Itorr, and a negative DC voltage (several 100 V to several kV) is applied to the substrate 2 to generate a DC glow discharge and cause ion bombardment of the inert gas. The substrate 2 is cleaned and heated.

かかる前処理後、たとえばTiN膜のコーティングでは
、窒素ガスを真空槽1内に導入し、図示しないトリガを
陰極3に接触離間させてアーク電源5により陰極3 (
Ti)と真空槽1との間にアーク放電を発生さセ、陰極
からTiを藤発させ、負のバイアス電圧を印加した対向
する基板2にTiN膜を形成させる。
After such pretreatment, for example, when coating a TiN film, nitrogen gas is introduced into the vacuum chamber 1, a trigger (not shown) is brought into contact with and separated from the cathode 3, and the cathode 3 (
An arc discharge is generated between the Ti and the vacuum chamber 1, and Ti is emitted from the cathode to form a TiN film on the opposing substrate 2 to which a negative bias voltage is applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の直流グロー放電による前処理は、不活性ガスをイ
オン化し、そのイオン衝撃を利用して基板2の洗浄およ
び加熱を行うものであるため、密着性のよい被膜が形成
される。
The pretreatment using DC glow discharge described above ionizes an inert gas and uses the ion bombardment to clean and heat the substrate 2, so that a film with good adhesion is formed.

しかしながら、基板2やそれを保持する治具等に酸化物
等の絶縁物が汚染質として付着している場合には、チ十
−ジアップによるアーキングが著しく頻繁に生し、基板
2を損傷させる場合があった。このため、基板2に印加
する電圧をアーキングが生しないように徐々に上げる必
要があり、基板2の洗浄に長時間を要するという欠点が
あった。
However, if insulators such as oxides are attached as contaminants to the substrate 2 or the jig that holds it, arcing due to chip-up will occur extremely frequently and may damage the substrate 2. was there. For this reason, it is necessary to gradually increase the voltage applied to the substrate 2 to prevent arcing, which has the disadvantage that cleaning the substrate 2 takes a long time.

したがって、この発明の目的は、アーキングによる損傷
を発生させることなく基板の前処理を短時間に行うこと
ができるコーティングの前処理方法を提供することであ
る。
Accordingly, an object of the present invention is to provide a coating pretreatment method that allows a substrate to be pretreated in a short time without causing damage due to arcing.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明のコーティングの前処理方法は、真空槽内に不
活性ガスを導入し、基板に高周波出力を印加して前記不
活性ガス中にグロー放電を発生させて基板の洗浄および
加熱を行うものである。
The coating pretreatment method of the present invention introduces an inert gas into a vacuum chamber, applies high frequency output to the substrate, generates glow discharge in the inert gas, and cleans and heats the substrate. be.

第1図はこの発明の方法を実施するための真空アーク放
電形PVD装置の概略図であり、基板2に直流バイアス
電源7とともに高周波電源8が並列接続される。高周波
電源8はマツチングボックス9を介して接続され、直流
バイアス電源7には直流電圧を高周波出力に重畳し7て
印加てきるように直流フィルタ10が介在される。前記
マツチングボックス9は可変キャパシタと可変インダク
タとからなり、高周波グロー放電で最大電力を消費する
ようにインピーダンスを調整するものである。
FIG. 1 is a schematic diagram of a vacuum arc discharge type PVD apparatus for carrying out the method of the present invention, in which a DC bias power supply 7 and a high frequency power supply 8 are connected in parallel to the substrate 2. A high frequency power source 8 is connected via a matching box 9, and a DC filter 10 is interposed in the DC bias power source 7 so as to apply a DC voltage superimposed on the high frequency output. The matching box 9 is made up of a variable capacitor and a variable inductor, and is used to adjust impedance so that maximum power is consumed in high frequency glow discharge.

