JPH01183186A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01183186A
JPH01183186A JP730588A JP730588A JPH01183186A JP H01183186 A JPH01183186 A JP H01183186A JP 730588 A JP730588 A JP 730588A JP 730588 A JP730588 A JP 730588A JP H01183186 A JPH01183186 A JP H01183186A
Authority
JP
Japan
Prior art keywords
face
optical output
semiconductor laser
current
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP730588A
Other languages
Japanese (ja)
Inventor
Seiichi Nagai
永井 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP730588A priority Critical patent/JPH01183186A/en
Publication of JPH01183186A publication Critical patent/JPH01183186A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease a reduction in an optical output due to temperature rise and to obtain the output having a predetermined intensity at the time of driving a pulse by increasing the end face reflectivity for outputting a laser beam to be mainly used as compared with that of the other end face. CONSTITUTION:The reflectivity of a front end face for outputting a laser beam to be mainly used is increased over that of a rear end face. Accordingly, optical output P current I characteristic for the light emitted from the front end face becomes as shown in fig. a, and optical output P - current I characteristic for the light emitted from the rear end face becomes as shown in Fig. b. Generally, the light emitted from the front end face having high reflectivity becomes lower in efficiency than that from the rear end face. Accordingly, even if the temperature of an active layer is raised by the conduction of a pulse driving current I of a semiconductor laser, a reduction in the optical output P can be reduced as designated by an arrow due to its low efficiency. thus, the variation in the optical output can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、例えばプリンタ用光源として適した半導体
レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser suitable as a light source for a printer, for example.

〔従来の技術〕[Conventional technology]

レーザビームプリンタは半導体レーザ(以下にはLDと
略す)をパルス電流駆動し、駆動電流波形に対応した光
出力によって印字するものである。LDとしては、第3
図に示すようなファブリベロー型のものが一般的である
A laser beam printer drives a semiconductor laser (hereinafter abbreviated as LD) with a pulse current, and prints with a light output corresponding to the drive current waveform. As LD, the third
The Fabbri-Bello type shown in the figure is common.

第3図に示したLDチップ1は2つの共振器の端面2.
2aを介して出射光3.38が得うレ、GaAsを材料
とした場合、両端面2,2aは32%の反射率を有して
いる。このLDチップ1を第4図に示すように、放熱用
ブロック4に組み立て、さらにLDの光出力制御用受光
素子5が組み込まれたステム6に組み立て、窓ガラス7
付きのキャップ8を装着すれば、半導体レーザ装置が得
られる。
The LD chip 1 shown in FIG. 3 has two resonator end faces 2.
When GaAs is used as the material, both end surfaces 2 and 2a have a reflectance of 32%. As shown in FIG. 4, this LD chip 1 is assembled into a heat dissipation block 4, further assembled into a stem 6 in which a light receiving element 5 for controlling the light output of the LD is incorporated, and a window glass 7 is assembled.
A semiconductor laser device is obtained by attaching the attached cap 8.

そして、この半導体レーザでは、LDの前端面2からの
出射光3がプリンタ用光源となり、光出力制御用受光素
子5に入射される後端面2aからの出射光3aにより強
度が制御される。
In this semiconductor laser, the emitted light 3 from the front end surface 2 of the LD serves as a light source for the printer, and the intensity is controlled by the emitted light 3a from the rear end surface 2a which is incident on the light receiving element 5 for controlling light output.

ところで、通常LDに第5図(a)に示すようなパルス
駆動電流Iを流した場合、駆動電流波形に対応した波形
で光出力pが得られることが望ましいが、実際には第5
図(b)に示すように、LDの熱特性のためにパルス初
期t1の光出力PF比べ、パルス終期t2で光出力Pの
低下△Pが生ずる。これは第6図に示すように、LDの
光出力P−電梳I特性が温度により著しく変動し易いこ
とに起因しており、動作電流■。いを一定に保つていて
も、温度上昇によって図中の矢印で示すようにシフトす
る。すなわち、LDが駆動電流により通電されると、L
Dの活性層゛の温度が上昇し、第6図に示すように、光
出力P−電電流時特性変化し、パルス電流が一定であっ
てもパルス初期t1に比べ、パルス終期t2では光出力
Pの低下が生ずることになる。
By the way, when a pulse drive current I as shown in FIG. 5(a) is passed through a normal LD, it is desirable to obtain an optical output p with a waveform corresponding to the drive current waveform.
As shown in Figure (b), due to the thermal characteristics of the LD, the optical output P decreases ΔP at the final pulse stage t2 compared to the optical output PF at the initial pulse stage t1. As shown in FIG. 6, this is due to the fact that the optical output P-I characteristic of the LD tends to fluctuate significantly depending on the temperature, and the operating current . Even if the temperature is kept constant, as the temperature rises, it will shift as shown by the arrow in the figure. That is, when the LD is energized by the drive current, the L
As the temperature of the active layer of D increases, as shown in Fig. 6, the optical output P-current characteristic changes, and even if the pulse current is constant, the optical output at the final stage t2 of the pulse is lower than that at the initial stage t1. A decrease in P will occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来のLDでは、第5図(b)に示すよう
に、パルス初期t1の光出力値に比べ、パルス終期t2
で光出力Pの低下が生じるため、プリンタ用の光源とし
て用いた場合の印字に濃淡が生ずるという問題点があっ
た。
In the conventional LD as described above, as shown in FIG.
Since the optical output P decreases, there is a problem in that when used as a light source for a printer, printing results in shading.

