JPH01182726A - Evaluation of crystal strain and apparatus therefor - Google Patents

Evaluation of crystal strain and apparatus therefor

Info

Publication number
JPH01182726A
JPH01182726A JP496988A JP496988A JPH01182726A JP H01182726 A JPH01182726 A JP H01182726A JP 496988 A JP496988 A JP 496988A JP 496988 A JP496988 A JP 496988A JP H01182726 A JPH01182726 A JP H01182726A
Authority
JP
Japan
Prior art keywords
ecp
strain
crystal
evaluation
visibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP496988A
Other languages
Japanese (ja)
Other versions
JP2650702B2 (en
Inventor
Yasunari Yoshitomi
吉冨 康成
Kuniteru Ota
太田 国照
Shuichi Funaki
船木 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63004969A priority Critical patent/JP2650702B2/en
Publication of JPH01182726A publication Critical patent/JPH01182726A/en
Application granted granted Critical
Publication of JP2650702B2 publication Critical patent/JP2650702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To perform evaluation of the minute strain in a crystal and evaluation of the residual strain in a thermally elongated plate and the residual strain in a softening step with high accuracy, by determining the visibility of an ECP (Electron Channeling Pattern). CONSTITUTION:The visibility of an ECP is determined, and the degree of the strain of a crystal is detected based on the change in determined visibility of the ECP. The determination of the visibility of the ECP is performed by obtaining the area rate of a part of the ECP, where the change in brightness in the ECP is large. As an evaluating apparatus of the crystal strain, a scanning type electron microscope having the ECP function and an image analyzer, which determines the visibility of the ECP, is used. Since the minute stress in the crystal can be evaluated, the evaluation of the residual strain in a thermally elongated plate and the residual strain in a softening step can be performed with high accuracy. Checking and analysis of difference in accumulated strains due to nonuniform deformation in machining and the place and orientation in nucleus formation in recrystallization can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶歪の評価方法及びその為の装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for evaluating crystal strain and an apparatus therefor.

〔従来の技術〕[Conventional technology]

鉄鋼等の結晶質の歪計価方法として、従来、X線の回折
線の巾広がりを測定する方法、ピンカス硬度を測定する
方法等が一般に用いられている。
Conventionally, methods for measuring the width of X-ray diffraction lines, methods for measuring Pincus hardness, etc. have been generally used as methods for measuring the strain of crystalline materials such as steel.

X線の回折線の巾広がりを測定する方法では、通常X線
のビームを10μ以下程度の微小領域に絞ることが難し
く、微小領域の歪計価には不向きである。また、歪変化
に対する巾広がり変化が鈍であるために、歪の評価感度
が低いという問題がある。
In the method of measuring the width spread of X-ray diffraction lines, it is usually difficult to narrow down the X-ray beam to a minute area of about 10 μm or less, and this method is not suitable for strain estimation in a minute area. Furthermore, since the width changes slowly with respect to strain changes, there is a problem in that strain evaluation sensitivity is low.

また、ビッカース硬度測定法は、測定対象の硬度が、対
象の転位密度(歪)に応じて変化することを利用する測
定法であるが、結晶内の固溶元素、析出物もまた対象の
硬度に影響を与えるから、歪の検出精度が低いという問
題がある。
In addition, the Vickers hardness measurement method is a measurement method that utilizes the fact that the hardness of the object to be measured changes depending on the dislocation density (strain) of the object, but solid solution elements and precipitates in the crystal also affect the hardness of the object. Therefore, there is a problem that the accuracy of distortion detection is low.

他方近年E CP (Electron Channe
ling Pattern)が発見され(D、G、Co
ates : Ph11.Mag、、 16 (196
7)。
On the other hand, in recent years E CP (Electron Channel)
ling Pattern) was discovered (D, G, Co
ates: Ph11. Mag,, 16 (196
7).

P1179)、結晶方位の決定に利用されている。また
ECPは結晶の完全性に関する情報を与え、歪を加える
とECPが不鮮明となることが知られているが(D、E
、Newbury and H,Yakowitz :
 PracticalScanning  Elect
ron  Microscopy、ed、by J、I
P1179) is used to determine crystal orientation. It is also known that ECP gives information about the integrity of the crystal, and that ECP becomes unclear when strain is applied (D, E
, Newbury and H. Yakowitz:
Practical Scanning Elect
ron Microscopy, ed, by J.I.
.

