JPH01183629A - Optically bistable semiconductor laser - Google Patents

Optically bistable semiconductor laser

Info

Publication number
JPH01183629A
JPH01183629A JP726888A JP726888A JPH01183629A JP H01183629 A JPH01183629 A JP H01183629A JP 726888 A JP726888 A JP 726888A JP 726888 A JP726888 A JP 726888A JP H01183629 A JPH01183629 A JP H01183629A
Authority
JP
Japan
Prior art keywords
optical waveguide
output
input
saturable absorption
use optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP726888A
Other languages
Japanese (ja)
Inventor
Masaaki Kuno
正明 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP726888A priority Critical patent/JPH01183629A/en
Publication of JPH01183629A publication Critical patent/JPH01183629A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/026Optical bistable devices based on laser effects

Abstract

PURPOSE:To reduce increase of a threshold level, and also, to stabilize a characteristic due to decrease of the number of control electrodes by allowing plural input use optical waveguides to intersect and couple against one saturable absorption area of an output use optical waveguide. CONSTITUTION:As for this composite type bistable laser, two input use optical waveguides are coupled to one saturable absorption area by allowing them to intersect at an inclination angle. According to such constitution, an operation of OR and AND can be executed in the same way as a conventional composite type bistable laser. Also, by controlling an injection current which is supplied to an output use optical waveguide, a threshold level is set so that an output light O1 is outputted, when one of input light beams I1, I2 is made incident. Moreover, as for an AND operation, by controlling the injection current, the shreshold level is set so that the output light O1 is outputted, when both of the input light beams I1, I2 are made incident. In such a state, by forming the input use optical waveguide by the same active area as that of the output use optical waveguide and injecting a current, it is also possible to amplify the input light beam, and also, it is also possible to decrease the saturable absorption area and the number of electrodes.

Description

【発明の詳細な説明】 [概要コ 光入力に対して光出力が双安定を示す光双安定半導体レ
ーザの構成に関し、 しきい値の上昇を防ぎ、特性の安定を目的として、 可飽和吸収領域を有する光双安定半導体レーザにおいて
、出力用光導波路の1つの可飽和吸収領域に対して複数
の入力用光導波路が交叉結合していることを特徴とする
[Detailed Description of the Invention] [Summary] Concerning the configuration of an optical bistable semiconductor laser whose optical output is bistable with respect to optical input, in order to prevent an increase in the threshold value and stabilize the characteristics, the saturable absorption region is In the optical bistable semiconductor laser having the above, a plurality of input optical waveguides are cross-coupled to one saturable absorption region of the output optical waveguide.

[産業上の利用分野] 本発明は光双安定半導体レーザの構成に関する。[Industrial application field] The present invention relates to the structure of an optical bistable semiconductor laser.

光双安定半導体レーザは光を利用した通信・情報処理分
野においてメモリ、演算などの機能デバイスとして、小
型で高集積化が可能なために、その開発が強力に推進さ
れている。
Optical bistable semiconductor lasers are being used as functional devices for memory, arithmetic, and other functions in the fields of communication and information processing that utilize light, and their development is being strongly promoted because they can be made compact and highly integrated.

そのような光双安定半導体レーザにおいて、性能の向上
は極めて重要な問題である。
Improving performance is an extremely important issue in such optical bistable semiconductor lasers.

[従来の技術と発明が解決しようとする問題点]最初に
、半導体レーザの電極を共振器方向に2分割したタンデ
ム形レーザを用いて光出力に双安定を得ることがに、J
、1asher氏によって提案された(Solid 5
tate Electronics 7巻(1964)
、 PP、707〜716参照)。更に、その後の研究
を経て、外部からほぼ同一波長のレーザ光を共振器方向
から注入して双安定動作を得ることが発表された(El
ectron Letters、17.No、20.(
1981)、 PP、741)。
[Prior art and problems to be solved by the invention] First, J.
, proposed by 1asher (Solid 5
tate Electronics Volume 7 (1964)
, PP, 707-716). Furthermore, through subsequent research, it was announced that bistable operation could be obtained by injecting external laser light with almost the same wavelength from the direction of the cavity (El
ectron Letters, 17. No, 20. (
1981), PP, 741).