その他の構成は第2図に示す従来の装置と同しであるの
で、同一符号を付して説明を省略する。
The rest of the configuration is the same as the conventional device shown in FIG. 2, so the same reference numerals are given and the explanation will be omitted.

このPVD装置を用いて基板の前処理および真空アーク
放電によるコーティングを行うにあたってば、有a溶剤
等で洗浄した基板2を真空槽1内に装着し、真空槽1内
を真空引きしたのち、11□。
When performing pretreatment of a substrate and coating by vacuum arc discharge using this PVD apparatus, the substrate 2 cleaned with an aqueous solvent or the like is placed in the vacuum chamber 1, and after the inside of the vacuum chamber 1 is evacuated, □.

He、 Ar等の不活性ガスを真空槽1内に約10−3
〜1O−1torr導入する。ついで、高周波電源8よ
り高周波出力数10〜数100Wを印加して高周波グロ
ー放電を発生さ−U、不活性ガスのイオン衝撃により基
板2の洗浄と加熱を行う。この場合、高周波出力は基板
温度が200〜600°Cになるように選択する。この
基板温度はコーテイング膜の密着性および基板材質上の
制約(たとえば基板硬度の軟化等)から選択される。
Inert gas such as He or Ar is placed in the vacuum chamber 1 at a rate of about 10-3
~10-1 torr is introduced. Next, a high frequency output of several tens to several hundreds of W is applied from a high frequency power source 8 to generate a high frequency glow discharge, and the substrate 2 is cleaned and heated by ion bombardment of an inert gas. In this case, the high frequency output is selected so that the substrate temperature is 200 to 600°C. This substrate temperature is selected based on the adhesion of the coating film and constraints on the substrate material (for example, softening of substrate hardness, etc.).

かかる前処理後、基板2にバイアス電圧を印加し、陰極
にアーク電圧を印加してアーク放電を発生させ、基板2
に陰極物質(Ti、 TiN等)をコーティングする。
After such pretreatment, a bias voltage is applied to the substrate 2 and an arc voltage is applied to the cathode to generate an arc discharge.
coat with cathode material (Ti, TiN, etc.).

〔作用] このように、この発明では基板2に高周波出力を印加す
るため、基板や基板保持具等に酸化物等の絶縁物の汚れ
が存在していても、チャージアップによるアーキングが
生じるのを防止することができる。したがって、従来の
ように基板に印加する電圧をアーキングを生しないよう
に徐々に上げていく必要がなく、基板を損傷させずに短
時間に基板2の清浄化および加熱を行うことができる。
[Function] In this way, in this invention, since high frequency output is applied to the substrate 2, arcing due to charge-up can be prevented even if there is insulating dirt such as oxide on the substrate or substrate holder. It can be prevented. Therefore, it is not necessary to gradually increase the voltage applied to the substrate so as not to cause arcing as in the conventional case, and the substrate 2 can be cleaned and heated in a short time without damaging the substrate.

なお、基板2への成膜時には、基板2に従来のよ・)に
直流電圧のみを印加してもよいが、直流電圧に代えて、
あるいは直流電圧とともに高周波出力を印加するように
してもよい。かかる高周波出力を印加することにより、
絶縁膜の成膜時にチャージアップするのが防止され膜が
損傷するのを回避することができるという利点がある。
Note that when forming a film on the substrate 2, only a DC voltage may be applied to the substrate 2 as in the conventional method, but instead of the DC voltage,
Alternatively, a high frequency output may be applied together with the DC voltage. By applying such high frequency output,
This has the advantage that charge-up during the formation of the insulating film can be prevented and damage to the film can be avoided.

〔実施例〕 第1図に示すPVD装置を用いてW板の前処理および成
膜実験を行った。ここで、基板として高速度鋼を用い、
陰極としてTiを使用した。
[Example] Using the PVD apparatus shown in FIG. 1, pretreatment and film formation experiments were conducted on a W plate. Here, using high speed steel as the substrate,
Ti was used as the cathode.

