JPH01183888A - Cooling structure of electronic equipment - Google Patents

Cooling structure of electronic equipment

Info

Publication number
JPH01183888A
JPH01183888A JP63009149A JP914988A JPH01183888A JP H01183888 A JPH01183888 A JP H01183888A JP 63009149 A JP63009149 A JP 63009149A JP 914988 A JP914988 A JP 914988A JP H01183888 A JPH01183888 A JP H01183888A
Authority
JP
Japan
Prior art keywords
fins
air
cooling
phase flow
heating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63009149A
Other languages
Japanese (ja)
Inventor
Susumu Yamazaki
進 山崎
Takahiro Oguro
崇弘 大黒
Takehiko Yanagida
柳田 武彦
Takashi Kumagai
熊谷 多加史
Masao Kato
正男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63009149A priority Critical patent/JPH01183888A/en
Publication of JPH01183888A publication Critical patent/JPH01183888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Abstract

PURPOSE:To make it possible to cool heating elements efficiently, by a constitution, wherein fresh, cool air hits the approximately entire surfaces of fins on the upstream side and on the downstream side with respect to the flow of the cooling air. CONSTITUTION:Two-phase flow pipe 22 is provided uprightly at the upper part of an evaporating part 20. Several cooling fins 23 are attached to the two-phase flow pipe 22. A two-phase flow pipe 22', which is provided at the upper part of modules 4' on the downstream side, has the length of about twice that of the two-phase flow pipe 22. The provided height of fins 23', which are attached in the two-phase flow pipe 22', are formed at the part about twice higher than the fins 23. When cooling air is made to flow in parallel with the upper surface of heating elements 2, the fresh, cool air hits the approximately entire surfaces of the fins 23 and 23'. In this way, the heating elements in any line are cooled sufficiently. Since the air, which is accelerated with the fins, directly hits the any of the fins 23 and 23', the flow speeds of the air streams passing the fins 23 and 23' become approximately equal. All modules 4 and 4' are uniformly cooled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器の冷却構造に係り、特に多数の半導体
素子を有するモジュールが複数列に配列された場合、そ
れらのモジュールの1つ1つを効率良く空冷することが
できる電子機器の冷却構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling structure for electronic equipment, and particularly when modules having a large number of semiconductor elements are arranged in multiple rows, each of the modules The present invention relates to a cooling structure for electronic equipment that can efficiently air-cool the electronic equipment.

〔従来の技術〕[Conventional technology]

近年、半導体素子は高密度に集積化され、1箇当りの半
導体素子の発熱量は益々増加しており、モジュールの発
熱量も当然に増加の傾向にある。
In recent years, semiconductor elements have been integrated with high density, and the amount of heat generated by each semiconductor element has been increasing more and more, and naturally the amount of heat generated by modules has also tended to increase.

このため、モジュールが多数使用される電子計算機では
、これらのモジュールを空気で冷却する際に、高い冷却
性能が要求されている0例えば、個々に冷却用フィンが
設けられたモジュールが複数列に配列されている場合、
モジュールの1つ1つの発熱量をほぼ同じとし、これら
のモジュールを同一の空気流で直列的に冷却すると、空
気流に対して上流側のモジュールは、冷たい空気で冷却
されるため、十分な冷却効果が得られるが、下流側のモ
ジュールは、・上流側のモジュールを冷却して温度が上
昇した空気で冷却されるので、十分な冷却効果が得られ
ない、しかも、空気がフィンを通過するときには1通風
抵抗があるため、下流側の空気の流速は遅くなり、冷却
効果は一層低下する。
For this reason, in electronic computers where a large number of modules are used, high cooling performance is required when cooling these modules with air. If it is,
If the heat output of each module is approximately the same and these modules are cooled in series with the same air flow, the module on the upstream side of the air flow will be cooled with cold air, so it will not be sufficiently cooled. However, the downstream module is cooled by the air whose temperature has increased by cooling the upstream module, so a sufficient cooling effect cannot be obtained.Moreover, when the air passes through the fins, 1. Due to the ventilation resistance, the flow velocity of the air on the downstream side is slowed down, and the cooling effect is further reduced.

