JPH0118401B2 - - Google Patents

Info

Publication number
JPH0118401B2
JPH0118401B2 JP53135867A JP13586778A JPH0118401B2 JP H0118401 B2 JPH0118401 B2 JP H0118401B2 JP 53135867 A JP53135867 A JP 53135867A JP 13586778 A JP13586778 A JP 13586778A JP H0118401 B2 JPH0118401 B2 JP H0118401B2
Authority
JP
Japan
Prior art keywords
wavelength
dispersion
optical fiber
optical
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135867A
Other languages
Japanese (ja)
Other versions
JPS5562406A (en
Inventor
Akira Sugimura
Junichi Yamada
Kazuhiro Ooguro
Nobuyuki Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13586778A priority Critical patent/JPS5562406A/en
Publication of JPS5562406A publication Critical patent/JPS5562406A/en
Publication of JPH0118401B2 publication Critical patent/JPH0118401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は、超広帯域光フアイバ伝送路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-wideband optical fiber transmission line.

近年、光伝送路として光フアイバが賞用され、
光フアイバによつて光通信も逐次実用化されつゝ
あるが、パルス状の光線を通信の媒体として用い
る場合、光伝送路の受端から得られるパルス状光
線の時間的な拡散すなわち分散によつて波形歪を
生ずるため、伝送周波数帯域が制約される現象を
生じ、これによつて光フアイバを用いた広帯域光
伝送路の実現が阻害されていた。
In recent years, optical fibers have been used as optical transmission lines.
Optical communications using optical fibers are being put into practical use one by one, but when pulsed light is used as a communication medium, the temporal diffusion, or dispersion, of the pulsed light obtained from the receiving end of the optical transmission line causes problems. As a result, waveform distortion occurs, resulting in a phenomenon in which the transmission frequency band is restricted, and this has hindered the realization of broadband optical transmission lines using optical fibers.

すなわち、光フアイバ中を光線が伝播する際の
伝播モードに応じて生ずる多モード分散、光フア
イバを構成する材料の屈折率が伝播する光線の波
長に応じて変化することによつて生ずる材料分
散、特定の伝播モードにおける伝播の群速度が光
線の波長に対して一様でないために生ずる構造分
散等が生じ、これらによつてパルス状光線によつ
て伝送可能な周波数帯域が制約されている。
That is, multimode dispersion occurs depending on the propagation mode when a light ray propagates in an optical fiber, material dispersion occurs when the refractive index of the material that makes up the optical fiber changes depending on the wavelength of the propagating light ray, Structural dispersion and the like occur because the group velocity of propagation in a particular propagation mode is not uniform with respect to the wavelength of the light beam, and these restrict the frequency band that can be transmitted by the pulsed light beam.

なお、光線の波長に応じて変化する材料分散、
構造分散は波長分散と総称され、単一モードの光
線のみを伝播させる単一モード光フアイバでは多
モード分散が無く、波長分散のみが存在するた
め、比較的広伝送帯域であるが、やはり、波長分
散によつて伝送帯域の制限を受けている。
Note that material dispersion changes depending on the wavelength of the light beam,
Structural dispersion is collectively called chromatic dispersion, and in a single mode optical fiber that propagates only a single mode of light, there is no multimode dispersion and only chromatic dispersion exists, so the transmission band is relatively wide. The transmission band is limited by dispersion.

第1図は、単一モード光フアイバにおける伝送
光線の波長に対する波長分散特性の一例を示し、
溶融石英をコア材料に用い、コアと周辺のクラツ
ド層との比屈折率差を0.25%、コアの直径を7.7μ
mとし、かつ、コア内における比屈折率を一様と
した均一コア形光フアイバの例であり、波長分散
値は、入射する光線のスペクトル的な波長分布に
よつて変化するため、Ps(ピコ秒)/Kn・Åを単
位としてある。
FIG. 1 shows an example of chromatic dispersion characteristics with respect to the wavelength of a transmitted light beam in a single mode optical fiber,
Fused silica is used as the core material, the relative refractive index difference between the core and the surrounding cladding layer is 0.25%, and the core diameter is 7.7μ.
This is an example of a uniform core optical fiber with a uniform relative refractive index of m and a uniform relative refractive index within the core.Since the wavelength dispersion value changes depending on the spectral wavelength distribution of the incident light beam, P s ( The unit is picosecond)/K n・Å.