第3図(a)〜(C)はその光双安定半導体レーザ(以
下は双安定レーザと呼ぶ)の斜視図(同図(al)。
FIGS. 3(a) to 3(C) are perspective views of the optical bistable semiconductor laser (hereinafter referred to as a bistable laser) (FIG. 3(al)).

平断面図(同図(b);同図(a)のAA凹断面、側断
面図(同図(C);同図(a)のBB断面)を示してお
り、■は活性領域、2は可飽和吸収領域、3,4は電極
である。分割した電極3に流すバイアス電流を独立に制
御し、入力光に対する出力光を測定すると2つの安定状
態が得られ、ヒステリシス曲線を描く。第4図はその双
安定レーザの入力光に対する出力光の動作を示す図で、
このヒステリシスの幅はバイアス電流を変化させること
によって任意に設定できる。また、バイアス電流を電流
−光出力特性の双安定領域に設定しておいて、光パルス
を入射させるとレーザ発振が維持されて、メモリとして
動作させることができる。更に、これによってスイッチ
ング動作も可能で、第5図は双安定レーザのトリガ入力
光に対する出力光のスイッチング動作を示す図である。
It shows a plan sectional view ((b) in the same figure; a concave section AA in the same figure (a), and a side sectional view ((C) in the same figure; a cross section BB in the same figure (a)), where ■ is the active region, 2 is a saturable absorption region, and 3 and 4 are electrodes.By independently controlling the bias current flowing through the divided electrodes 3 and measuring the output light relative to the input light, two stable states are obtained, and a hysteresis curve is drawn. Figure 4 shows the behavior of the output light relative to the input light of the bistable laser.
The width of this hysteresis can be arbitrarily set by changing the bias current. Further, when the bias current is set in the bistable region of the current-optical output characteristic and a light pulse is applied, laser oscillation is maintained and the device can be operated as a memory. Furthermore, this also enables switching operation, and FIG. 5 is a diagram showing the switching operation of the output light with respect to the trigger input light of the bistable laser.

これはトリガ入力光の光バイアスをヒステリシス曲線の
中央に位置させて、光パルスの人力によりスイッチング
動作を得るものである。
In this method, the optical bias of the trigger input light is located at the center of the hysteresis curve, and the switching operation is obtained by manual input of optical pulses.

このような動作の可能な半導体レーザの内部断面を第6
図に示しており、第6図はInGaAs P光双安定レ
ーザの例である。図において、21はn −InP基板
、22はn−1nPバッファ層、1,2はInGaAs
P活性層(上記光導波路はこの活性領域1.可飽和吸収
領域2からなる)、23はp−1nPクラッド層、24
はp ” −1nGaAs Pキ’p−/ブ層、3は十
電極、4は一電極を示しており、図示していないが、両
側は半絶縁性InP層で置き換えした構造となっている
The internal cross section of a semiconductor laser capable of such operation is shown in the sixth section.
FIG. 6 is an example of an InGaAs P optical bistable laser. In the figure, 21 is an n-InP substrate, 22 is an n-1nP buffer layer, and 1 and 2 are InGaAs.
P active layer (the optical waveguide consists of this active region 1 and saturable absorption region 2), 23 is a p-1nP cladding layer, 24
3 indicates ten electrodes, and 4 indicates one electrode. Although not shown, both sides are replaced with semi-insulating InP layers.

ところで、このような双安定レーザにおいて、光導波路
はストライプ状の直線で、入力光と出力光とが同軸上に
あるために、光導波路の途中に可飽和吸収領域が介在し
ていても、入力光の漏れ(透過)が出力光に影響してS
N比(ノイズ比)が良(ならない欠点がある。
By the way, in such a bistable laser, the optical waveguide is a striped straight line, and the input light and output light are coaxial, so even if there is a saturable absorption region in the middle of the optical waveguide, the input Light leakage (transmission) affects the output light and causes S
There is a drawback that the N ratio (noise ratio) is not good.

そこで、このような欠点を軽減させるために、出力光の
光導波路に対して横方向から直角に入力光の光導波路を
交叉させた構造の双安定レーザが提案されてきた(特開
昭61−79282号参照)。
In order to alleviate these drawbacks, a bistable laser has been proposed in which the optical waveguide for the input light intersects the optical waveguide for the output light from the lateral direction at right angles (Japanese Patent Application Laid-Open No. 61-1999). 79282).