Goldstein  and  H,Yakowit
z  (1975)+  P、149  (PIenu
+wPress ) ) 、ECP像の複雑さ等のため
に歪の定量的な評価にまでは至っていない。
Goldstein and H, Yakowit
z (1975) + P, 149 (PIenu
+wPress )) Due to the complexity of ECP images, etc., it has not been possible to quantitatively evaluate distortion.

また加工による歪の場所的不均一性、結晶方位別蓄積歪
、軟化時の残留歪の評価は、再結晶、集合組織制御技術
開発を行う上で極めて重要であり、近年原理に基づいた
信頼できる歪評価法開発のニーズが増々高まってきた。
In addition, evaluation of the local heterogeneity of strain due to processing, accumulated strain by crystal orientation, and residual strain during softening is extremely important in developing recrystallization and texture control technology, and in recent years reliable The need for developing strain evaluation methods has been increasing.

という問題点を解決する方法及び装置を提供するもので
ある。
The present invention provides a method and apparatus for solving this problem.

〔課題を解決するための手段〕 本発明はECPの鮮明度を定量化することによって結晶
歪を評価する方法を提供するものである。
[Means for Solving the Problems] The present invention provides a method for evaluating crystal strain by quantifying the clarity of ECP.

また上記技術に加えてECPにおける明暗変化の大きい
部分の面積率を求めることによって結晶歪を評価する方
法及びその為の装置を提供するものである。
In addition to the above technique, the present invention also provides a method for evaluating crystal strain by determining the area ratio of a portion with a large brightness change in ECP, and an apparatus therefor.

本発明が歪評価の対象としているものは鉄鋼等の結晶質
であり、本発明者らは、上記対象に対して原理にのっと
って微小歪を正しく評価する手法を種々検討した結果、
ECPを画像解析する方法が極めて有効であるという新
知見を得た。
The objects targeted for strain evaluation in the present invention are crystalline materials such as steel, and the present inventors have studied various methods for correctly evaluating minute strains for the above objects based on the principles.
We obtained new knowledge that the method of image analysis of ECP is extremely effective.

ECPは近年Coa tesによって発見され、結晶方
位及び結晶の完全性に関する情報を与えることが知られ
ている。本発明者らは、結晶に微小歪を加えた場合EC
Pが急激に不鮮明となるという現象に着目し、画像解析
機を用い広範な解析を行なった。以下実験結果を基に詳
細に説明する。
ECP was recently discovered by Coates and is known to provide information regarding crystal orientation and crystal integrity. The present inventors found that when microstrain is applied to a crystal, the EC
Focusing on the phenomenon that P suddenly becomes unclear, we conducted extensive analysis using an image analyzer. A detailed explanation will be given below based on experimental results.

第1図に冷延での真否(ε)、冷延率(CR)とECP
鮮明度(S/S、)、X線測定による(200)回折線
の半値巾(FWHV)の関係を示す。この場合0.34
0 ms厚の3.25%St −Fe焼鈍板(結晶粒径
10〜50μ)を冷延し、冷延に伴うECP鮮明度の変
化を画像解析機を用いて定量化したものである。画像解
析のフローを第2図に示す。ECP測定は銅板の板厚中
心部で行ない、第1図の各点は各50点(冷延方向5点
×冷延方向直角方向lO゛点各l鶴ピッチ)の測定値の
平均であり、SはECPの明暗変化の大きい部分の面積
率を示し、Soは歪を加えていない状態でのS値である
。第1図より明らかなようにECP鮮明度(S/S6)
は微小歪に敏感であり、従来法(回折線半価巾測定法)
と比較して、微小歪の評価に極めて有効であることがわ
かる。
Figure 1 shows the accuracy (ε), cold rolling ratio (CR) and ECP in cold rolling.
The relationship between sharpness (S/S) and half-width (FWHV) of (200) diffraction lines measured by X-ray measurement is shown. In this case 0.34
A 3.25% St-Fe annealed plate (crystal grain size: 10 to 50 μm) with a thickness of 0 ms was cold rolled, and the change in ECP sharpness due to the cold rolling was quantified using an image analyzer. The flow of image analysis is shown in Figure 2. The ECP measurement was carried out at the center of the thickness of the copper plate, and each point in Figure 1 is the average of the measured values of 50 points (5 points in the cold rolling direction x 10 points in the direction perpendicular to the cold rolling direction, each 1 crane pitch). S indicates the area ratio of the portion of the ECP with large brightness changes, and So is the S value in a state where no distortion is applied. As is clear from Figure 1, ECP clarity (S/S6)
is sensitive to minute strains, and the conventional method (diffraction line half width measurement method)
It can be seen that this method is extremely effective in evaluating minute distortions.