なお、波長分散が零となる波長は同図の場合約
1.326μmであるが、この零分散波長λ0の光線に対
しては波長分散が生ぜず、伝送周波数帯域が無限
大となるため、伝送すべき光線の波長をλsとした
とき、一般にλs=λ0となる様に光フアイバにおけ
るコアの材料成分や構造を定めている。
Note that the wavelength at which chromatic dispersion becomes zero is approximately
1.326 μm, but chromatic dispersion does not occur for a light beam with this zero dispersion wavelength λ 0 and the transmission frequency band becomes infinite, so when the wavelength of the light beam to be transmitted is λ s , generally λ s The material components and structure of the core of the optical fiber are determined so that = λ 0 .

しかし、コアの材料成分や構造を厳密に調整す
るのは自ずから限界があり、前述の関係を常に維
持するのが極めて困難であると共に、零分散波長
λ0は主として材料によつて定まる固有的なもので
あるため、任意の波長に対して零分散波長λ0を一
致させることができないと云う欠点を生じてい
た。
However, there are limits to strictly adjusting the material components and structure of the core, and it is extremely difficult to maintain the above relationship at all times. Therefore, the disadvantage is that the zero dispersion wavelength λ 0 cannot be made to match any given wavelength.

本発明は、従来のかゝる欠点を根本的に解決す
る目的を有しコア径や比屈折率等の構造パラメー
タを異ならせることにより構造分散に基づく波長
分散特性を違えた複数種の単一モード光フアイバ
を用意のうえ、これらを縦続接続して光伝送路を
構成すると共に、任意に選定した特定種類の単一
モード光フアイバの全長と他のものとを特定の関
係とし、全光伝送路としての零分散波長を伝送す
る光線の波長へ容易に一致させ、極めて広い伝送
周波数帯域を実現した超広帯域光フアイバ伝送路
を提供するものである。
The purpose of the present invention is to fundamentally solve such drawbacks of the conventional methods, and the present invention has been developed to produce multiple types of single modes with different wavelength dispersion characteristics based on structural dispersion by varying structural parameters such as core diameter and relative refractive index Prepare optical fibers, connect them in cascade to form an optical transmission line, and establish a specific relationship between the total length of an arbitrarily selected specific type of single-mode optical fiber and other fibers to create an all-optical transmission line. The purpose of the present invention is to provide an ultra-wideband optical fiber transmission line that can easily match the zero-dispersion wavelength of the light beam to the wavelength of the transmitted light beam and realize an extremely wide transmission frequency band.

以下、実施例を示す第2図以降により本発明の
詳細を説明する。
The details of the present invention will be explained below with reference to FIG. 2 and subsequent figures showing embodiments.

第2図は、光伝送路の構成図であり、機械的構
成または屈折率による構造を異ならせることによ
り、構造分散に基づく波長分散特性を異ならせた
二種の単一モード光フアイバ1a〜1cおよび2
a,2bを、光コネクタ等の接続部3により縦続
接続して一体の光伝送路を構成している。たゞ
し、各単一モード光フアイバ(以下、光フアイ
バ)1a〜1c,2a,2bの全長は異ならせて
あり、伝送する光線の波長λsに対し全光伝送路の
零分散波長λ0が一致するものとしてある。
FIG. 2 is a configuration diagram of an optical transmission line, and shows two types of single mode optical fibers 1a to 1c with different wavelength dispersion characteristics based on structural dispersion by different mechanical configurations or structures based on refractive index. and 2
a and 2b are connected in cascade through a connecting portion 3 such as an optical connector to form an integrated optical transmission line. However, the total length of each single mode optical fiber (hereinafter referred to as optical fiber) 1a to 1c, 2a, and 2b is different, and the zero dispersion wavelength of the entire optical transmission line is λ 0 with respect to the wavelength λ s of the transmitted light beam. are assumed to match.