このような空冷による冷却効果を良くするために、空気
の流速を大きくしたり、フィンの面積を増加させたりす
ることが考えられるが、前者の場合はファンが大型化し
てファン騒音の増大を招き・また後者の場合はフィン重
量の増大により強度信頼性の低下、コスト上昇等の問題
が生じる。
In order to improve the cooling effect of air cooling, it is possible to increase the air flow velocity or increase the area of the fins, but in the former case, the fan becomes larger and the fan noise increases. - In the latter case, problems such as a decrease in strength reliability and an increase in cost arise due to the increase in fin weight.

そこで、空気よりも熱容量の大きい水を用いて冷却する
方法、すなわち水冷によってモジュールを冷却するよう
にしたものが特開昭58−23463号公報に開示され
ている。これは、第7図に示すように、基板1上の半導
体素子2および可撓性熱伝導体3を収納するモジュール
4の上面に水冷ジャケット5を設け、この水冷ジャケッ
ト5内に配設された水配管6に循環水7を流すことによ
ってモジュール4冷却するようにしたものである。
Therefore, Japanese Patent Laid-Open No. 58-23463 discloses a cooling method using water, which has a larger heat capacity than air, in which the module is cooled by water cooling. As shown in FIG. 7, a water-cooling jacket 5 is provided on the top surface of a module 4 that accommodates a semiconductor element 2 on a substrate 1 and a flexible heat conductor 3, and a water-cooling jacket 5 is disposed inside the water-cooling jacket 5. The module 4 is cooled by flowing circulating water 7 through the water pipe 6.

なお、図中8は冷媒9が流れる冷媒配管、10は圧縮器
、11はコンデンサ(ig縮器)、12は冷媒9によっ
て循環水7を冷却する水冷却器、13はファンである。
In the figure, 8 is a refrigerant pipe through which the refrigerant 9 flows, 10 is a compressor, 11 is a condenser (IG condenser), 12 is a water cooler that cools the circulating water 7 with the refrigerant 9, and 13 is a fan.

このようにモジュールを水冷で冷却すれば、モジュール
が複数列に配列にされても、個々のモジュールを十分に
冷却することが可能である。
If the modules are cooled with water in this way, even if the modules are arranged in multiple rows, each module can be sufficiently cooled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記公報の技術では、水冷ジャケットの
他に、水冷却器、コンデンサ、圧縮器および配管等が必
要となり、冷却系の容積が大型化し、またこのために製
造コストが上昇するという問題があった。
However, the technology disclosed in the above publication requires a water cooler, condenser, compressor, piping, etc. in addition to the water cooling jacket, which increases the volume of the cooling system and increases manufacturing costs. Ta.

本発明の目的は、複数列に配列されたモジュールを空冷
で効率良く冷却できる電子機器の冷却構造を提供するこ
とである。
An object of the present invention is to provide a cooling structure for electronic equipment that can efficiently cool modules arranged in multiple rows by air cooling.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の電子機器の冷却構
造は、複数列に配列された発熱体の上面に個々に冷却用
のフィンを設け、該発熱体の上面に平行に空気を流して
前記フィンを空冷することにより、前記発熱体を冷却す
る電子機器の冷却構造において、前記フィンの配置高さ
を、前記発熱体の列毎に、前記空気の流れと直交する方
向へ相 。
In order to achieve the above object, the cooling structure for electronic equipment of the present invention provides individual cooling fins on the upper surfaces of heating elements arranged in multiple rows, and allows air to flow parallel to the upper surfaces of the heating elements. In the cooling structure for an electronic device that cools the heating element by air cooling the fins, the height of the fins is adjusted in a direction perpendicular to the air flow for each row of the heating elements.

違させて前記フィンの略全面に空気を当てる構成とした
ものである。
The structure is such that air is applied to substantially the entire surface of the fins.

〔作用〕[Effect]

上記構成によれば1発熱体に設けられたフィンの配置高
さが列毎に異なっているから1発熱体の上面に平行に冷
却用の空気を流すと、各々のフィンの略全面に新鮮な冷
たい空気が当たることになり、どの列の発熱体も十分に
冷却される。また、ファンで加速された空気は、どのフ
ィンにも直接当たるようになるため、フィンを通過する
空気の流速は全てほぼ同等となり、全てのモジュールは
均一に冷却される。
According to the above configuration, the arrangement height of the fins provided on one heating element is different for each row, so when cooling air is flowed parallel to the top surface of one heating element, fresh air is distributed over almost the entire surface of each fin. The cold air hits the heating elements in every row, and the heating elements are sufficiently cooled. Furthermore, since the air accelerated by the fan directly hits every fin, the flow velocity of the air passing through the fins is approximately the same, and all modules are cooled uniformly.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に従って説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る冷却構造の全体構成図、第2図は
モジュールの配置を示す上面図であり。
FIG. 1 is an overall configuration diagram of a cooling structure according to the present invention, and FIG. 2 is a top view showing the arrangement of modules.