本発明の特徴であるECPの鮮明度を定量化することに
よる結晶歪の評価のメカニズムについては必ずしも明ら
かではないが、本発明者らは以下のように考えている。
Although the mechanism of evaluation of crystal strain by quantifying the sharpness of ECP, which is a feature of the present invention, is not necessarily clear, the inventors of the present invention think as follows.

ECPの各線は結晶における各面からの回折線であり、
結晶が歪んだ場合回折線が不明確になり、ECPの明暗
の鮮明な部分は減少する。従って一定の闇値以下の鮮明
度をもつ部分の面積率を求める等の方法によって歪が評
価できるものと推定される。
Each line of ECP is a diffraction line from each plane in the crystal,
When the crystal is distorted, the diffraction lines become unclear and the bright and dark areas of the ECP are reduced. Therefore, it is presumed that distortion can be evaluated by a method such as determining the area ratio of a portion having a sharpness below a certain darkness value.

次に本発明の構成要件の限定理由について述べる。Next, reasons for limiting the constituent elements of the present invention will be described.

本発明においてECPの鮮明度を定量化することによっ
て結晶歪を評価すると規定したのは、第1図から明らか
なようにECPの鮮明度と結晶歪とは強い相関があり、
ECPの鮮明度を測定することによって結晶歪が評価で
きるためである。
The reason why the present invention stipulates that crystal strain is evaluated by quantifying the clarity of ECP is because, as is clear from FIG. 1, there is a strong correlation between the clarity of ECP and crystal strain.
This is because crystal strain can be evaluated by measuring the clarity of ECP.

ECPの鮮明度を定量化する方法は特に限定しない。E
CPを画像解析機を用い微分しく一方向微分、ソーベル
法等)微分値の高い領域の面積率を測定する方法、最高
の微分値を鮮明度とする方法、ECPの最も明るい部分
と最も暗い部分の明暗の差を鮮明度とする方法等のいず
れでもよい。
The method for quantifying the clarity of ECP is not particularly limited. E
One-way differentiation of CP using an image analyzer, Sobel method, etc.) Method of measuring the area ratio of areas with high differential values, method of using the highest differential value as sharpness, brightest and darkest parts of ECP Any method that uses the difference in brightness and darkness as the sharpness may be used.

上記、発明に加えてECPにおける明暗変化の大きい部
分の面積率を求めることによって結晶歪を評価すると規
定したのは、ECPは結晶の各面の回折線が同時に現出
する、極めて複雑な画像であり、各回折線の歪に対する
ボケ方は一様でないため、現出した回折線の鮮明度を平
均的に評価する方法として一定の閾値以上の明暗変化の
ある部分の面積率を求める方法が極めて有効なためであ
る。明暗変化を求める方法については特に限定しない。
In addition to the above-mentioned invention, we stipulated that crystal strain be evaluated by determining the area ratio of areas with large brightness changes in ECP, because ECP is an extremely complex image in which diffraction lines from each surface of the crystal appear simultaneously. However, since the blurring of each diffraction line due to distortion is not uniform, the method of evaluating the average sharpness of the diffraction line that appears is to calculate the area ratio of the area where the brightness changes more than a certain threshold value. This is because it is effective. There is no particular limitation on the method for determining the change in brightness.

画像解析機を用い、一方向微分をする方法、ソーベル法
を用いる方法等いずれでもよい。
Any method such as one-way differentiation using an image analyzer or Sobel method may be used.

上記発明に加えてECP機能を有する走査電子顕微鏡(
以下SEMと略称する)とECPの鮮明度を定量化する
機能を有する画像解析機からなる結晶歪の評価装置と規
定したのは、ECP機能を有するSEMとECPの鮮明
度を定量化する機能を有する画像解析機がなければ本発
明のアルゴリズムでの結晶質の歪評価が不可能なためで
ある。
In addition to the above invention, a scanning electron microscope with ECP function (
The crystal strain evaluation device is defined as consisting of an SEM (hereinafter abbreviated as SEM) and an image analyzer that has the function of quantifying the clarity of ECP. This is because it is impossible to evaluate distortion of crystalline materials using the algorithm of the present invention without an image analyzer.

ECPの現出方法は種々あるが、特に限定しない。There are various ways to make ECP appear, but there are no particular limitations.