すなわち、光フアイバ1a〜1cの波長分散値
S1および光フアイバ2a,2bの波長分散値S2
が、伝送する光線の波長λsに応じて変化する波長
依存性を求めれば、λ=λ1,λ2と置いて、かつ、
f1(λ)、f2(λ)とするとき、 S1=f1(λ) ……(1) S2=f2(λ) ……(2) により表わされる。たゞし、f1,f2は光線の波長
λに依存する関係であり、λ1は光フアイバ1a〜
1cの零分散波長、λ2は光フアイバ2a,2bの
零分散波長である。この関数形はよく知られてお
り(文献:D.G loge“Dispersion in Weakly
Guiding Fibers”Applied Opties,vol.10,No.
11,pp2442〜2445,November 1971)光フアイ
バのコア径及び比屈折率差にも依存する。したが
つてコア径及び比屈折率差を変化させて、構造分
散に基づく波長分散特性を変化させることができ
る。例えばコア径10μm、比屈折率差0.2%の通常
の単一モード光フアイバからコア径4μm、比屈
折率差0.7%まで変化させると、零分散波長は
1.3μmから1.6μmまで変化する。
That is, the wavelength dispersion value of the optical fibers 1a to 1c
S 1 and wavelength dispersion value S 2 of optical fibers 2a, 2b
However, if we seek the wavelength dependence that changes depending on the wavelength λ s of the transmitted light, we can set λ = λ 1 and λ 2 , and
When f 1 (λ) and f 2 (λ), it is expressed by S 1 = f 1 (λ) ...(1) S 2 = f 2 (λ) ... (2). However, f 1 and f 2 have a relationship that depends on the wavelength λ of the light beam, and λ 1 is the relationship between the optical fibers 1a and 1a.
1c is the zero dispersion wavelength, and λ 2 is the zero dispersion wavelength of the optical fibers 2a and 2b. This functional form is well known (Reference: DG loge “Dispersion in Weakly
Guiding Fibers”Applied Optics, vol.10, No.
11, pp2442-2445, November 1971) It also depends on the core diameter of the optical fiber and the relative refractive index difference. Therefore, by changing the core diameter and relative refractive index difference, the wavelength dispersion characteristics based on structural dispersion can be changed. For example, if you change a normal single mode optical fiber with a core diameter of 10 μm and a relative refractive index difference of 0.2% to a core diameter of 4 μm and a relative refractive index difference of 0.7%, the zero dispersion wavelength will be
It varies from 1.3μm to 1.6μm.

いま、光フアイバ1a〜1cの長さl1a〜l1c
和を全長l1とし、光フアイバ2a,2bの長さ
l2a,l2bの和を全長l2とすれば、光フアイバ1a〜
1cにおける波長分散量は波長分散値S1と全長l1
との積、光フアイバ2a,2bにおける波長分散
量は波長分散値S2と全長l2との積により定まるた
め、光伝送路全体の波長分散量Sは次式によつて
示される。
Now, the sum of the lengths of optical fibers 1a to 1c, l1a to l1c , is the total length l1 , and the length of optical fibers 2a and 2b is
If the sum of l 2a and l 2b is the total length l 2 , then the optical fiber 1a~
The amount of chromatic dispersion at 1c is the chromatic dispersion value S 1 and the total length l 1
Since the amount of chromatic dispersion in the optical fibers 2a and 2b is determined by the product of the chromatic dispersion value S 2 and the total length l 2 , the amount S of chromatic dispersion of the entire optical transmission line is expressed by the following equation.

S=S1・l1+S2・l2 ……(3) したがつて、(1),(2)式を(3)式へ代入し、かつ、
λを零分散波長λ0とすれば、このときの全波長分
散量Sは零となり、次式の関係となる。
S=S 1・l 1 +S 2・l 2 ...(3) Therefore, substituting equations (1) and (2) into equation (3), and
If λ is the zero-dispersion wavelength λ 0 , the total chromatic dispersion amount S at this time is zero, and the relationship is expressed by the following equation.