また第3図および第4図は第1図における上流側モジュ
ールおよび下流側モジュールのそれぞれの断面図である
3 and 4 are cross-sectional views of the upstream module and downstream module in FIG. 1, respectively.

第1図において、基板1上には半導体素子2および可撓
性熱伝導体3が設けられ、これらを覆うようにモジュー
ル・キャップ14が基板1上に固定されている。モジュ
ール・キャップ14の上面には箱型の蒸発部20がモジ
ュール・キャップ14に当接して設けられ、その内部に
冷媒液2LLが収納されている。蒸発部20の上方には
二相流管22が立設され、この2相流管22に多数の冷
却フィンが取付けられている。なお、基板1上の半導体
素子2をモジュール・キャップ14内に収納したものを
モジュール4と呼ぶ。
In FIG. 1, a semiconductor element 2 and a flexible thermal conductor 3 are provided on a substrate 1, and a module cap 14 is fixed on the substrate 1 so as to cover them. A box-shaped evaporator 20 is provided on the upper surface of the module cap 14 in contact with the module cap 14, and a refrigerant liquid 2LL is stored inside the evaporator 20. A two-phase flow pipe 22 is provided upright above the evaporator 20, and a large number of cooling fins are attached to this two-phase flow pipe 22. Note that a module in which the semiconductor element 2 on the substrate 1 is housed within the module cap 14 is referred to as a module 4.

以上の説明では、モジュール4が空気24の流れに対し
て上流側に配置されたものについてであったが、同様の
ものが下流側にも配置されている。
In the above description, the module 4 was arranged on the upstream side with respect to the flow of the air 24, but a similar module is also arranged on the downstream side.

下流側のモジュール4′の構造は上流側のモジュール4
と相違はないが、その上方に設けられた二相流管22′
は前述の二相流管22よりも約2倍の長さを持っている
。そして、その二相流管22′に取付けられたフィン2
3′の配置高さは前述のフィン23よりも略倍の高さの
所に形成されている。
The structure of the downstream module 4' is similar to that of the upstream module 4.
, but the two-phase flow pipe 22' provided above it
has a length approximately twice as long as the two-phase flow tube 22 described above. Then, the fin 2 attached to the two-phase flow pipe 22'
The height of the fins 3' is approximately twice the height of the fins 23 described above.

また、モジュール4,4′は第1図の紙面垂直方向に複
数個配列されており、その様子を第2図に示す。図にお
いて、4a、4−b、4c・・・・・・は上流側のモジ
ュールを4a’ 、4b’ 、4c’・・・・・・は下
流側のモジュールを示している。なお、24at 24
 b v 24 c・・・・・・は空気の流れである。
Further, a plurality of modules 4, 4' are arranged in a direction perpendicular to the plane of the paper of FIG. 1, and the arrangement is shown in FIG. In the figure, 4a, 4-b, 4c... indicate modules on the upstream side, and 4a', 4b', 4c'... indicate modules on the downstream side. In addition, 24 at 24
b v 24 c... is the flow of air.

次に本実施例の作用について第3図および第4図を用い
て説明する。
Next, the operation of this embodiment will be explained using FIGS. 3 and 4.

まず、上流側のモジュール4において、半導体素子2で
生じた熱は可撓性熱伝導体3を経てモジュール・キャッ
プ14に伝わり、更に蒸発部20に伝導する。蒸発部2
0内の冷媒21Lは、この熱により熱せられて蒸発し、
冷媒の蒸気21Gは二相流管22の内部を昇り、このと
き冷媒ガス21Gの熱はフィン23に伝導する。一方、
冷却用の空気24をフィン23に当てると、フィン23
表面の熱伝達によりフィン23の部分の熱が空気に冷や
されるので、二相流管22内の冷媒21Gも気体から液
体に変化し、重力により二相流管22を流下して蒸発部
20に戻る。
First, in the upstream module 4, heat generated in the semiconductor element 2 is transmitted to the module cap 14 via the flexible heat conductor 3, and further to the evaporation section 20. Evaporation section 2
The refrigerant 21L inside 0 is heated by this heat and evaporates.
The refrigerant vapor 21G rises inside the two-phase flow tube 22, and at this time, the heat of the refrigerant gas 21G is conducted to the fins 23. on the other hand,
When the cooling air 24 is applied to the fins 23, the fins 23
As the heat in the fins 23 is cooled by the air through surface heat transfer, the refrigerant 21G in the two-phase flow tube 22 also changes from gas to liquid, flows down the two-phase flow tube 22 due to gravity, and reaches the evaporator 20. return.