また、画像解析機のECPの鮮明度定量化機能以外の仕
様についても特に限定しない。SEMでのECP像を画
像解析機に入力する方法についても特に限定しない。電
気信号等で直接伝送する方法、SEM像を写真としテレ
ビカメラを用いて入力する方法等いずれの方法でもよい
Further, specifications other than the ECP sharpness quantification function of the image analyzer are not particularly limited. There is also no particular limitation on the method of inputting the ECP image from the SEM into the image analyzer. Any method may be used, such as a method of directly transmitting an electric signal or the like, or a method of inputting an SEM image as a photograph using a television camera.

本発明は、ECPの鮮明度を定量化することによって結
晶歪を評価するものであるが、原理的にECPと等しく
測定上の改良がなされたもの(例えばEBSP)に対し
て鮮明度を定量化する方法も本発明と本質的には等しく
本発明に含まれると解される。
The present invention evaluates crystal strain by quantifying the sharpness of ECP, but the sharpness is quantified for a model that is basically equivalent to ECP and has improved measurement (e.g. EBSP). It is understood that the method of doing so is essentially equivalent to the present invention and included in the present invention.

また本発明によれば、結晶の微小歪が評価できるため、
熱延板等の残留歪、軟化(回復、再結晶)過程での残留
歪の評価が精度よくできる上に、ECPが表層500λ
以下、領域としては約3μ程度の部分の結晶の完全性の
情報を表現しているために、加工における不均一変形、
再結晶の核形成場所、方位による蓄積歪の相違の調査、
解析も可能である。
Furthermore, according to the present invention, since micro-strains in crystals can be evaluated,
It is possible to accurately evaluate the residual strain of hot-rolled sheets, residual strain during the softening (recovery, recrystallization) process, and the ECP of the surface layer is 500λ.
In the following, information on crystal perfection in a region of about 3μ is expressed, so non-uniform deformation during processing,
Investigation of differences in accumulated strain due to recrystallization nucleation location and orientation,
Analysis is also possible.

ECPは表層500Å以下、領域としては約3μ程度の
部分の結晶の完全性の情報を表現することができ、歪は
格子欠陥の量と解することができるため、本発明を用い
れば、格子欠陥が多いことによる半導体等の不良を検査
することも可能である。
ECP can express information on the completeness of a crystal in a region of about 3 μm or less, which is less than 500 Å in the surface layer, and strain can be interpreted as the amount of lattice defects. It is also possible to inspect defects in semiconductors and the like due to a large number of defects.

また本発明はECP像中のある闇値以上の鮮明度を有す
る部分を抽出するものであり、闇値を用途に応じて選ぶ
ことにより、精度を高めることが可能である。
Furthermore, the present invention extracts a portion of an ECP image that has a sharpness higher than a certain darkness value, and by selecting the darkness value according to the purpose, it is possible to improve accuracy.

〔実施例〕〔Example〕

実施例1 0.340 tm厚の3.25%5i−Fe焼鈍板を0
〜15%冷延し、各サンプルのECPに対し、第2図に
示した画像解析フローでECPの明暗変化の大きい部分
の面積率(S)を求めヒストグラフで表現した結果を第
3図に示す。ECP測定は板厚中心部各50点(冷延方
向5点×冷延方向直角方向10点各111ビフチ)で行
なった。6は真否である。
Example 1 A 3.25% 5i-Fe annealed plate with a thickness of 0.340 tm was
~15% cold rolled, the area ratio (S) of the part with large brightness change of the ECP was calculated using the image analysis flow shown in Figure 2 for the ECP of each sample, and the results are shown in Figure 3 as a histogram. . The ECP measurement was carried out at 50 points each at the center of the plate thickness (5 points in the cold rolling direction x 10 points in the direction perpendicular to the cold rolling direction, 111 bifts each). 6 is true or false.

実施例2 C: 0.054%、Si : 3.23%を含有する
板厚2.3■1の珪素鋼熱延板を01150℃に30秒
保持し900℃まで2分で徐冷した後空冷、0900℃
に4分保持後空冷、■焼鈍なしで処理し、各サンプルの
■板厚中心部、■板厚さ1/4を部(tj全全厚でEC
Pを測定し、第2図で示した画像解析フローでECPの
明暗変化の大きい部分の面積率(S)を求めヒストグラ
フで表現した結果を第4図(板厚中心部)、第5図(板
厚1/4 を部)に示す。
Example 2 A hot-rolled silicon steel plate with a thickness of 2.3×1 containing C: 0.054% and Si: 3.23% was held at 01150°C for 30 seconds and slowly cooled to 900°C for 2 minutes. Air cooling, 0900℃
After holding for 4 minutes, air-cooling, ■ Treated without annealing, ■ center of plate thickness, ■ 1/4 plate thickness of each sample (EC
P was measured, and the area ratio (S) of the portion of the ECP with a large change in brightness and darkness was determined using the image analysis flow shown in Figure 2, and the results were expressed in histograms. 1/4 of the plate thickness is shown in (part).