l1・f1(λ0)+l2・f2(λ0)=0 ……(4) このとき、伝送する光線の波長λsを(4)式の零分
散波長λ0と等しくすると、すなわち、 λs=λ0 ……(5) とすれば、この光伝送路における伝送周波数帯域
は無限大に近づき、これを光フアイバ1a〜1c
の全長l1と、光フアイバ2a,2bの全長l2との
比として求めれば、(4),(5)式から、 l1/l2=−f2(λs)/f1(λs) ……(6) が得られる。
l 1 · f 10 ) + l 2 · f 20 ) = 0 ... (4) At this time, if the wavelength λ s of the transmitted light ray is equal to the zero dispersion wavelength λ 0 in equation (4), That is, if λ s = λ 0 ...(5), the transmission frequency band in this optical transmission line approaches infinity, and this is divided into optical fibers 1a to 1c.
From equations (4) and (5), l 1 /l 2 = -f 2 ( λ s ) / f 1s ) ...(6) is obtained.

すなわち、(6)式の関係を満足する全長l1とl2
して光フアイバ1a〜1c,2a,2bを縦続接
続すれば超広帯域光フアイバ伝送路が実現する。
That is, if optical fibers 1a to 1c, 2a, and 2b are cascaded with total lengths l1 and l2 that satisfy the relationship of equation (6), an ultra-wideband optical fiber transmission line can be realized.

なお、第2図のとおり同一種類の光フアイバ1
a〜1cと、これと異なる種類の光フアイバ2
a,2bとを分割のうえ、それぞれの全長を(6)式
の関係とすれば、カツト・アンド・トライにより
全体の零分散波長λ0を容易に調整できるため、極
めて便利であるが、光フアイバ1a〜1cを一体
とし、かつ、光フアイバ2a,2bを一体とし
て、各々の長さl1,l2を(6)式の関係としても同様
である。
In addition, as shown in Figure 2, the same type of optical fiber 1
a to 1c and a different type of optical fiber 2
If a and 2b are divided and their respective total lengths are related to equation (6), the overall zero dispersion wavelength λ 0 can be easily adjusted by cut-and-try, which is extremely convenient. The same is true if the fibers 1a to 1c are integrated, and the optical fibers 2a and 2b are integrated, and their lengths l 1 and l 2 are set to the relationship expressed by equation (6).

また、以上は二種の光フアイバ1a〜1cと2
a,2bとを用いたが、一般的に複数種類すなわ
ちn種類の光フアイバを用いても同様の理論によ
り同一の結果を得ることができる。
In addition, the above describes two types of optical fibers 1a to 1c and 2.
Although a and 2b were used, in general, the same result can be obtained using a similar theory even if a plurality of types, that is, n types of optical fibers are used.

すなわち、n種類中における特定種類の光フア
イバiにおける零分散波長をλiとし、(1),(2)式と
同様の波長分散値をfi(λ)とすれば、光フアイ
バiを含むn種類の光フアイバによつて構成され
る光伝送路全体の零分散波長λ0は、(4)式の拡張形
として次式により示される。
In other words, if the zero dispersion wavelength of a specific type of optical fiber i among n types is λ i , and the wavelength dispersion value similar to equations (1) and (2) is f i (λ), then The zero dispersion wavelength λ 0 of the entire optical transmission line composed of n types of optical fibers is expressed by the following equation as an extended form of equation (4).

oi=1 li・fi(λ0)=0 ……(7) また、伝送する光線の波長λsに対し、全体の零
分散波長λ0が等しくなるために必要とする光フア
イバiの全長liと他のものとの比は、(7)式へ(5)式
を代入して、 oi=1 li・fi(λs)=0 ……(8) により示される。
oi=1 l i・f i0 )=0 ...(7) Also, the optical fiber required to make the entire zero dispersion wavelength λ 0 equal to the wavelength λ s of the transmitted light beam is The ratio between the total length l i of i and other items can be obtained by substituting equation (5) into equation (7) and using oi=1 l i・f is )=0... (8) shown.

したがつて、n種類の光フアイバを用いるとき
には、任意のものを特定種類の光フアイバiとし
て選び、(8)式の関係を満足する全長liとして定め
ればよい。
Therefore, when using n types of optical fibers, it is sufficient to select an arbitrary type of optical fiber i as the specific type of optical fiber i and determine the total length l i that satisfies the relationship of equation (8).