この発明は、かかる問題点を解決するためになされたも
ので、温度上昇による光出力の低下を小さくしてパルス
駆動時に一定強度の光出力が得られる半導体レーザを得
ることを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a semiconductor laser that can reduce the decrease in optical output due to temperature rise and provide a constant intensity of optical output during pulse driving.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザは、主として用いるレーザ
光を取り出す側の端面反射率を他方の端面反射率よりも
高くしたものである。
In the semiconductor laser according to the present invention, the reflectance of the end face on the side from which laser light is mainly used is higher than the reflectance of the other end face.

(作用〕 この発明においては、レーザ光を取り出す側の端面から
の出射効率が低下し、この端面から出射されるレーザ光
の光出力−電流特性の傾きが緩やかになる。
(Function) In this invention, the output efficiency from the end face on the side from which laser light is taken out is reduced, and the slope of the optical output-current characteristic of the laser light emitted from this end face becomes gentle.

〔実施例〕〔Example〕

第1図はこの発明の半導体レーザの一実施例を示す側面
図である。
FIG. 1 is a side view showing an embodiment of the semiconductor laser of the present invention.

この図において、第3図と同一符号は同一のものを示し
、9aはλ/4厚のAuzO3膜、9bはλ/2厚のA
J22o、膜、10はλ/4厚のSi膜であり(ただし
λは発振波長)、電子ビーム蒸着法またはスパッタ蒸着
法により形成されている。
In this figure, the same symbols as in FIG. 3 indicate the same parts, 9a is a λ/4 thick AuzO3 film, 9b is a λ/2 thick A
J22o, film 10, is a λ/4 thick Si film (where λ is the oscillation wavelength), and is formed by electron beam evaporation or sputter evaporation.

次に動作について説明する。Next, the operation will be explained.

この実施例では前端面2にはλ/4厚のAfL2o3膜
9a、Si膜10.An2o3膜9aの3層からなる誘
電体膜を形成し、後端面2aにはλ/2厚のAJ120
s膜9bを形成している。このように屈折率nが違うλ
/4厚の膜(nA203=1.6.ns+=4)による
多層膜が形成されると反射率が高くなり、前端面2での
反射率は約60%となっている。一方、λ/2厚のAJ
22 o3膜9bが形成された後端面2aでの反射率は
変化せず、32%のままとなっている。AJ120s膜
9a、9bは両端面2,2aの保護膜としても機能して
いる。
In this embodiment, the front end surface 2 includes an AfL2o3 film 9a with a thickness of λ/4 and a Si film 10. A dielectric film consisting of three layers of An2o3 film 9a is formed, and AJ120 with a thickness of λ/2 is formed on the rear end surface 2a.
An s film 9b is formed. In this way, λ with different refractive index n
When a multilayer film of /4 thickness (nA203=1.6.ns+=4) is formed, the reflectance increases, and the reflectance at the front end surface 2 is about 60%. On the other hand, AJ with λ/2 thickness
The reflectance at the rear end surface 2a on which the 22O3 film 9b is formed does not change and remains at 32%. The AJ120s films 9a and 9b also function as protective films for both end surfaces 2 and 2a.

このように、主として用いるレーザ光を取り出す前端面
2の反射率を後端面2aよりも高くした場合、前端面2
からの出射光3に対する光出力P−電電流時特性第2図
(a)に示すようになり、後端面2aからの出射光3a
に対する光出力P−電電流時特性第2図(b)に示すよ
うになる。
In this way, when the reflectance of the front end surface 2 from which the laser beam mainly used is made higher than that of the rear end surface 2a, the front end surface 2
As shown in FIG. 2(a), the optical output P-current characteristic for the emitted light 3 from the rear end surface 2a is as shown in FIG.
The optical output P-current characteristic for the current is shown in FIG. 2(b).

一般に、発振しきい値Ithでの光出力なPthとし、
動作電流I。、での光出力をPOIとした時、光表され
るので、反射率の高い前端面2からの出射光3は効率η
が後端面2aからの出射光3aに比べて低くなっている
Generally, Pth is the optical output at the oscillation threshold Ith,
Operating current I. When the optical output at , is expressed as POI, the output light 3 from the front end surface 2 with high reflectance has an efficiency η
is lower than the output light 3a from the rear end surface 2a.

すなわち、LDのパルス駆動電流Iの通電によって活性
層の温度が上昇しても、効率ηが低いため、光出力Pの
低下を第2図中の矢印で示されるように小さくできる。
That is, even if the temperature of the active layer rises due to the application of the pulse drive current I of the LD, since the efficiency η is low, the decrease in the optical output P can be reduced as indicated by the arrow in FIG. 2.