ECP測定は各50点(冷延方向5点×冷延方向直角方
向10点、各1鶴ピツチ、炭化物が測定部分に現出した
場合はECPをとらず、冷延方向の点数を増し計50点
とする)で行なった。
ECP measurement was carried out at 50 points each (5 points in the cold rolling direction x 10 points in the direction perpendicular to the cold rolling direction, 1 Tsuru pitch each. If carbides appeared in the measurement area, ECP was not taken and the number of points in the cold rolling direction was increased for a total of 50 points. point).

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によればECPの鮮明度を定量化す
ることによって結晶歪の評価ができ、微小な残留歪の評
価、加工における不均一変形、再結晶の核形成場所、方
位による蓄積歪の相違の調査、解析等が可能となるため
、その学問的、工業的効果は大である。
As described above, according to the present invention, crystal strain can be evaluated by quantifying the clarity of ECP, and it is possible to evaluate minute residual strain, non-uniform deformation during processing, recrystallization nucleation location, and accumulated strain due to orientation. Since it becomes possible to investigate and analyze differences, it has great academic and industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷延での真否(ε)、冷延率<c R;とEC
P鮮明度(S/S、) 、X線測定による(200)回
折線の半価中(FWHV)との関係図、第2図はECP
の画像解析フロー、第3〜5図は、ECPの明暗変化の
大きい部分の面積率(S)のヒストグラフである。 CR(’/、) 手続補正書(自発) 昭和63年5月70日 特許庁長官 小 川 邦 夫 殿 1、事件の表示 昭和63年特許願第4969号 2、発明の名称 結晶歪の評価方法及び装置 3、補正をする者 事件との関係   特許出願人 名称 (665)新日本製鐵株式会社 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号5、
補正の対象 (1)  明細書の「発明の詳細な説明」の欄6、補正
の内容 (11明細書の「発明の詳細な説明」の欄(イ)同書5
頁17行「以下」を1以上」に補正する。 (ff)同書8頁15行と16行との間に次の文を挿入
する。 rまた非晶質と結晶質が混在する試料の場合、鮮明なE
CPは結晶質部分からしか現出しないため、本発明を用
いれば、結晶質部分の検出、結晶化部分の割合の評価が
可能である。」
Figure 1 shows the accuracy (ε) in cold rolling, cold rolling rate <c R; and EC.
P visibility (S/S, ), relationship diagram with half-value (FWHV) of (200) diffraction line by X-ray measurement, Figure 2 is ECP
FIGS. 3 to 5 of the image analysis flow are histograms of the area ratio (S) of the portion of the ECP where the brightness changes are large. CR ('/,) Procedural amendment (spontaneous) May 70, 1988 Director General of the Patent Office Kunio Ogawa 1, Indication of the case 1988 Patent Application No. 4969 2, Name of the invention Method for evaluating crystal distortion and Apparatus 3, relationship with the case of the person making the amendment Patent applicant name (665) Nippon Steel Corporation 4, agent address 5-8-10 Toranomon-chome, Minato-ku, Tokyo 105
Subject of amendment (1) "Detailed explanation of the invention" column 6 of the specification, contents of the amendment (11 "Detailed explanation of the invention" column (a) of the specification, ibid. 5)
Page 17, correct "less than or equal to" to "1 or more". (ff) Insert the following sentence between lines 15 and 16 on page 8 of the same book. r Also, in the case of a sample containing a mixture of amorphous and crystalline materials, a clear E
Since CP appears only from crystalline portions, the present invention allows detection of crystalline portions and evaluation of the ratio of crystallized portions. ”

Claims (1)