第3図は、第2発明と対応する実施例の構成図
であり、構造分散に基づく波長分散特性がわずか
に異なる二種類の光フアイバ1と2とを用い、か
つ、簡略化のため各々が一体となつている場合を
示している。
FIG. 3 is a configuration diagram of an embodiment corresponding to the second invention, in which two types of optical fibers 1 and 2 with slightly different wavelength dispersion characteristics based on structural dispersion are used, and for the sake of simplicity, each This shows the case where they are integrated.

光フアイバ1および2の波長分散値は一般的に
(1)式および(2)式で表わされるが、波長分散値は波
長λのわずかな変化に対してその変化幅内ではほ
ぼ直線的に変化し、一次関数f(λ)=aλ+b
(a,bは定数)の形式に近似できるため、(1)式
および(2)式は、 f1(λ)=a1(λ−λ1) ……(9) f2(λ)=a2(λ−λ2) ……〕 により示される。たゞし、a1,a2はλ=λ1,λ2
したときの光フアイバ1および2における波長分
散値の1次係数である。
The wavelength dispersion values of optical fibers 1 and 2 are generally
Expressed by equations (1) and (2), the chromatic dispersion value changes almost linearly within the range of change for a slight change in wavelength λ, and is a linear function f(λ) = aλ + b
(a, b are constants), so equations (1) and (2) are f 1 (λ)=a 1 (λ−λ 1 ) ……(9) f 2 (λ)= a 2 (λ−λ 2 ) ...] However, a 1 and a 2 are the first-order coefficients of the chromatic dispersion values in the optical fibers 1 and 2 when λ=λ 1 and λ 2 .

こゝで、(9),(10)式を(4)式へ代入すると、光伝送
路全体の零分散波長λ0は次式によつて示される。
Now, by substituting equations (9) and (10) into equation (4), the zero dispersion wavelength λ 0 of the entire optical transmission line is expressed by the following equation.

λ0=a1・l1・λ1+a2・l2・λ2/a1・l1+a2・l2
…(11) また、伝送する光線の波長λsと零分散波長λ0
が一致した光伝送路を構成する光フアイバ1,2
の各全長l1,l2の比は(6)式から、 l1/l2=−a2(λs−λ2)/a1(λs−λ1)……(12) により示される。
λ 0 =a 1・l 1・λ 1 +a 2・l 2・λ 2 /a 1・l 1 +a 2・l 2
...(11) Also, optical fibers 1 and 2 constituting an optical transmission line in which the wavelength λ s of the transmitted light and the zero dispersion wavelength λ 0 match
From equation ( 6 ) , the ratio of each total length l 1 and l 2 of It will be done.

なお、同様の近似が成立する範囲内で、n種類
の光フアイバを用いる場合には、この中から特定
した種類の光フアイバiを任意に選定のうえ、そ
の零分散波長をλiとし、この零分散波長における
波長分散値の1次係数をai、光フアイバiの全長
をliとすれば、(11)式および(12)式を拡張して次式の
関係が得られる。
In addition, when using n types of optical fibers within the range where the same approximation holds, arbitrarily select a specified type of optical fiber i from among them, set its zero dispersion wavelength as λ i , and If the first-order coefficient of the chromatic dispersion value at the zero-dispersion wavelength is a i and the total length of the optical fiber i is l i , then the following relationship is obtained by expanding equations (11) and (12).

すなわち、光フアイバiの全長liを(14)式の関
係に定めれば、超広帯域光フアイバ伝送路が得ら
れる。
That is, if the total length l i of the optical fiber i is determined according to the relationship of equation (14), an ultra-wideband optical fiber transmission line can be obtained.

たゞし、第3図の構成では、光伝送路の中間に
挿入される中継器等へ接続する側に、全長l2の短
くなる光フアイバ2を位置させれば、遅延等化器
的にも使用できるため便利であるが、第2図と同
様各々の光フアイバ1,2を分割のうえ縦続接続
して用いてもよい。
However, in the configuration shown in Fig. 3, if the optical fiber 2, which has a shorter total length l2 , is placed on the side connected to a repeater inserted in the middle of the optical transmission line, the delay equalizer can be reduced. Although it is convenient because the optical fibers 1 and 2 can also be used, the optical fibers 1 and 2 may be divided and connected in cascade for use, as in FIG.