なお、下流側のモジュール4′についても上流側のモジ
ュール4′と同様に冷却される。この場合、下流側のモ
ジュール4′に設けられたフィン23′の高さが上流側
のフィン23より高い位置にあるので、フィン23を通
過した空気はフィン23′の下方を通り抜け、フィン2
3′には新鮮な空気が当たることになる。
Note that the downstream module 4' is also cooled in the same manner as the upstream module 4'. In this case, since the height of the fins 23' provided on the downstream module 4' is higher than the fins 23 on the upstream side, the air that has passed through the fins 23 passes under the fins 23' and
3' will be exposed to fresh air.

本実施例によれば、フィン23に当たった空気は、フィ
ン23を通過後に他のフィンに当たらないため、その通
風抵抗は小さく、冷却ファンを大型化する必要はない。
According to this embodiment, the air that hits the fins 23 does not hit other fins after passing through the fins 23, so the ventilation resistance is small and there is no need to increase the size of the cooling fan.

第5図は本発明の他の実施例を示しており、本実施例で
は、空気の流れに対してフィンの高さ位置を前述の実施
例とは逆にした場合であり、他の構成は前述の実施例と
同じである: また、第6図は更に他の実施例を示しており、上流側の
二相流管22aと下流側の二相流管22bの長さを同一
とした場合である。
FIG. 5 shows another embodiment of the present invention. In this embodiment, the height position of the fins with respect to the air flow is reversed from that of the above-mentioned embodiment. The same as the above-mentioned embodiment: FIG. 6 shows still another embodiment, in which the length of the upstream two-phase flow pipe 22a and the downstream two-phase flow pipe 22b are the same. It is.

本実施例によれば、二相流管22a、22bを共通化で
きるので、コスト低減させることができる。
According to this embodiment, the two-phase flow tubes 22a and 22b can be used in common, so that costs can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、冷却用の空気の
流れに対して、上流側および下流側のフィンの略全面に
それぞれ新鮮な冷たい空気が当たるようになるので1発
熱体を効率良く冷却することが可能である。また発熱体
の発熱量が大きい場合でも、フィン面積をあまり大きく
する必要はないため、冷却装置の小型化が図れる。
As explained above, according to the present invention, with respect to the flow of cooling air, nearly the entire surfaces of the fins on the upstream side and the downstream side are hit with fresh cold air, so that one heating element can be efficiently heated. It is possible to cool it down. Further, even if the heat generation amount of the heating element is large, there is no need to increase the fin area so much that the cooling device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷却構造を示す全体構成図、第2図は
モジュールの配置を示す平面図、第3図および第4図は
第1図における冷却構造のうち各々上流側および下流側
の構造を示す断面図、第5図は他の実施例を示す全体構
成図、第6図は更に他の実施例を示す全体構成図、第7
図は従来の冷却構造を示す構成図である。 1・・・基板、2・・・半導体素子、 3・・・可撓性熱伝導体、4,4′・・・モジュール。 14・・・モジュール・キャププ、20・・・蒸発部、
2LL・・・冷媒液、21G・・・冷媒蒸気、22.2
2’・・・二相流管、 23.23’・・・フィン、24・・・空気。 第11図 ぎ 第3図 第4図 1L1 第5図
Figure 1 is an overall configuration diagram showing the cooling structure of the present invention, Figure 2 is a plan view showing the arrangement of modules, and Figures 3 and 4 are the upstream and downstream parts of the cooling structure in Figure 1, respectively. 5 is a cross-sectional view showing the structure, FIG. 5 is an overall configuration diagram showing another embodiment, FIG. 6 is an overall configuration diagram showing still another embodiment, and FIG.
The figure is a configuration diagram showing a conventional cooling structure. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Semiconductor element, 3...Flexible thermal conductor, 4,4'...Module. 14...Module cap, 20...Evaporation section,
2LL...Refrigerant liquid, 21G...Refrigerant vapor, 22.2
2'... Two-phase flow tube, 23.23'... Fin, 24... Air. Figure 11 Figure 3 Figure 4 Figure 1L1 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  複数列に配列された発熱体の上面に個々に冷却用のフ
ィンを設け、該発熱体の上面に平行に空気を流して前記
フィンを空冷することにより、前記発熱体を冷却する電
子機器の冷却構造において、前記フィンの配置高さを、
前記発熱体の列毎に、前記空気の流れと直交する方向へ
相違させて前記フィンの略全面に空気を当てる構成とし
たことを特徴とする電子機器の冷却構造。
Cooling of electronic equipment that cools the heating elements by providing individual cooling fins on the upper surface of the heating elements arranged in a plurality of rows and cooling the fins by flowing air parallel to the upper surfaces of the heating elements. In the structure, the arrangement height of the fins is
A cooling structure for an electronic device, characterized in that air is applied to substantially the entire surface of the fins in different directions orthogonal to the air flow for each row of the heating elements.
JP63009149A 1988-01-19 1988-01-19 Cooling structure of electronic equipment Pending JPH01183888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009149A JPH01183888A (en) 1988-01-19 1988-01-19 Cooling structure of electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009149A JPH01183888A (en) 1988-01-19 1988-01-19 Cooling structure of electronic equipment