したがって、例えばレーザビームプリンタ用の光源とし
て用いれば印字に濃淡が生じなくなる。 なお、上記実
施例では前端面2の反射率を60%、後端面2aの反射
率を32%とした場合を説明したが、この発明の効果は
前端面2からの出射光3の効率を下げることで得られる
ものであり、上述の反射率のみに限定されないことはい
うまでもない。
Therefore, if used as a light source for a laser beam printer, for example, no shading will occur in printing. In the above embodiment, the case where the reflectance of the front end surface 2 is 60% and the reflectance of the rear end surface 2a is 32% is explained, but the effect of this invention is to reduce the efficiency of the emitted light 3 from the front end surface 2. It goes without saying that the reflectance is not limited to the above-mentioned reflectance.

(発明の効果) この発明は以上説明したとおり、主として用いるレーザ
光を取り出す側の端面反射率を他方の端面反射率よりも
高くしたので、パルス駆動時の光出力の低下が少なくて
すみ、プリンタ等の光出力の変動が許容されない機器の
光源として好適となるという効果がある。
(Effects of the Invention) As explained above, in this invention, the reflectance of the end face on the side from which the laser beam mainly used is made higher than the reflectance of the other end face, so that there is less reduction in optical output during pulse driving, and the printer This has the effect of making it suitable as a light source for devices that cannot tolerate fluctuations in optical output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの一実施例を示す側面
図、第2図は光出力−電流特性を説明するための図、第
3図は半導体レーザチップを示す図、第4図は半導体レ
ーザの構成を示す図、第5図は従来の半導体レーザにお
ける光出力の低下を説明するための図、第6図は従来の
半導体レーザの光出力−電流特性を説明するための図で
ある。 図において、1はLDチップ、2.2aは共振器の端面
、3.3aは出射光、9a、9bはIQ203膜、10
はSt膜である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第3図 第4図 −Y 宿、7   a 第5図 a 3a             5 第6図 −温度上昇
FIG. 1 is a side view showing an embodiment of the semiconductor laser of the present invention, FIG. 2 is a diagram for explaining optical output-current characteristics, FIG. 3 is a diagram showing a semiconductor laser chip, and FIG. 4 is a diagram showing the semiconductor laser chip. FIG. 5 is a diagram showing the structure of a laser; FIG. 5 is a diagram for explaining the decrease in optical output in a conventional semiconductor laser; FIG. 6 is a diagram for explaining the optical output-current characteristic of a conventional semiconductor laser. In the figure, 1 is the LD chip, 2.2a is the end face of the resonator, 3.3a is the emitted light, 9a and 9b are IQ203 films, 10
is an St film. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 3 Figure 4 - Y Inn, 7a Figure 5 a 3a 5 Figure 6 - Temperature rise

Claims (1)

【特許請求の範囲】[Claims] 2つの対向する共振器端面を有するファブリペロー型の
半導体レーザにおいて、主として用いるレーザ光を取り
出す側の端面反射率を他方の端面反射率よりも高くした
ことを特徴とする半導体レーザ。
A Fabry-Perot semiconductor laser having two opposing cavity end faces, characterized in that the end face reflectance on the side from which laser light is mainly used is higher than the reflectance on the other end face.
JP730588A 1988-01-14 1988-01-14 Semiconductor laser Pending JPH01183186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP730588A JPH01183186A (en) 1988-01-14 1988-01-14 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP730588A JPH01183186A (en) 1988-01-14 1988-01-14 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01183186A true JPH01183186A (en) 1989-07-20

Family

ID=11662300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP730588A Pending JPH01183186A (en) 1988-01-14 1988-01-14 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01183186A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961194A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Semiconductor light-emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961194A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US4317086A (en) Passivation and reflector structure for electroluminescent devices
JP4097552B2 (en) Semiconductor laser device
US4852112A (en) Semiconductor laser with facet protection film of selected reflectivity
EP0562173A1 (en) Semiconductor optical device
JPH02137287A (en) Semiconductor laser device
JPH01183186A (en) Semiconductor laser
KR100754956B1 (en) Semiconductor laser device and laser system
JP2842399B2 (en) Light receiving element and semiconductor optical device
JP2572868B2 (en) Semiconductor laser
EP0187716B1 (en) Semiconductor laser array device
JPH0750814B2 (en) Multi-point emission type semiconductor laser device
JP3707920B2 (en) Optical member fixing structure
KR100227770B1 (en) Semiconductor laser device operable with low noise even in high ambient temperature
JPH1075004A (en) Semiconductor light-emitting device
JPH01184893A (en) Semiconductor laser
JPH10247756A (en) Semiconductor laser device
JP2004014997A (en) Semiconductor laser device
JPH08148764A (en) Semiconductor laser element
JPH0897514A (en) Semiconductor light-emitting element
JPH0732287B2 (en) Semiconductor laser device
JP2913947B2 (en) Quantum well semiconductor laser
JPH06224514A (en) End surface coating for semiconductor laser
JP2001077456A (en) Semiconductor laser and coating film for optical component
JP2001230495A (en) Semiconductor laser element
JP2500619B2 (en) Surface emitting element