第7図はその改善された従来の複合形双安定レーザの平
断面図を示しており、同図は2つの可飽和吸収領域にそ
れぞれ1つの入力用光導波路を交叉させて結合している
実施例で、図中のIOは出力用光導波路(活性領域と可
飽和吸収領域とからなる光導波路) 、 11.12は
可飽和吸収領域、 21.22は入力用光導波路、II
+  12は入力光、O!は出力光である。そうして、
可飽和吸収領域に横方向の入力用光導波路から入力光が
入射すると、その光が可飽和吸収領域で吸収されて出力
用光導波路から出力され、双安定状態に遷移して、第8
図に示すような論理和や論理積の演算が可能になる。
FIG. 7 shows a plan cross-sectional view of the improved conventional composite bistable laser, and the figure shows an implementation in which two saturable absorption regions are each coupled to one input optical waveguide by crossing them. In the example, IO in the figure is an output optical waveguide (an optical waveguide consisting of an active region and a saturable absorption region), 11.12 is a saturable absorption region, 21.22 is an input optical waveguide, II
+12 is input light, O! is the output light. Then,
When input light enters the saturable absorption region from the lateral input optical waveguide, the light is absorbed by the saturable absorption region and output from the output optical waveguide, transitions to a bistable state, and enters the eighth
It becomes possible to perform logical sum and logical product operations as shown in the figure.

即ち、出力用光導波路に与える注入電流を制御すること
によって、第8図に示す論理和や論理積の演算した出力
光が得られる。
That is, by controlling the injection current applied to the output optical waveguide, the output light calculated by the logical sum or logical product shown in FIG. 8 can be obtained.

しかし、上記の第7図に示す従来の複合形双安定レーザ
の構造は、入力数と同数の可飽和吸収領域が必要になり
、しきい値の上昇と制御電極数の増加がおこる。しきい
値の上昇は、例えば、共振器長(光導波路の長さ)を3
00μmとして、長さ30μmの可飽和吸収領域を1つ
設けると、20mAのしきい値が30mAとなって10
mΔ程度上昇する。従って、更に多くの可飽和吸収領域
を設けると更にしきい値が高くなって駆動が困難になり
、それは双安定レーザの寿命短縮の大きな原因となる。
However, the structure of the conventional composite bistable laser shown in FIG. 7 requires the same number of saturable absorption regions as the number of inputs, resulting in an increase in the threshold value and an increase in the number of control electrodes. For example, the threshold value can be increased by increasing the resonator length (length of the optical waveguide) by 3
00μm, and if one saturable absorption region with a length of 30μm is provided, the threshold value of 20mA becomes 30mA and 10
It increases by about mΔ. Therefore, if more saturable absorption regions are provided, the threshold value becomes higher and driving becomes difficult, which becomes a major cause of shortening the lifetime of the bistable laser.

また、電極数の増加はレーザ発振特性の不安定要因にな
る。従って、可飽和吸収領域の増加は双安定レーザとし
て望ましいことではない。
Further, an increase in the number of electrodes becomes a factor causing instability of laser oscillation characteristics. Therefore, an increase in the saturable absorption region is not desirable for a bistable laser.

本発明はそのような問題点を低減させ、しきい値の上昇
を防ぎ、特性を安定させることを目的とした複合形双安
定レーザの改善構造を提案するものである。
The present invention proposes an improved structure of a composite bistable laser aimed at reducing such problems, preventing an increase in the threshold value, and stabilizing the characteristics.

[問題点を解決するための手段] その目的は、出力用光導波路に入力用光導波路が側方よ
り交叉して、出力用光導波路の1つの可飽和吸収領域に
対して複数の人力用光導波路が交叉結合している双安定
レーザによって達成される。
[Means for solving the problem] The purpose is to cross the output optical waveguide with the input optical waveguide from the side, so that a plurality of manual optical waveguides can be connected to one saturable absorption region of the output optical waveguide. This is accomplished by a bistable laser whose wavepaths are cross-coupled.