Publications (1)

Publication Number Publication Date
JPH01183888A true JPH01183888A (en) 1989-07-21

Family

ID=11712565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009149A Pending JPH01183888A (en) 1988-01-19 1988-01-19 Cooling structure of electronic equipment

Country Status (1)

Country Link
JP (1) JPH01183888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090679A4 (en) * 2014-05-21 2017-11-08 Olympus Corporation Cooling device, and light source device for endoscope
EP3263009A3 (en) * 2016-06-30 2018-04-25 Karl Storz SE & Co. KG Device for video endoscopy
JP2019165191A (en) * 2018-03-20 2019-09-26 廣達電脳股▲ふん▼有限公司 Extended heat sink design for server

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090679A4 (en) * 2014-05-21 2017-11-08 Olympus Corporation Cooling device, and light source device for endoscope
US10092174B2 (en) 2014-05-21 2018-10-09 Olympus Corporation Endoscope light source apparatus
EP3263009A3 (en) * 2016-06-30 2018-04-25 Karl Storz SE & Co. KG Device for video endoscopy
JP2019165191A (en) * 2018-03-20 2019-09-26 廣達電脳股▲ふん▼有限公司 Extended heat sink design for server
US10842054B2 (en) 2018-03-20 2020-11-17 Quanta Computer Inc. Extended heat sink design in server

Similar Documents

Publication Publication Date Title
US6609561B2 (en) Tunnel-phase change heat exchanger
US8130497B2 (en) Blade server
US7212403B2 (en) Apparatus and method for cooling electronics and computer components with managed and prioritized directional air flow heat rejection
JPH04196395A (en) Electronic computer and cooling device thereof
US7660109B2 (en) Apparatus and method for facilitating cooling of an electronics system
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JPH0563119B2 (en)
US7447025B2 (en) Heat dissipation device
US20080289802A1 (en) Radiator and cooling system
JP3082738B2 (en) High efficiency liquid cooling device
JPH01183888A (en) Cooling structure of electronic equipment
US20150103486A1 (en) Phase Change Module and Electronic Device Mounted with Same
JPH1163722A (en) Fluid cooler
JPS63192256A (en) Integrated circuit cooling constitution
JPH11307705A (en) Heat sink for forced air cooling and its cooling method
JPS62152147A (en) Radiator for semiconductor element
KR200232600Y1 (en) Heat exchange apparatus using thermoelectric element
JP7176643B2 (en) Electronic device cooling device, water-cooled information processing device, and electronic device cooling method
JP3359136B2 (en) Cooler for semiconductor device
TWI715094B (en) Composite water-cooling radiator structure
TW201223430A (en) Heat sink, liquid cooling unit, and electronic apparatus
US20230363104A1 (en) Heatsink with adjustable fin pitch
JPH0350897A (en) Cooling apparatus
JPH04259291A (en) Electronic device
JP2002162058A (en) Cooler