以上のとおり、構造分散に基づく波長分散特性
の異なる複数種類の光フアイバを(8)式および(14)
式の関係として縦続接続すれば、超広帯域の光伝
送路を容易に実現できるが、その具体的数値例に
ついて述べればつぎのとおりである。
As described above, multiple types of optical fibers with different wavelength dispersion characteristics based on structural dispersion can be expressed using equations (8) and (14).
An ultra-wideband optical transmission line can be easily realized by cascade connection according to the relationship shown in the equation, and a specific numerical example thereof is as follows.

まず、比屈折率差は同じでコア径の異るフアイ
バを接続する実施例について述べる。A,B2本
の均一コア形光フアイバについて、比屈折率差は
0.25%と同じ値であるが、Aのコア径を6.9μm、
Bのコア直径を8.5μmに選び構造パラメータを変
化させることにより、第4図に示すようにAの零
分散波長λ1を1.355μm、Bの零分散波長を1.310μ
mと異ならせる。この結果、λ=λ1,λ2における
波長分散値の1次係数は、Aが0.00080Ps/Kn
2,Bが0.00089Ps/Kn・Å2となり、これらを
それぞれa1,a2とし、伝送する光線の波長λs
1.33μmとすれば、(12)式から、 l1/l2=−a2(λs−λ2)/a1(λs−λ1)=−8.9
×10-4/8.0×10-4 ×(1.33−1.310)×10-6/(1.33−1.355)×10
-6=0.89 したがつて、光フアイバAの全長l1を890mと
したとき、光フアイバBの全長l2を1000mとし
て、両者を第3図の様に接続すればよい。
First, an example will be described in which fibers having the same relative refractive index difference but different core diameters are connected. For two uniform core optical fibers A and B, the relative refractive index difference is
The same value as 0.25%, but the core diameter of A is 6.9μm,
By selecting the core diameter of B as 8.5 μm and changing the structural parameters, the zero dispersion wavelength λ 1 of A is 1.355 μm and the zero dispersion wavelength of B is 1.310 μm, as shown in Figure 4.
Make it different from m. As a result, the first-order coefficient of the chromatic dispersion value at λ=λ 1 and λ 2 is 0.00080Ps/K n
Å 2 and B become 0.00089Ps/K n Å 2 , and let these be a 1 and a 2 respectively, and the wavelength λ s of the transmitted light beam is
If it is 1.33μm, then from equation (12), l 1 /l 2 = −a 2s − λ 2 )/a 1s − λ 1 ) = −8.9
×10 -4 /8.0×10 -4 × (1.33−1.310) ×10 -6 / (1.33−1.355) ×10
-6 = 0.89 Therefore, when the total length l 1 of optical fiber A is 890 m, the total length l 2 of optical fiber B is 1000 m, and the two can be connected as shown in FIG.

また、構造分散に基づく波長分散特性が異なる
二種の光フアイバを用いる例としては、第4図A
の光フアイバと、第5図に示す波長分散特性のも
のとを用いる場合が挙げられる。
In addition, as an example of using two types of optical fibers with different wavelength dispersion characteristics based on structural dispersion, see Figure 4A.
For example, an optical fiber having wavelength dispersion characteristics shown in FIG. 5 may be used.

第5図は、近来提案されているカドミウムCd
とテルルTeとを材料とした光フアイバの波長分
散特性であり、零分散波長が5μm以上となつて
いるため、(8)式の前提となる(6)式を適用して計算
することができる。
Figure 5 shows the recently proposed cadmium C d
This is the wavelength dispersion characteristic of an optical fiber made of tellurium and T e as materials, and since the zero dispersion wavelength is 5 μm or more, it can be calculated by applying equation (6), which is the premise of equation (8). can.