L!使■ f(空引きした真空槽内にI+2を0.031:orr
導入し、高周波電源より周波数13.56 Mlizの
高周波出力500Wを5分間印加し、ついで1]2とl
ieとを0.1torr導入し高周波出力500Wを1
0分間印加し、さらにHzとArとを0.1 torr
導入し高周波出力500Wを10分間印加して、グロー
放電を発生さセて基板の洗浄および加熱を行った。
L! ■ f (0.031:orr I+2 in the empty vacuum chamber
A high frequency output of 500 W with a frequency of 13.56 Mliz was applied from a high frequency power supply for 5 minutes, and then 1]2 and l
IE is introduced at 0.1 torr and the high frequency output is 500W.
0 minutes, and then 0.1 torr of Hz and Ar.
A high frequency output of 500 W was applied for 10 minutes to generate glow discharge, and the substrate was cleaned and heated.

このように3段階で前処理するのは、質量の大きLSA
rで前処理すると、洗浄効果は大きい反面、柔らかい材
質の基板ではスパッタが大きく表面が荒れるため、質量
の小さい11゜やllcによって大部分の放電洗浄を行
うためである。
This three-stage pretreatment is performed on LSAs with large mass.
This is because pretreatment with R has a great cleaning effect, but if the substrate is made of a soft material, the spatter will be large and the surface will be rough, so most of the discharge cleaning is performed with 11° or LLC, which has a small mass.

域J桑 真空槽内に窒素ガスを25ミリtorr導入し、基板に
直流バイアス電圧−200Vを印加し、陰極にアーク電
流60Aでアーク放電を発生させて貼仮にコーティング
を行った。コーティング時間は30分間である。
Nitrogen gas was introduced at 25 millitorr into a vacuum chamber, a DC bias voltage of -200 V was applied to the substrate, and an arc discharge was generated at the cathode with an arc current of 60 A to perform temporary coating. Coating time is 30 minutes.

実験結果 前処理の所要時間は、従来の直流電圧によろ印加ではチ
ャージアップによるアーキングを防止するために電圧を
徐々に上界させながら長時間(約60分)をかけて行わ
なければならなかったが、この実施例では従来の1/3
程度の時間(20分)で同程度の密着性をもつTiN膜
を形成させることができた。これは、高周波によるグロ
ー放電であるため、たとえ基板等にイ」着した酸化物等
の絶縁物の7りれが存在した場合でもチャージアップ−
けず、したがってアーキングなしに前処理を行えるため
と考えられる。
Experimental Results When applying conventional DC voltage, the pretreatment required a long time (approximately 60 minutes) while gradually increasing the voltage to prevent arcing due to charge-up. However, in this example, it is 1/3 of the conventional
A TiN film with similar adhesion could be formed in about the same amount of time (20 minutes). Since this is a glow discharge caused by high frequency, the charge builds up even if there is an insulator such as an oxide deposited on the substrate.
This is thought to be because the pretreatment can be performed without any scratches or arcing.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、基板に高周波出力を印加ずろため、
基板や基板保持具等に酸化物等の絶縁物の汚れか存在し
ていても、チャージアップによるアーキングが生じるの
を防止することができる。
According to this invention, since high frequency output is applied to the substrate,
Even if there is dirt on insulators such as oxides on the substrate, substrate holder, etc., arcing due to charge-up can be prevented from occurring.