【特許請求の範囲】 1)ECPの鮮明度を定量化するとともに、該定量化さ
れたECPの鮮明度の変化から結晶質の歪の程度を検出
するようにしたことを特徴とする結晶歪の評価方法。 2)ECPの鮮明度を定量化する手段が、ECPにおけ
る明暗変化の大きい部分の面積率を求めるものである特
許請求の範囲第1項記載の方法。 3)ECP機能を有する走査電子顕微鏡と、ECPの鮮
明度を定量化する画像解析機とからなることを特徴とす
る結晶歪の評価装置。
[Claims] 1) A method for detecting crystal distortion characterized by quantifying the clarity of ECP and detecting the degree of distortion of the crystal from a change in the quantified clarity of ECP. Evaluation method. 2) The method according to claim 1, wherein the means for quantifying the sharpness of the ECP is to obtain the area ratio of a portion of the ECP with a large change in brightness and darkness. 3) A crystal strain evaluation device comprising a scanning electron microscope having an ECP function and an image analyzer for quantifying the clarity of ECP.
JP63004969A 1988-01-14 1988-01-14 Method and apparatus for evaluating crystal strain Expired - Lifetime JP2650702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004969A JP2650702B2 (en) 1988-01-14 1988-01-14 Method and apparatus for evaluating crystal strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004969A JP2650702B2 (en) 1988-01-14 1988-01-14 Method and apparatus for evaluating crystal strain

Publications (2)

Publication Number Publication Date
JPH01182726A true JPH01182726A (en) 1989-07-20
JP2650702B2 JP2650702B2 (en) 1997-09-03

Family

ID=11598422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004969A Expired - Lifetime JP2650702B2 (en) 1988-01-14 1988-01-14 Method and apparatus for evaluating crystal strain

Country Status (1)

Country Link
JP (1) JP2650702B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166506A (en) * 1981-04-08 1982-10-14 Mitsubishi Heavy Ind Ltd Strain measuring method
JPS60183808U (en) * 1985-04-16 1985-12-06 三菱電機株式会社 surface inspection equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166506A (en) * 1981-04-08 1982-10-14 Mitsubishi Heavy Ind Ltd Strain measuring method
JPS60183808U (en) * 1985-04-16 1985-12-06 三菱電機株式会社 surface inspection equipment

Also Published As

Publication number Publication date
JP2650702B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
Zaefferer et al. EBSD as a tool to identify and quantify bainite and ferrite in low‐alloyed Al‐TRIP steels
Mitsche et al. Recrystallization behaviour of the nickel‐based alloy 80 A during hot forming
Benum et al. Effect of precipitation on the evolution of cube recrystallisation texture
US9568442B2 (en) Strain mapping in TEM using precession electron diffraction
EP1611431A1 (en) Detection method and apparatus metal particulates on semiconductors
JP2004509356A (en) A method for quantifying texture homogeneity in polycrystalline materials.
JPH06295945A (en) Method and device for evaluating semiconductor manufacturing process
US4990779A (en) Method and apparatus for evaluating strains in crystals
CN110646455A (en) Method for rapidly analyzing oxide scale structure on surface of hot-rolled wire rod
JPH01182726A (en) Evaluation of crystal strain and apparatus therefor
JP2018025513A (en) Method for separate visualization of ferrite phase, martensite phase, and austenite phase in multiple-phase steel by observation with electron scanning microscope, and multiple-phase steel piece for tissue observation
Humphreys et al. Applications of electron backscattered diffraction to studies of annealing of deformed metals
US7844101B2 (en) System and method for performing post-plating morphological Cu grain boundary analysis
Krämer et al. Assessment of EBSD analysis and reconstruction methods as a tool for the determination of recrystallized fractions in hot-deformed austenitic microstructures
Verbeken et al. Quantification of the amount of ɛ martensite in a Fe–Mn–Si–Cr–Ni shape memory alloy by means of electron backscatter diffraction
Humphreys et al. Combined in situ SEM annealing and EBSD of deformed materials
JPH0815186A (en) Quantifying method for local internal strain of processed crystalline material
Kühbach et al. On a Fast and Accurate In Situ Measuring Strategy for Recrystallization Kinetics and Its Application to an Al-Fe-Si Alloy
TWI275787B (en) Judge method of black-lead texture in a grey casting iron, judge program record medium and judge system
Engler et al. Single grain orientation measurements applied to the formation and growth of recrystallization nuclei
Ambrož et al. Automation of Metallographic Sample Etching Process
JPH10135293A (en) Semiconductor crystal estimation method
CN111879804B (en) Method, device and system for determining organic carbon content of shale
Birosca et al. Phase identification of oxide scale on low carbon steel
Partanen et al. Comparison of Defect Images and Density Between Synchrotron Section Topography and Infrared Light Scattering Microscopy in Heat‐Treated Czochralski Silicon Crystals

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11