いま、伝送する光線の波長λsを1.5μmとすれ
ば、第4図Aの波長1.5μmにおける波長分散値f1
(λs)は約−0.98Ps/Kn・Åであり、第5図の波
長分散値f2(λs)は約+107Ps/Kn・Åであるた
め、(6)式から、 l1/l2=−f2(λs)/f1(λs)=−+107/−0.98
≒109 したがつて、第4図に示す光フアイバAの全長
l1を50Knとすれば、 l2=l1/109=50×103/109≒0.460×103 すなわち、第5図に示す光フアイバの全長l2
460mとして第3図と同様に接続すればよい。
Now, if the wavelength λ s of the transmitted light beam is 1.5 μm, the chromatic dispersion value f 1 at the wavelength 1.5 μm in Figure 4A is
s ) is approximately −0.98P s /K n ·Å, and the chromatic dispersion value f 2s ) in FIG. 5 is approximately +107P s /K n ·Å, so from equation (6), l 1 / l 2 = −f 2s ) / f 1s ) = −+107/−0.98
≒109 Therefore, the total length of optical fiber A shown in Fig. 4 is
If l 1 is 50K n , then l 2 = l 1 /109 = 50 x 10 3 /109≒0.460 x 10 3 , that is, the total length l 2 of the optical fiber shown in Fig. 5 is
460m and connect as shown in Figure 3.

たゞし、第4図A,Bの組み合せ、および、第
4図Bと第5図との組み合せを、第2図の様に
各々を分割のうえ接続して構成することも任意で
ある。
However, the combination of FIGS. 4A and 4B and the combination of FIGS. 4B and 5 may be constructed by dividing and connecting each of them as shown in FIG. 2.

以上の説明により明らかなとおり本発明によれ
ば、各個別に製造した構造の異なる複数種類の単
一モード光フアイバを、伝送する光線の波長に応
じて各々の全長を定めて縦続接続すれば、伝送す
る光線の波長と全光伝送路の零分散波長とが一致
し、超広帯域伝送路が得られるため、材料成分、
構造等により零分散波長を調整する場合に比し、
極めて容易かつ正確に目的を達することができ
る。
As is clear from the above description, according to the present invention, if a plurality of types of single mode optical fibers each manufactured individually and having different structures are connected in cascade with the total length of each determined depending on the wavelength of the light beam to be transmitted, Since the wavelength of the transmitted light and the zero dispersion wavelength of the all-optical transmission line match, and an ultra-wideband transmission line is obtained, the material composition,
Compared to adjusting the zero dispersion wavelength by structure etc.
You can achieve your goals with great ease and precision.

したがつて、今後益々発展の途上にある光通信
等の光伝送路へ適用して、伝送特性の向上、光伝
送路製造コストの低減等、顕著な効果を呈する。
Therefore, it can be applied to optical transmission lines such as optical communication, which will continue to develop in the future, and will exhibit remarkable effects such as improved transmission characteristics and reduced optical transmission line manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単一モード光フアイバの波長分散特性
例、第2図以降は本発明の実施例を示し、第2図
は第1発明と対応する光伝送路の構成図、第3図
は第2発明と対応する光伝送路の構成図、第4図
は第2発明に用いる単一モード光フアイバの波長
分散特性、第5図は第1発明に用いる単一モード
光フアイバの波長分散特性である。 1,1a〜1c,2,2a,2b…光フアイバ
(単一モード光フアイバ)、3…接続部。
Fig. 1 shows an example of wavelength dispersion characteristics of a single mode optical fiber, Fig. 2 and subsequent figures show embodiments of the present invention, Fig. 2 is a configuration diagram of an optical transmission line corresponding to the first invention, and Fig. Fig. 4 shows the wavelength dispersion characteristics of the single mode optical fiber used in the second invention, and Fig. 5 shows the wavelength dispersion characteristics of the single mode optical fiber used in the first invention. be. 1, 1a to 1c, 2, 2a, 2b...Optical fiber (single mode optical fiber), 3... Connection portion.