[作用コ 即ち、本発明は、出力用光導波路の1つの可飽和吸収領
域に横方向から傾斜して2つ以上の人力用光導波路を結
合させた構造にする。そうすれば、可飽和吸収領域、電
極の数を入力用光導波路の数に比例して増加させること
なく、可飽和吸収領域。
[Operation] In other words, the present invention has a structure in which two or more optical waveguides for manual power are coupled to one saturable absorption region of the output optical waveguide at an angle from the lateral direction. In this way, the saturable absorption region can be reduced without increasing the number of electrodes in proportion to the number of input optical waveguides.

電極数の少ない複合形双安定レーザが構成され、しきい
値の上昇が軽減され、且つ、レーザ発振特性の安定化が
図れる。
A composite bistable laser with a small number of electrodes is constructed, which reduces the increase in threshold value and stabilizes the laser oscillation characteristics.

[実施例コ 以下、図面を参照して実施例により詳細に説明する。[Example code] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかる複合形双安定レーザの平断面図
を示しており、1つの可飽和吸収領域に2つの入力用光
導波路を傾斜角で交叉させて結合している実施例で、図
中の10は出力用光導波路。
FIG. 1 shows a cross-sectional plan view of a composite bistable laser according to the present invention, and is an embodiment in which two input optical waveguides are coupled to one saturable absorption region by crossing them at an inclination angle. 10 in the figure is an output optical waveguide.

11は可飽和吸収領域、 31.32は入力用光導波路
11 is a saturable absorption region, 31.32 is an input optical waveguide.

r、、r2は入力光、olは出力光である。r, , r2 are input lights, and ol is output light.

このように構成すれば、第5図に示す従来の複合形双安
定レーザと同様の論理和や論理積の動作が可能であり、
第2図(al、 fb)に論理動作を示している。第2
図(alは論理和動作を示し、出力用光導波路に与える
注入電流を制御して、しきい値を入力光1.、I2のう
ちのいずれかが入射された時に出力光01が出力するよ
うに設定する。また、第2図(b)は論理積動作を示し
、注入電流を制御して、しきい値を人力光+、、r2の
両方が入射した時に出力光01が出力するように設定す
る。
With this configuration, logical sum and logical product operations similar to those of the conventional composite bistable laser shown in FIG. 5 are possible.
The logical operation is shown in FIG. 2 (al, fb). Second
In the figure (al indicates a logical sum operation, the injection current applied to the output optical waveguide is controlled, and the threshold value is set so that the output light 01 is output when either the input light 1. or I2 is incident. In addition, Fig. 2(b) shows the AND operation, and the injection current is controlled so that the threshold value is set so that the output light 01 is output when both the human power lights +, , and r2 are incident. Set.

ここに、入力用光導波路を出力用光導波路と同様の活性
領域で形成して電流を注入すると、入力光を増幅するこ
とも可能になる。
If the input optical waveguide is formed with the same active region as the output optical waveguide and current is injected here, it is also possible to amplify the input light.

上記は一例であるが、このようにすれば、従来と同様の
動作特性を有する複合形双安定レーザにおいて、可飽和
吸収領域、電極数を少なくすることができる。
Although the above is an example, by doing so, the saturable absorption region and the number of electrodes can be reduced in a composite bistable laser having operating characteristics similar to those of the conventional laser.