したかって、従来のように基板に印加する電圧をアーキ
ングが生しないように徐々に」二のでいく必要がなく、
基板を損傷させずCに短時間に基板の清浄化および加熱
を行うことができるという効果がある。
Therefore, there is no need to gradually adjust the voltage applied to the board to prevent arcing, as in the conventional method.
This has the effect that the substrate can be cleaned and heated in a short time without damaging the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明において使用する真空アーク蕉着型P
VD装置の概略図、第2図は従来の真空アーク薄着型P
VD装置の概略図である。 1−真空槽、2一基板、3−陰極、5−アーク電源、4
.7−直流バイアス電源、8−高周波電源
Figure 1 shows the vacuum arc bonding type P used in this invention.
A schematic diagram of the VD device, Figure 2 is a conventional vacuum arc thin-deposition type P
It is a schematic diagram of a VD device. 1-vacuum chamber, 2-substrate, 3-cathode, 5-arc power supply, 4
.. 7-DC bias power supply, 8-High frequency power supply

Claims (1)

【特許請求の範囲】 真空槽内に設置した陰極において真空アーク放電を生じ
させて陰極物質を蒸発、イオン化し、同じ真空槽内に設
置した基板にコーティングするのに先立って、前記真空
槽内に不活性ガスを導入し、この不活性ガス中にグロー
放電を発生させて前記基板の洗浄および加熱を行うコー
ティングの前処理方法において、 前記基板に高周波出力を印加して前記不活性ガス中にグ
ロー放電を発生させることを特徴とするコーティングの
前処理方法。
[Claims] A vacuum arc discharge is generated at a cathode placed in a vacuum chamber to evaporate and ionize the cathode material, and the material is ionized in the vacuum chamber before being coated on a substrate placed in the same vacuum chamber. In a coating pretreatment method that introduces an inert gas and generates a glow discharge in the inert gas to clean and heat the substrate, a high frequency output is applied to the substrate to generate a glow discharge in the inert gas. A coating pretreatment method characterized by generating an electric discharge.
JP617288A 1988-01-14 1988-01-14 Pretreatment for coating Pending JPH01184263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP617288A JPH01184263A (en) 1988-01-14 1988-01-14 Pretreatment for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP617288A JPH01184263A (en) 1988-01-14 1988-01-14 Pretreatment for coating

Publications (1)

Publication Number Publication Date
JPH01184263A true JPH01184263A (en) 1989-07-21

Family

ID=11631129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP617288A Pending JPH01184263A (en) 1988-01-14 1988-01-14 Pretreatment for coating

Country Status (1)

Country Link
JP (1) JPH01184263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417659A (en) * 1990-05-11 1992-01-22 Matsushita Electric Ind Co Ltd Production of thin oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417659A (en) * 1990-05-11 1992-01-22 Matsushita Electric Ind Co Ltd Production of thin oxide film
JP2529438B2 (en) * 1990-05-11 1996-08-28 松下電器産業株式会社 Method of manufacturing oxide thin film

Similar Documents

Publication Publication Date Title
KR100397137B1 (en) Ion Plating Device and Ion Plating Method
JPS63210099A (en) Preparation of diamond film
JPH0114312B2 (en)
JP2001190948A (en) Method and apparatus for plasma treatment of surface
US9812298B2 (en) Cleaning device and cleaning process for a plasma reactor
JPH0661335A (en) Wafer holding plate for semiconductor manufacturing device
JP2000328248A (en) Method for cleaning thin film forming apparatus and thin film forming apparatus
JPH01184263A (en) Pretreatment for coating
JPS6324068A (en) Continuous vacuum deposition plating device
JPS63458A (en) Vacuum arc vapor deposition device
JPH02156066A (en) Method for cleaning base material
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
JPS616271A (en) Method and device for bias ion plating
KR950009992B1 (en) Method for coating of lenses
JPH04276062A (en) Arc deposition device
JPH0751750B2 (en) Film forming equipment
JPS5919327A (en) Surface processing method by ion bombarding
JPH04131366A (en) Method for cleaning substrate
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPH01272766A (en) Magnetron sputtering operation
JPS63241162A (en) High frequency ion plating device
JPH06145973A (en) Sputtering device
JP2001003163A (en) Ion plating vapor deposition device
JPS6233761A (en) Cleaning device for inside wall of vacuum vessel
JP2812517B2 (en) Ion plating method and apparatus