Claims (1)

【特許請求の範囲】 1 材料分散が一定であつて、かつコア径及びコ
アとクラツドとの比屈折率差が異なる複数n種類
の単一モード光フアイバを縦続接続して光伝送路
を構成すると共に、前記複数n種類中における特
定種類の単一モード光フアイバiにおける伝送す
る光線の波長λsに対する波長分散値fi(λs)と該単
一モード光フアイバiの全長liとを oi=1 li・fi(λs)=0 の関係としたことを特徴とする超広帯域光フアイ
バ伝送路。
[Claims] 1. An optical transmission line is constructed by cascade-connecting a plurality of n types of single-mode optical fibers with constant material dispersion and different core diameters and relative refractive index differences between the core and the cladding. In addition, the chromatic dispersion value f is ) for the wavelength λ s of the light beam transmitted in a specific type of single mode optical fiber i among the plurality of n types and the total length l i of the single mode optical fiber i are expressed as o An ultra-wideband optical fiber transmission line characterized by having the following relationship : i=1 l i ·f is )=0.
JP13586778A 1978-11-06 1978-11-06 Extra broad band optical fiber transmission line Granted JPS5562406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13586778A JPS5562406A (en) 1978-11-06 1978-11-06 Extra broad band optical fiber transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13586778A JPS5562406A (en) 1978-11-06 1978-11-06 Extra broad band optical fiber transmission line

Publications (2)

Publication Number Publication Date
JPS5562406A JPS5562406A (en) 1980-05-10
JPH0118401B2 true JPH0118401B2 (en) 1989-04-05

Family

ID=15161613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13586778A Granted JPS5562406A (en) 1978-11-06 1978-11-06 Extra broad band optical fiber transmission line

Country Status (1)

Country Link
JP (1) JPS5562406A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261639A (en) * 1979-11-13 1981-04-14 Bell Telephone Laboratories, Incorporated Optical pulse equalization in single-mode fibers
JPS60121403A (en) * 1983-12-06 1985-06-28 Nippon Telegr & Teleph Corp <Ntt> Control method of zero dispersion wavelength of optical fiber
JPS60173504A (en) * 1984-02-07 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable
JPS62275204A (en) * 1986-05-23 1987-11-30 Fujitsu Ltd Low dispersion optical transmission line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102356A (en) * 1973-01-30 1974-09-27
JPS5435748A (en) * 1977-08-25 1979-03-16 Furukawa Electric Co Ltd:The Improvement method of light pulse spreading by material disperson

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102356A (en) * 1973-01-30 1974-09-27
JPS5435748A (en) * 1977-08-25 1979-03-16 Furukawa Electric Co Ltd:The Improvement method of light pulse spreading by material disperson

Also Published As

Publication number Publication date
JPS5562406A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
US5896476A (en) Optical loop signal processing using reflection mechanisms
Gloge Optical power flow in multimode fibers
US4261639A (en) Optical pulse equalization in single-mode fibers
US4307938A (en) Dielectric waveguide with elongate cross-section
AU696531B2 (en) Monolithic optical waveguide filters based on fourier expansion
AU707442B2 (en) Bragg grating filter
CA2210282A1 (en) Optical fiber grating
AU662340B2 (en) Integrated optics achromatic splitter and an MxN coupler incorporating such a splitter
CN110741293B (en) Optical fiber and optical transmission system
US5175778A (en) Integrated optic waveguide coupler with reduced wavelength sensitivity
KR880001339B1 (en) Low desperasion,low-lossingle-mode optical waveguide
JPS583205B2 (en) Ultra-wideband single mode optical fiber
JP3201560B2 (en) Optical signal processing circuit
JPH0118401B2 (en)
JPH11514103A (en) Periodic Mach-Zehnder optical filter
JPS6123522B2 (en)
JPS583206B2 (en) Single mode optical fiber with intermediate layer
US5559913A (en) Broadband integrated optical proximity coupler
JP2000028934A (en) Dispersion variable optical equalizer
US7209620B2 (en) Dispersion optimized fiber having higher spot area
WO2023223432A1 (en) Mode field conversion optical circuit
JPS63309906A (en) Optical waveguide coupler
Goyal Dispersion in Telecommunication Optical Fibres—A Tutorial Review
DE10061836A1 (en) Optical fiber cable and method for transmitting optical signals, in particular using wavelength division multiplexing
Mohapatra et al. Effect of profile parameters on cut-off V values of LP modes in designing intermodal dispersion free few mode fiber