[発明の効果コ 従って、本発明にかかる複合形双安定レーザによれば、
1つの可飽和吸収領域に複数の入力用光導波路を結合さ
せた構造となり、しきい値の増加が軽減されて、且つ、
制御電極数の減少によって特性を一層安定化することが
できる。
[Effects of the Invention Therefore, according to the composite bistable laser according to the present invention,
The structure has a plurality of input optical waveguides coupled to one saturable absorption region, which reduces the increase in threshold value, and
The characteristics can be further stabilized by reducing the number of control electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる複合形双安定レーザの平断面図 第2図は本発明にかかる複合形双安定レーザの論理動作
を示す図、 第3図は従来の双安定レーザを示す図、第4図は双安定
レーザの動作を示す図、第5図は双安定レーザのスイッ
チング動作を示す図、 第6図はInGaAs P光双安定レーザの断面図、第
7図は従来の複合形双安定レーザの平断面図、第8図は
論理演算を示す図である。 図において、 1は活性領域、 2は可飽和吸収領域、 3.4は電極、 10は出力用光導波路(活性領域と可飽和吸収領域とか
らなる光導波路)、 11、12は可飽和吸収領域、 21、22.3L 32は入力用光導波路、io、じ、
I2は人力光、 Oo、O,は出力光 を示している。 OはJL ↑ 第1ノ 第 2 図 pf定り一丈゛^又イッチ>7’tpQ@本1閃第5U
A 第6図 に i5嘗 引森基嬰徒←
FIG. 1 is a cross-sectional plan view of a composite bistable laser according to the present invention. FIG. 2 is a diagram showing the logical operation of a composite bistable laser according to the present invention. FIG. 3 is a diagram showing a conventional bistable laser. Figure 4 is a diagram showing the operation of a bistable laser, Figure 5 is a diagram showing the switching operation of a bistable laser, Figure 6 is a cross-sectional view of an InGaAs P optical bistable laser, and Figure 7 is a diagram showing a conventional composite bistable laser. FIG. 8, a plan cross-sectional view of the stable laser, is a diagram showing logical operations. In the figure, 1 is an active region, 2 is a saturable absorption region, 3.4 is an electrode, 10 is an output optical waveguide (an optical waveguide consisting of an active region and a saturable absorption region), and 11 and 12 are saturable absorption regions. , 21, 22.3L 32 is an input optical waveguide, io, ji,
I2 indicates human power light, and Oo, O, indicates output light. O is JL ↑ 1st, 2nd figure pf fixed one length ゛^Mataitch>7'tpQ@hon 1st flash 5U
A Figure 6 shows i5 Hikimori Motoyo disciples←

Claims (1)

【特許請求の範囲】  可飽和吸収領域を有する光双安定半導体レーザにおい
て、 出力用光導波路の1つの可飽和吸収領域に対して複数の
入力用光導波路が交叉結合していることを特徴とする光
双安定半導体レーザ。
[Claims] An optical bistable semiconductor laser having a saturable absorption region, characterized in that a plurality of input optical waveguides are cross-coupled to one saturable absorption region of an output optical waveguide. Optical bistable semiconductor laser.
JP726888A 1988-01-14 1988-01-14 Optically bistable semiconductor laser Pending JPH01183629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP726888A JPH01183629A (en) 1988-01-14 1988-01-14 Optically bistable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP726888A JPH01183629A (en) 1988-01-14 1988-01-14 Optically bistable semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01183629A true JPH01183629A (en) 1989-07-21

Family

ID=11661283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP726888A Pending JPH01183629A (en) 1988-01-14 1988-01-14 Optically bistable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01183629A (en)

Similar Documents

Publication Publication Date Title
JPS6079786A (en) Bistable laser
JPH0212886A (en) Phase locking array of semiconductor laser using anti-guide with narrow interval
JP2937148B2 (en) Semiconductor integrated polarization mode converter
JPS63116489A (en) Optical integrated circuit
JPH01183629A (en) Optically bistable semiconductor laser
US5675602A (en) Optical integrated circuit device and driving method therefor
JPH0542148B2 (en)
US4833510A (en) Semiconductor laser array with independently usable laser light emission regions formed in a single active layer
JP3006553B2 (en) Semiconductor integrated polarization mode converter
JPH0311783A (en) Surface input-output bistable semiconductor laser and semiconductor laser array
JPH0824207B2 (en) Semiconductor laser device
JPH05315592A (en) Optical register memory
JPS6155276B2 (en)
JP2841860B2 (en) Optical semiconductor device
JPH03240285A (en) Bistable semiconductor laser
JPH05335691A (en) Light input type semiconductor laser
JP2516980B2 (en) Optical matrix switch
JPH03235915A (en) Optical function element
JPS6332979A (en) Semiconductor laser
JPH0289383A (en) Semiconductor optical element
JPH0513868A (en) Wavelength conversion laser
JPH0578808B2 (en)
JPS62221186A (en) Semiconductor laser
JPH04291980A (en) Optical bistable semiconductor laser
JPH01183189A (en) Semiconductor laser